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ALMOST PERIODEC SOLUTIONS OF THE
EQUATIONx =x*+Ag (&) x+ uf ® AND
THEIR STABILITY

Jiang Dongring (£ % -F)*

Abstract -

By using the Liapuﬁov function- and the contraction 'mapping 'principle,v the author
investigates the existence and stability of almost periodic solutions of the first order
nonlinear equations

R (o) +uC)g () +£)
and | |
—fl— r(£)an+Ag()z-+ f (), |
where 7(3), g(3), f(#) are given almost periodic functions, n(>2) integer, and A, w rea.l '
parameters.
As a special case, for the equation
& o gt dg (Yo +uf (),

under the conditions 1< |g(t)| <3, [f(#)|<1, the author constructs regions in the (A, w)-
plane such that for (A, p) in these regions there are either one or three almost periodie
solutions. Similar conditions and _regions are also_ obtained such that the equation

%‘? = — 2P+ Ag(B)z+uf (£)

has either two or no almost periodic solution. Moreover, by using the successive ‘approxi~
mation method, sufficient condition is obtained for the existence of almost periodic solution of
a quasilinear system.

- We congider the first order nonlinear differential equation'

L _pirg@®otuf®, @

where g(t), f(#) are almost periodic functions (written as a. p. for simplicity)and
A, v are real parameters. Using a fixed point theorem and Liapunov functidn, we
digcuss the exigtence and stability of a. p. solutions of (1) .For given f, g satisfying
some conditions, we construct regions in the (A, w)-plane such that for (A, w) in
these regions there are either one or three a. p. solutions. Although we cannot
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. determine the number of a. p. solutions for all values of (A, w), the exact regions
are constructed for the autonomous equation f (t)= g(®)=1 (or f(t)=9(t) = —1)
for all £.

If ¢ is replaced by —%, equation (1) has the form

9 — o rg (Dot uf 8). @

Clearly, (1) has a. p. solution for (A, ) if and only if (2) does for (-1, —w),
and in all conclusions on stability we must change the direction of the time-axis.
In the following, we give a. sﬁfﬁcient condition for the existence of an a. p.
solution of some equations which are more general than (2). In § 1 we suppose
g(t)=0 (or <0), however, in § 2 we will remove this restriction.

§1.

Theorem 0. Let F(w, t).be a scalar function, almost periodic in t wniformly
Jor » in compact sets, that suppose F is continuous and monotone decreasing with respect
'to sE [w, b1, such that all equation in the hull of

& (o) ) (0

has @ unique solution to the initial value problem. If (0) hasa bounded solution o(t)
such that {p(t) |0<<t<<oo} [, b], then it has an almost periodic solution (%),
Range (@) < [a, b]. Moreover, if F decreases strictly with respect to »¢€ [a, b], then
(t) ds the unigque a. p. solution with Range (v)C[a, b].

Proof The first part is just Theorem 12.8 in [1]. By Theorem 6.2 of the
- same reference, we have Range (¢) C[a, 5]. ‘

If @1(8), ©a(¢) are two distinct a. p. solutions with Range (#)C[e, b] (i=1,
2), by the uniqueness of solution of the initial value problem, we may assume
@3 (t) >2a(t). We have

d(wa—my) _
""—m'dt—m G(t):

where G(t) =F(5(8), t) — F(w.(¢), £)>0 is an a. p. function. Therefore
5 —e®) ~a0) —a©) + [ @@

Let t—>-+co, from Theorem 8.8 of [1], the mean value @, of G(t) is pos1t1ve.
Noticing

Go =;:£—Tj G(5)ds,

oo .
we geb Jo G (¢)dt=+o0, which contradicts the fact that @,(¢) —@;(¢) is bounded.

