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*GLOBAL SMOOTH SOLUTIONS FOR A CLASS
OF QUASILINEAR HYPERBOLIC SYSTEMS
‘WITH DISSIPATIVE TERMS
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abstract

In this paper the authors prove the existence and uniqueness of global smooth solutions
to the Cauchy problem for guasilinear hyperbolic systems with some kinds of dissipative
terms..

§ 1. Introduction

It is well known that for the Cauchy problem for first order quasilinear hy-
perbolic systems, in general singularities of solutions may appear in finite fime,
even if the initial data are very smooth and sufficiently small(cf.[1, 2]). However,
. Nishida proved that if the C* norm of the initial data is sufficiently small, then
the Cauchy problem admits a unique global smooth solution on #>0 for the first
order quasilinear hyperbolic system in two independent variables, which is reduced
from the quailinear wave equation with first order dissipative term(cf. [3]). Hsiao
Ling and Li Ta-tsien discussed in [4] the following Cauchy problem for general
first order quasilinear hyperbolic systems: '
{_git‘.m(u) 28 fwy =0, ©
| u(z, 0) =u’(2), 2
where u= (uy, -, u,)7, G(u) and f(u) are smooth matrix and vector functions of u
respectively and ' -
| £(0)=0. : 3
Here, the hyperbolicity of system (1) means that G'(u)has n real eigenvalues Ay(u),
oeey A(u) and matrix
L1(w) _
L= @
Lalw) |
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is nonsingular, where {;(u) = ({i (), -+, {1s(u)) denote the left (row) eigenvectors

corresponding to A;(u) (I=1, -+, n). We write

A=(ay) =L(0)VFO)L(0). )
It was pointed out in[4]that if matrix A is strictly row diagonal dominant, that is
ay> é 'alil’ (Z=1: **% n), (6)

=1, J#1

then Cauchy problem (1) (2) admits a unique global smooth solution on ¢>0,
" provided that the C* norm of the initial data is sufficiently small. As the authors
pointed out in[4], their results do not cover Nishida’s results because of assump-
tion (6), therefore the results in[4]should be generalized. Moreover, noticing the
condition of the global existence of discontinuous solutions for Cauchy prblems of
quasilinear hyperbolic systems in [5], we eicpect naturally that Cauchy problem
[N (2) admits also a unique global smooth solution provided that A is strictly
column diagonal dominant, that is

> 3 lag|, G=1, - ). )
§=1, f=1 R

In the present paper we are going to discuss the related problems.

In § 2, under the éssumption that all the diagonal elements of matrix A are
positive, we give a sufficient condiﬁon which guaranteeé that there exists a
diagonal matrix I'=diag (yi, ==, Va), (>0, ¢=1, ---, ») such that I"™* AI'ig
strictly row diagonal dominant. Moreover, if we assume that matrix 4 is weakly
column (or row) diagonal dominant, then the above condition is also necessary.
Thus, from the results in [4] it follows that if A4 is strictly column diagonal
dominant, then Cauchy problem (1) (2)admits also a unique global smooth solution
on =0, provided that the O* norm of the initial data is small.

~ Ing 3, in order to extend T. Nishida’s results to general cases, we consider the
Cauchy problem for strictly hyperbolic systems of diagonal form

{%‘;Mm) LU+ fw =0, ®
u(@, 0) —u(), ©)
where
A(u) =diag (M (u), -, M(®)),
F) = (Fa(w), -y Falu))Ts (20)
Assuming
£(0) =0, guf—;<o>>o (4=1, -, n), (11)

we’ll prove that Cauchy problem (8) (9) with small initial data admits a unique
global smooth solution on ¢>0 provided that the O° norm of the solution
ig sufficiently small. In order to guaraniee that the C° norm of the solution to
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Cauchy problem (8) (9) is sufficiently small provided that the initial data are
small, we should add some additional assumptions ori f(u). For some special cases
which can cover the results in [3], for instance, f(u) is a linear function. of v and
the coefficient matrix of f(u) is weakly row (or column) diagonal dominant with
equal positive diagonal elements, we can prove that, if the O° norm of initial data
is sufficiently small, then the O° norm of the smooth solution to Cauchy problem
(8) (9) is also sufficiently small. Therefore, in these cases, We obtain the existence
of global smooth solutions for Jauchy problems with small initial data.

§ 2. The Case of General First Order Quasilinear
‘Hyperbolic Systems

First of all, we introduce some definitions which will be used later on- (cf.
[71).

Definition 1. For n>2, an nXn real matris A 8 freducfoble tf there emsts an
n X n permutation matrie P such that

Aii Aiﬁ) (12)

. PTAP=|

(o )

where Ay1-1s an r X r submatrie and Ass 48 an (n—r) X (n—1r) submatrie, where 1<

r<n. Otherwise, A is trreducible. For n=1, A s irreducible if its single element is
nonzero, and reducible otherwise.