So the second part is proved.. -
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We now consider the equation

%”-g--e b (@) +ha(@) g +f B, @

where hy (9), ha(w) €O, g(t), f(¥) €A. P. (the set of a. p. functions). If

| F(w,t) =~ Ry (@) +hs (@) g (8) +1 (F), |
then F (@, t) is almost periodic in ¢ uniformly, for # in every closed infterval.
Obviously, each equation in the hull of (8) has a unigue solution to the initial
value problem. '

Theorem 1. Suppose that g() <0, hi(w), ha(w) are continuous and monotone
imereasing functions, hy(+o0) = 400, hy(—o00) = — oo, and at least one of the following
two conditions is satisfied: | |

1) hy(w) inereases strictly,

it) ha(w) increases strictly and g(t) <O0.

Then (8) has o unique a. p. solution which is uniformly asymptotically ‘stable.
Moreover, if ome of the following two conditions is satisfied:
i) B(@)>a>0, | '

- iv) ke (@) =y>0, g(8) <B<0,
where &, 8, v are constants, then this a. p. solution is fu,mforrmly asymptotically stable
in the large. All the other solutions are asymmptotically almost periodic.

Proof First, we prove that (8) has bounded solutions on [0, ~-o0). Let
w(t 0, ) be a solution with #(0) =m. Since ¢(%), f(¢) are bounded, and

hy(400) =400,  hy(—00)=—0c0,
there exigts K >0 such that F(K $) <0, F(—K, )>0 for t=0. Therefore, if we
take |wo| <K, #(t; 0, @) is well defined for =0 and |[s(f; 0, @)|<K. Under-
condition i) or ii), F (=, t) is decreasing strictly with respect to €[~ K, K],
where K may be taken arbitrarily large. By Theorem 0, there exists a unique a. p.

solution. |
If —wu(¢) =y, where u(f) is the a. p. solution of (3), then
L — Da(y+w) ~ ()] +9 ) Tray+) ~ha ()], @
We consider a Liapunov function V (t, g) = ; . Since

[P (y+w) —hi(w) |4=0, [ha(y+u) —he(u)|y=0, g(8) <0,
it follows that :

‘;’;’%()-———[hl(y—i—u) ~hs(u)1y+9(£) [ha(y-+u) —ha(Wy<0,

and hence, the solution y=0 of (4) and the solution %(¢#) of equation (3) are
uniformly stable ™,

We consider now the nontrivial solution ¢(%; %o, 4) of (4). By the uniqueness
of the solution of the initial value problem, y(¢) #0 for ¢>t,. We rewrite (4) as
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follows: .

%%_= — hi(ﬂ‘*'uy) —ha () g+ g(®) [hz(i‘/";u) fhs(u)] 9. : (5)
From i) or ii)' wé have y—ddﬂ- <0, and hence |y(t) | is decreasing. Now we seek 10
prove that Eﬂy(t) =0. If this is not true, then |y(%) | >d>0, where d is a constant.
Sincé ha(y ) — hi(u) is continuous on the compact set

Y
{(w, 9| |u|\<\811p|u(t) |, d<y<go (or go<y<—d)}

and positive because of i), there exists a constant ¢>0 such that by @"Hz —hs ()

=c¢. Thus

u

—1y— <= (#4)
from (5), and hence . ‘
|91 < [gle0-90, (a5 t—>+o0),

which contradicts the fact that |y(¢){>d>0. Thus we have lim y(#) =0. Under

t—roo
condition ii)we have
o L 1 dy
<
7 eg(®),

where cg(#) <0 and cg(¢) €A. P., and hence J cg(t)dt= — 00 af proved in Theo~

rem 0. From this fact we can derive the same conclusion. By [2], Theorem 7.8
and Definition 7.7, the trivial solution of 4 and hence () are uniformly
asymptotlcally stable. '

Finally, if iii) or iv) holds, by the mean value theorem We have

%?ti =[—hg(ai(t))+g(t)h'2(92(t))]y2<—byz;

where b>0 is a constant Thus the solution y=0 and hence the solution u(¢) of (3)
aTe uniformly asymptotically stable in the large ®, and all other solutions are
asymptotically almost periodic. This completes the proof. .