Definition 2. An nxn real matmw A=(ay) is weakly row (column) dwgonal

dominant ¢f

7 ) n ) .
2 oyl <ay < > el <(lu> (13)
91,74 §=1, 344

for 4=1, e, n. An nXn matrie A is strictly row (column) diagonal dominant if the
strict inequality in (13) holds for 4=1; <+, n. A is drreducible row (column)diagonal
domimant if A is irreducible and weakly row (column) diagonal dominant with a strict
- 4mequality tn (18) for at least one 4.

Definition 8. Let A= (ay;) be an nXn real matria: If ay;=>0(>>0) for all fi, j'-—-:
1, «-, m, then A s called @ non-negative ( positive) matriw, denoted by A>O(>O)

In thig section we prove the following

Theorem 1. Let A= (ay) be an nXn real -matric with positive diagonal
elements. There exists a diagonal matrie I'=diag(ys, -+, va) with v, -, v2>0, such
that I'* AT is stricily row diagonal dommant if there ewtsts a pea"m/utatzon matriz P
such that
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By Fig o-Fy
FAPTAP— Fay Py, |, - (14)

0 =~z

where aoll the square matrices Fy(t=1, <, r) are irreducible column diagonal
dominant. Moreover, if A is weakly column diagonal dominant, then the above sufficiens
conddtton is still necessary.

From Theorem 1 we get immediately the following A

Corollary 1. 1. If maitrie A is sirictly column diagonal dominant, then there
must ewist a diagonal matrie I'=diag(ys, -+, Va) with 7y, -+, 7,>>0, such that
I'"t AT is stricily row diagonal dominant. ' :

Similar to Theorem 1, we have _

Theorem 1'. Let A= (ay;) be an nxn real matris with positive diagonal elements.
There ewrsis o diagonal matrie I'=diag(yy, -+, Ya)with yi, -+, vs>0, such that
I AT 4s strictly row diagonal dominant, if there ewists a permutation matriec
P such that (14) holds, where all the square matrices Fy(i=1, +-, v) are irreducible

. row diagonal dominant. Moreover, if A is weakly row diagonal dominani, then the

above sufficient condition és still necessary.

In order to prove Theorems 1 and 1’, we state and prove the following lemmas
at first.

Lemma 1. Let H = (hy)be an nxn real matric with hy<<0 for i%j, then the
followfing 1° and 2° are e’qwivdlent: |

1° H is nonsingular and H1>0,

2° Al the éigenvalues of H have positive real parts.

Lemma 8. ZLet H=(hy) be an nXn real irreducible column (row) diagonal
dominant matrie with positive diagonal elements, then all the eigenvalues of H have
positive real parts. ' /

Lemma 8. Let H=(hy;) be an nXn real drreducible column (row) diagonal
dominant matrie. If hy<<O for i%j, and hy>0 for all 4=1, -+, n, then H is nonsin-
gular and H-*>0. _ |

For the proof of the above three lemmas we refer to[7].

Lemma 4. Lot F=(f;) be an nxn non-negative matriz of form (14) with
positive diagonal elements, and all Fy(i=1, -, v)be irreducible colummn (row) doiagonal

dominant, then the matrie

o~

f11 _f12 _fin Fyy —Fyg o0 —Fy)
»F= "“f21 fss _f2n — FBQ."' — Fy, : (]5)

“fﬂi '—fﬂﬂ e Soa O . -Z’%rr
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is nonsingular. Moreover
L= (J4) >0, (16)
FE>00i=1, -, n). €k
Proof Without loss of generality, we only discuss the case in which Fy(¢=1,
-+, r)are irreducible column diagonal dominant.

Smce F,(i=1, -, r)are irreducible column diagonal dommant matrices with
positive diagonal elements, from Lemma 2 it follows that all the eigenvalues of
Fy, then of F, have positive real parts. Thus, by Lemma 1 we get that F is
nonsingular and (16) holds.

By Lemma 3, we have

F1>0 (i=1, -, 7).
Since F is a block upper tridiagonal matrix of form (14), it is easy to see that the
diagonal elements consist of that of Fz'(¢=1, -+, r), and from this we can get
(17). Lemma 4 is then proved..

The proof of Theorem 1.

Sufficiency First, we prove that under the given conditions, there must exist a
* diagonal matrix D=diag(dy, --, d,)with positive diagonal elements such that

fu Fradilds -+ fudi'd,
D-ipp—| fadz dy  fan o faudady, (18)

oooooo

fnid;]di and;:ldz el .fim

is a gtrictly row diagonal dominant marix, that is -

f“>j§=;!f4ild;1di: =1, -, n (19)
Jai
or
fiidi'_gl'lfiildi>01 G=1, -, n . - (20)

Ji
In fact, for any given ¢4, ¢+, ¢,>>0, we consider the following linear algebraic
system |
fndz—g’fﬁldj=0i: t=1, «, m, C(21)
J#4
the coefficient matrix of which is still denoted by F, for the sake of simplicity. By
Lemma 4, (16)and (17)hold. Therefore, system (21)admits a solution
 d>0, 4=1, <,
and the diagonal matrix D=diag(ds, -+, d,) i§ a desired one.
Let I'=PDP?, which is still a diagonal matrix with positive diagonal
elements. Hence, from
D*FD=PT'I'*AT'P
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it follows immediately that I'*AI" is strictly row diagonal dominant. Thus, ‘the
sufficiency is proved. _

Necessity Suppose that 4 is weakly column diagonal dominant and by means
of a permutation matrix P, A can be transformed into a matrix of form(14),where
all Fy(i~=1, «.-, r)are irreducible. If there exists a diagonal matrix

>T=dia’g(7’1;“') ')’n) _ _
with positive diagonal elements such that I""1AI" ig strictly row diagonal dominanf,

then getting D=PTI"P, D-*FD must be strictly row diagonal dominant. Therefors,

there exist dy, -+, d,(>0)such that(20)holds.
Suppose that a submatrix £ is not irreducible column diagonal dominant. Set

fS’S fsvs-;-i o fs’t
Fy=| Toete Jostion ot Josan) sy 22)

f‘hs ft:s-{-l o ftvt.v

Olearly, Fy is weakly column diagonal dominant and irreducible. By Definition 2

we have

Fu= 3 JFal =0, s<i<ch. (28)
On the other hand, from (20) it follows that ‘
|  fudim 2 1 Faldi>0, s<isst, (24)
then '

fE( W é ».i Iflii’)di>0'.

t=s J=s,j+
Tt contradicts (28). Thus, all Fy(i=1, -, r) are irreducible column diagonal
dominant. The proof of the necessity is then completed.
The proof of Theorem 1’ The proof of the sufficiency is just the same as in
Theorem 1. Now we only discuss the necessity. Let A be weakly row diagonal
dominant. If there exists a diagonal matrix I" with positive diagonal elements such

that I'"'AT" ig strictly row diagonal dominant, then there must exist a diagonal

matrix D, of the same kind such that D~*FD is strictly row diagonal dominant,
where F is still given by (14). If there is an irreducible submatrix Fy of form (24)
which is not irreducible row diagonal dominant, then instead of (23) we have
t o . 3
f“_j 2 ilfﬁl ='"0, 8<7‘;<t, ) (22))
} =s,] b o
However, in this case we still have (24). Itis not difficult to show that (24) and
(25) cannot simultaneously hold for d,>>0, s<<¢<<t. The proof of Theorem 1’ is
completed :
Example For an 7 Xn matrix A= (ay,), if a;;+0 for all 4, j=1, .., n, and
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)

au=_ 2 lay|, for i=1, o, n, ' (26)
=174 ‘

Oy = [a,,| for 4=1, « 'n, ' (27)
.7=‘1vj :

then from Theorems 1 and 1’ it easﬂy follows that there never exists any dlagonal
matrix I" with positive diagonal elements such that 1"~ AT is strictly row diagonal
dominant. The corresponding mairix A for the system discussed by T Nishida in
[8].belongs to this situation. In the next section, we will further discuss this
situation for strictly hyperbolic systems of diagonal form.

’ According to Theorems 1 and 1, from the result in [4], we get 1mmed1ately

thefollowing existence theorem of global smooth solutlons for Oauchy problem (1)

2. ‘

Theorem 2. Let matria A defined by(b) satisfies the following assumptiyns:

ay>0, i=1, -, n, - (28)
and there ewists a permutation matriz P such that
i1 Fig o+ Fy
- _ Fog oo Fy
PTAP=| . SR PR e (14)

O | '.. “Z:‘?ff ..

where all Fy(i=1, «, r)are iweduéz’b_le column, (or ¢bw) diagonal d!om;l}nanf mqtmiqqé.
Moreover, we assume that A(u), {(w)€C*, f(u)E€C? and (3) holds. Then Cadchg
problem (L) (2) admits & unique global smooth solumon °%. on t>0 which decays
ewponentially in C* norm as t—>-+oo, provided that the 01 norm of tke wnitial datw
uw®(w) is sufficiently small.