In equation (2), A () =2°, ha(s) =. We have

Corollary 1. If Ag(?)<<0, then (2)has umque a@. p. solution which is uniform—
ly asymptotically siable. Moreome'r, of %g(t) —B<0, then the . p. solution is
uni formlly asymptotically stable in the chge All other solutions are asymptotically
almost periodic. ' '

Now we consider the case when by (#) is not monotonic. For simplicity we
discuss only the type of equation

L oy Dotuf®, (©)

where n>2 is positive integer. Without loss of generality we can assume that
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inf|g(2) | =sup|f ()| =
Using a fixed point theorem we will prove the followmg

Theorem 2. Supposs int| g.(t)[=sup} £ =1 andles 31 =(-L2L)". 17

[A] >ndm2, (N
then (6) has an a. p. solution u(t), |u(t)| <M. It is umformly asymptotically siable
of Ag(t) <O, unstable ¢f Ag(t)>0.

Proof If u=0, obviously, (6) has the trivial a, p. solutmn o=0. If w+0,
then M>0. By (7),we have

M..-1+IM| ]M=Mn-1[1+|MM—"J |A] =nBL2— 1] <0,

M+ p -
n <M. | | (8)

Since inf Mg(t) | =|A] %0, either inf Ag(¢)=]A|>0 or sup Ag(?) =—|A]| <0. Since
" these two cases are analogous, we only consider the first case. Therefore

. 1
AT
By [1] Theorem 6.6, for any a. p. funciuon (%), ’ﬁhe equation

% ~rg(ywtuf () —p @ (©)

has a unique a. p. solution®, say T,

[ (oxof} ) o 6) = ).

rxg(t)dt> |A] >0.

Let : '
B={p(t) €A. P.| || <M}, |p|=suplp(®)].

Clearly B is a completemetrlc space. From (8) we have
11— | [ (exe{’ o) (o (6) —wpras | <[ -w<s~*><M"+m1>ds
Mr+ | ] |
1< M,
|A]
therefore | Tp| <M.

2T = |7 (e 20 0) o0 — 030>

<L DM g (5) = a(s) s < T o=l =l —sl,

where p—— ‘ ‘ <1 from (7) Therefore T is a coniraction mapping, and hence

there exists a unique fixed point %. Relation (9) shows that %(¢) is an a. p. solution
of (6), and o

*) In fact, the uniqueness is proved in Theorem 6.6,
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1
e (el
<2t ~(25) | (10)
In order to discuss the stability, let y=o—u(t). We obtain
= (Ag— nu”‘i)y+0(yz) (1)

Tn case xg(t) <0, from (10) and (7), we have

Ag(8) —nu=2(8) <Ag () + |nur=2(8) | < — | A +nM—1<0.
By the uniqueness of the solution of the initial value problem, the nontrivial
solution of (11) satlsﬁes y(£) %0 for ¢>t,. Thus we can rewrite (11) as follows

1 dy _ n-1
7 it =Ag—nu**4+0(y).
Therefore
1 dy

Where a>0 is.a constant. Consequently _
[y (t| <|gole™**w—0  (|go] <1, t“‘>+°°)
8o the solution y=0 of (11) and hence the solution u(t) of (6) are uniformly
_asymptotlcally stable. In case Ag(%) >0, we have
Ag(t) —nut=1(8) >0.

So the solution y=0 of (11) and hence the solution u(t) of (6) are unstable

The proof is complete. Being different from Theorem 1, Theorem 2 does not
show the uniqueness of the a. p. solution in the large, but it gives us a bound for
~ the norm of a. p. solution. This estimate provides some informations on the a. p.
golution as the parameter varies. In fact, for given ¢g(¢), f(¢) and fixed A0 (7) is
satisfied for |w| small enough. Let u,(£) be an a. p. solution satisfying the bound
given in Theorem 2. From -(10) we have

Qorollary 2. Suppose g(3), () are given, inf |g(¢)| =sup|f(t)| =1, and A is
fixed. If (7) holds, then u,(¢) approaches zero uﬁiformly as u—0.

Remark 1. Condition (7) is related to the bifurcation curve ® for the .equi-
1ibrium solutions of the autonomous equation obtained by setting g(¢) =f(¥)=1 in
{6), that is, the equation

In the (A, w)-plane, the bifurcation curve for equilibrium solutions is given by
’ {—m"+?\.m+/.b=0.
—na"1+A=0.

Eliminating the parameter », we obtain |
' n—1

=

Therefore, we find that the blfurcatlon curve is a branch of the curve defined by
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m_n< | )

n—=1

- As we will see later, for the almost periodic equation, the situation is much more

complicated than the autonomous equation. :

‘Remark 2. If the term —a" is replaced by 2" in equation (6), then the
theorem is obviously true. Moreover, the theorem may be generalized. In fact,
consider the equation

‘%ﬁ*v"(t)w"ﬂg(t)w—kuf(t),‘ | - (@)

where (1) €A. P. and n>>2 is a positive integer. If |r(t)]|<1, the statement and
the proof are still valid Wlthout any change. If sup|r(t) | =R>1, instead of (7) we

Tequire
[A] >nRM"1, . (1)
Noticing that B>1 implies n+R<nR+1, We can prove
Ay ®)

 In fact, we derive that

Rt Ll s (R B~ 2]
=M"*(R+n—1) — |A| <nBM"*—|A] <O0.

Thus, (8') is true. In this case
To" (=], xg<u>du)<r<s>¢ ()~ 1f (9)ds

is also a contraction mapping and (11) has the form

= (ur (=29 ())y-+ 0. | BREET)

The stability may be discussed in the same way, Thus Theorem 2 may be genera~
lized to the following
Theorem 2. Suppose

inf|g(t) | =sup|F () | =1, sup|r(t) | =B
Let ‘

M=<?Lﬁ—li->n._1f |A]>max(1, B) Mo,

then (6') has an a. p. solution Au'(t) y |[u(@®) | <M. It is uniformly asymptotically stable
if Ag(t) <0, unstable if Ag(t) >0. :

Remark 3. We can also apply another method ‘* to prove the existence of a.
p. solutior in Theorems 2 and 2’. The advantage of this method is that we can
apply it to a higher-dimesional case. Consider the system

B — AWa+uf B +a(, 1), 2
for which the following conditions hold: ’
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i) Square matrix 4 (%) is almost periodic and the homogeneous equation

9 4(oya e

satigfies an exponentidl dichotomy 3 - |
ii) Vector f(t) is almost perlodlc

' 111) Vector q(m, £) is almost perlodlc int umformly with respect %0 « in a
neighbourhood of #=0, and there is a >0 such that

l9a, 910lal*, | L] ~0(lal") (as50),

' umformly for t€ (— oo, +o0).

We now prove the followmg
Theorem 3. If conditions i), ii), iii) are swtzsﬁed and |w| s smwll e’nough

then (12) has @ unique a. p. sobution in the neighbourhood of ©=0. |

Proof We only prove the existence of a bounded solution; for almost perio-

dlclty, seo [6] From i), the fundamental matrix X (¢) of (13) can be decomposed.

as follows
X#)=X1(0) +Xs(t), X*(s) =Z1(s) +Za(s),
X Xs) = Xa(8) Z1() + Xa () Za(s),
and there are two positive constanis « and 8 such that
| X1($)Z1(s) | <Bexp(—a(t—s)), t>s
| X2(8) Za(s) | <Bexp(a(t—s)),i<s.

from 111) there is a constant K >0 such that

lg(a, 8) | <KW, (39 i<Kh6 for || <h, —co<t< 00,

where 4 may be taken arbitrarily small. Let

. - To (t) EO,
en() = | Xu(®)Z3(5) {1 ) +4 0m-15), 9)}ds

~ (X @ 1 9 + 2@, 9}, m=1,2, e,

Take h<1 such that _
48K h®

—<1,

~ and then take || <1 such that

4,81;; FL <n, 171 =sup |f(®)|.

we have

Mo ® [ <B{] ,u,”| f"+ I‘(h”"}{j-i e_u(t—s)ds_l_j a(t—s)ds}
— 281 |l l71+ K} <,
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| Bns1— B | < BE I | @ — D1, { Jt a= a9 do 1 (( act—s) ds}
_ 2BKA .
o

%0 — -1 <’§.“ | %m— -] -

Therefore, {w,(t)} converges uniformly to #(¢), and |2(%) | <h. Differentiating the
equality

o) =] DL GO +a, 9}~ [ Xa® 2 O O+a), s

we see that o (f) satisfies (12). The uniqueness can be easily proved.

We also mention that every nontrivial solution of (18) is unbounded if i) is
satisfied, so (18) has no nontrivial a. p. solution in this case. Let X ($)n be a
nontrivial solution of (18). Corresponding to i), we decompose 7 as 77==m+072,

AL 0 )
/! 0/ Na T ©
For any vector &, we have

X Z S| <|€] B, 15
| Xa(8) Za(s)E| <|€]| Be™¥9), 1<<s.
Taking &= X (s)n we get '

Where

IX(S>?7!>-B- 2| Xy (1) Z1 () X (8)n] = Z 2| Xa(D)m|

=L o Xy, s

| X @] 70| Xlt) Zu(@X(shn] =5~ X (O

=5 €I X (Ol i<

Since X (t)n+#0, we have X @) #0 or X(#)na#0. In case X (t)ni%O we have
| X (s)n]—>+4o0 as s>—oo, and in case X (£)n.#0 we have |X(s)n|->+oo ag
§—>-+-o0; 80 in both cases, X (s)n'is unbounded. _

Applying Theorem 2 to equation (2), we have

Corollary 8. Suppose inf| g(t)| sup| f(t)] =1. If IM >3 («lfﬂ—) then (2) has

an @. p. solut'ion u(t), [u(t)[ <<, ') It ¢s uniformly asymptotically stable if

?»g (t) <0, unstable if Ag (¢) >O0.

Qorollary 1 shows that an a. p. solution of (2)is unique when ?»g(t) <0. Now
we consider Ag(¢) >0 and prove the following

Theorem 4. Suppose inf|g(¢)|=sup|f()|=1, sup|g(@)|<8. If Ag()>0,
then there ewists k>>1 such that, for all (A,w) satisfying the condition
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2
3

wl > , . | (14)

m>3k»(

(2) has exactly three a. p. solutions.
2
B

. 2
 Proof Clearly (14) implies |7x|>3<"|—'“—l>3 We suppose 7x>3<—IZ'U’—I> and 1<

g(@®) <G<3 The other case is s:lmlla,r From Corollary 8, (2) has an a. p. solution
u(@), [u(t)]<( 'fbl) Put a—u(t) -y, t_hen

‘(’Zg — g [y +Buy +8u2—Ag]. o @5)

It F(y, ) =—y[y* +8uy+38u~g], then we have F,(y,t) ~ — (3y°+6uy +3u—Ag).
From F(y, t) =0 we ha,ve o =0,
yi(t)=— +§/x ————>0 772(;)_:— 3;‘ —\/x 314 <
From B (y, 1) =0 we have |
y:(8) = "@+t/g>0: @2(“') = ”U—J%?<O.

We claim sup 3;(t) <inf yy(t). If

%
3

dwl
A= 3lc( LL), >
o ]Ml _7t_= J
then (2 =4 35 3
and we have ' |u(t)<k1 _3_,
where o . 0<k1%‘¢l<1.
. A A
Since yi(t)=—u+J <701\/ J (hi+G),

it follows that

sup §1<t><,J 2 Gl 7.

Since : ‘ :

__8u 3203 8k x/—?:. \/ M _ \/ HEERYEIN
: yl(t) = ﬂ/?» - 3 YA “ﬁ( 1=3 2 >’
we have inf g1 () =N §/1_Ji‘ ﬁi—g\ﬁ—>

By a simple computation, we conclude that

Ey — V2 Y Bk

2N <R (.J1~%—Vg?i)@ﬂ< o +J3
Therefore, if G<3 is given, the last inequality holds true for all 701>0, small
enough, and hence we have sup gy (%) <inf g;(¢) for all (A, w) which lie on the
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2

curve ?x=3lo-< |’§° | >3, where k>1 is large enough. If sué y1(t) = As, then F (4, t)

>0. Since it(t), g(?) are bounded, we can take B;>> A, such that F (B, ¢)<0. Then
(15) has a bounded solution y(t), 4;<y(¢) <B; for 0<<t<oo. SBince F,(y, t) <0 for
A1 <y< By, by Theorem 0, we conclude that there exists a unique a. p. solution of
(156) in [A;,B;]. In the same way, let By=inf y,(¢), By<0 and take Ay<'B,, |As|
large enough. Then (15) has another a. p. solution in [4s, Bs]. Using the fact that
an a. p. function ¢(¢) for which }im @ (t) =1 must satisfy p(¢) =1 for all ¢, we con-

clude that there is no a. p. solution in every horizontal strip in the (y, ¢)-plane
where F(y, ) >0 (or <0). Thus we have proved that (15) has exactly three a. p.
solutions, i. e. (2) has exactly three a. p. solutions. This completes the proof

If g=f=1, then (2) has the form

de 3

In the (A, w)—plane, the bifurcation curve for equilibriuin solutions of this equa—
\ :

—\T
tion is given by A=38 (—‘—2&) . The number of equilibrium solutions for a given (A,

w) is shown in Figs 1 and 8. For the case f, g€ A. P., by Corollaries 1 and 3 and
Theorem 4, for some (A, ), We can show the number of a. p. solutions in Figs. 2
and 4.
If n=2in (6), we haVe _
-‘Zd% P Ag (Dot (8. (16)

Similarly we can prove

Theorem 5. Suppoese inf|g(t) | =sup|f()| =1, sup|g(t) | <2. Then there exists
k>1 such that, for all (&, /J,) satisfying the coudition (M| >2k~/ [w], (16) has evactly
two a. p. solutions.

If we do not change the variable and we use the same method as in the proof
" of Theorem 4 directly to equation (16), then the following theorem can be proved:

Theorem 6. Suppose inf |g(¢) | =sup|f ()| =1, sup|g(¥) | <2, inf|f ()| =0=
0. If wf(t)>0o0r uf(t)<0 and N>4|p|, |w| <1, then (16) has evactly two a. p.
solutions. In the first case, one of them is posztme, and the othem s negative. In the second
case, these two soluiions are both positive (orr negative) if Ag(¥)>0 (or Ag(t) <0). If
wf <0 and A2<<|w|o, then (16) has no a. p. solution.

Theorem 6 is a generalization in the almost periodic case of [7], Ohapter 11,
Theorem 8.1 and Theorem 3.2 for special Reccati equation. Being different from
Theorem 4, Theorms 5 and 6 are true for both Ag>>0 and Ag<<0. For some (A, w),
the number of a. p. solutions are shown in Figs. 6 and 8. The boundary of the
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region in which there is no'a. p. solution depends on inf [f(¢)|. For the autono-
mous equations, the numbe r of equilibria for a given (A, u) is shown in Figs. 5
and 7. Figs. 1—8 show that our results in almost periodic case are far from a
complete one. In the periodic cage, the bifurcation diagrams for (A, w) small are
similar to that for the autonomous case (see[3], Ohaptei.‘ 9). It ig still an unknown
but interesting problem to determine the complete bifurcation diagram for (A, w)
small, ' o '

3 “ /' I'J nl i
4 \ /d
1 /s _ \
) * N\ 2 A
. \
Lopeyp i
o =] 1£§4G<3 Foe ~34-G 484} i 1819166 42 of 141914642
9 il 5= i g=i= vepesst 0N opian
Fig.1 Fig.2 Fig.3 Figd ~ Figh TFig.6 Fig.7 Fig.8

At the end of this section, we apply Theorem 2 to the periodic equation. It is
well known that the a: p. solution must be periodic and has period .T' provided
F(w, 1) hag period 7' and the scalar equation ==F (s, t). has a unique solution to |
the initial value problem ", So we can make

Remark 4. If v(¢), g(t), f(¢) have period T', and the conditions.in Theorem
2’ are satisfied, then (6") has a periodic solution with period 7.

For example, we cosider the equation

%=r(t)wﬂ+x(2+sint)m+ucost, | 1
where n>>2 is an integer, r(§-+2m) =7 (), |r(#) | <1.If |u|>1, we can easily prove

n—1
n

w(—nLﬁ—I—l—>_—<3| w|, and hence, (7") holds for n=>2 provided

I;»l > |w|>1. Remark

4 shows that (15) has a periodic solution with period 2z for n>>2. It is uniformly
asymptotically stable if A<<0, unstable if A>>0. When n is odd and r(#)=—1, since
there exists a bounded positive trajectory, the existence of periodic solution may be
shown by Massera theorem ™'.'But in the general case, the existence of a bounded
positive trajectory is not clear. |

$2.

In this section we shall-consider the equdtion
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%ig.=~h<m>+g(t)w+f<t) (18)

in the case that the sign of g() may change
Theorem 7 Suppose i)

. h( )
$hatj (29(s) +s)ds is bounded for 0. Then (16) has @ unique a. p. solution fwkfwh

¢s uniformly asymptotically stable in the large, and all of the other solutions are
asymptotically almost periodic. |

Proof If F(w,t) =—h(@)+g#)w+f(t), then F(w, ) is almost periodic in #
uniformly for #€ (—oo, +o0). From i), we have h(—o0) =—00, h(+o0) =-oo0,
Noticing h(w) #0 for || large, we may write (18) as follows

=h<w>[ 142, SO

h(w)  h(w)
Therefore, there exist K >0, I, >0 such that '
ch < —Lfor s=K; -‘é—?>LA for w<—K
Thus w(t) < —L(t—1o) +mo for o> K, o(t) =K, t=1,

w(t) > Lt —1t) +wo for m< — K, s() <—K, t=1%. -
Hence, we can see that the solutions of (18) are ultimately bounded for bound K.
We consider the system.

{ 20— —h@) +gDa+F ()

W —h@) +9DY+F )

and take the Liapunov function

- (19)

vV, o, 9) = (m—y)2exp<—sz (29(§)+s)ds>, 0<<t << oo, |¢|<K*, ly| <K

where K*>K is a constant. Since K (2g(s) +¢&)ds is bounded, there are constants
a, B such that a<C .—JZ (29@ 4 g)ds<<8. Then we can derive:

i) (- <V, o, y) <é(v—y)?, |

H) [V o, 9~ (G a, 9| = [oxp( = @06)+0)ds) (01—~ @a—3)7|
<4K"e{|or—wa| + |91 —9a(}, | | '

i) 7, 9) oo =2(=9)exp (= [ Qo0+ e)s)[ 1e) = @) +5 0=

= —2(o—g)*exp( || (2g(s)+s)ds>[h’(§)+ £ < —ee*(@—9)?,

using the mean value theorem in the last equality. By [2], Theorem 19.2, (16)
has a unique a. p. solution which is uniformly asymptotically stable in the large.
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And hence all of the other solutions are asymptotically almost periodic.
Applying Theorem 7 to equation (2), we have

Corollary 4, If there ewists an >0 such thatﬁ (20g(s) +&)ds is bounded for

120, then (2) has a unique a. p. solution which is uniformly asympidtically stable in
the large, and all of the other solutions are asymptotically almost periodic.
If =0, then(2) has the form '

& — —arrag(t)s, (20)

and Corollary 1 and Corollary 4 hold for (20). Since (20) has the frivial a. p.
solution =0, we have

Corollary 6. If either i)there ewists >0 such that J: (2?»9'(3) +8)ds s bounded

Jor =0 or is) Mg (¢) <B<O0, then the trivial solution of (20) is uniformly asymptotically
stable in the large, and (20) does not have a nontrivial a. p. solution. In Corollary 1,
it is possible that g(£) =0, so that neither Corollary 2 nor Corollary (4) implies
Corollary 1. _
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