Using Theorem 2 and noticing Corollary 1.1 we immediateiy obtain the
following

Corollary 2.1. If matris A deﬁned by (5) is stmctly column dwgonal dominant,
then the conclusion of Theorem 2 s true. ‘

Corollary 2. 2. If matris A is irreducible row (or column) diagontl dominant,
then the conclusion of Theorem 2 is true. '

§ 3. The Case of Quasilinear Strictly Hyperbolic
Systems of Diagonal Form

In this section, we consider Cauchy problem (8) (9). Assume
(1) System (8) is strictly hyperbolic, that is .
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on the domain under consideration. | |
(i1) £ =0, L (©>0,i=1, -, m. (30)

We have the following
Theorem 3. Suppose that A(w), f(w), v’ () €C* and assumptions (1), (ii) are
satisfied. ;S’uppose further that the smooth solution for Cauchy problem (8) (9) satisfies
the following hypothesis
(H): For any gwen >0, there ewists >0 such that if |u°|p<<d, then
suplu@®)le<e - (31)
on the domain where the clwsswwl solution exists.
Then C’wuchg/ problem (8) (9) admits a unique global smooth solution w on t>
0, provided |u| is sufficiently small. Moreover, if |w(t) | oe<<Do|u®|co, then
| |u(®) |o<Di|u|er (¢>0), (82
where
_ [u(t) | o= _sup lu(t, #)|,

Ju® lo= () o+ | 22.0) |

and constants Dy and Dy are independent of ¢.
Proof According to the existence theorem of local classical solutions for first

order quasilinear hyperboh‘é systems (see[6]), in order to get the existence of
‘global smooth solutions bn ¢>0, it is sufficient to prove that the first order
derivatives with respect to # of the classical solution are bounded on the domain
Where the classical solution exists. For this aim, dlﬁ'erentlatmg the first equatlon
of system (8) with respect to &, we get

2 (Ge)m 2 (52)
=G%@_é%w&m%.é%@3w
\ ouy k=1 Ouy ox ) ox =3 ow
From assumptions(ii)and (H) it follows that for any given positive number
(@< 1 suitably small), thers exists g;>>0.-such that if |u’|p< 81, then the smooth
solution u to Cauchy problem (8) (9) should satisfy

4 (t) | o<a ey

(83)

and
| AL =0, (85)
. where '
B Eiif}( 372@20)> . 9

For the time being, we assume that on the domain where the smooth solution
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exists, it holds that
@) o | 8
& ou, o <3z S
Setting S
AR NON.
ouy Z]i au;, o’ - (88)
from (85) and (87) we get
| N<-£, (39).
Mozeover, setting
d 0 4ol
from gystem (8) we obtain
Lt — fo) + (a(0) ~Da0)) S, =2, (40)
Thus, (83) and (40) give
du;,
d“M)NﬁW ZWWD'Mw+ ©(41)

dit \ @ ouy, A (uw) — hi(u)

Let w=w,(%, &) be the first characteristic curve passing through the point (¢, #)

= (0, &), then noticing initial condition(9), from (41)we geb
0
g;i (t) mi(t’ a))

=eXp<JZN<S: w1<s, a))ds> ﬂg_gﬁ"’*‘ ]gz(Pk"l'Qk))

where
duk

P,= Jo af1(u) | v (, a;;('v, a)')exp(JiN_ (s, #1(s, &))ds )dw,

oun | M (w) —M (u)

8uk Kk(u) 7\;1( )

Q= [: ofs(w) ,__ fu(w) (v, w1 (v, @))exp (J:N (s, wi’(s, a))-ds )dr.

Set @
. 1 3f 1 (U
by (u) = ' , b=2,
O ™ Oy Oy M T
Using the mean value theorem we can rewrite (45)as

P () =Ry (0) + 521 ACHLI
Thus, by integration by parts in(43), we obtain

Pyl (O)ua, 23(t, o))~ @)ub(@oxp( [ N (s, 24(s, a))ds )
() [ (5, 03, o) exp (| WG, x5, o))

+31[" A

J=1/0

— (z, #:(7, a))exp (j: N (s, #:(s, &))ds >dz‘

4

(42)

(43)

(44)

(45)

(46)

<)
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Noticing N <0, we have
[ 13¢5, oa(, )| -oxp ([ N Gs, 165, @))ds o

=1— equ N (s, wi(s oa))ds )<1 (48)
Usmg (40) and assumption (H)we get
[ o, 0y, ) | <014 2205, s, o)

y @)
here and later, C;(i=1, 2, ++-)denote constants independent of both # and a.

Writing :

- Oy
M= g |G @),
—00 << 00 ; | (50)

W ()= 2 Wi(®),
from 47— (50)and (89)it follows that

| Py <Caa(1+Wi(t)). | ' (51)
N ow we estimate Qk Assump’omn (if) gives ‘

| A= | (52)

Thereiore in a sumlar Way ag estlmatmg P, from (44) we obfain . :
| le <Ca. , (58)

Thus(42), (51)and(58)yield '
: 0

(i i< s i%@‘l + 0L+ (5)). (54)

Treating other #—1 equations in the same way, we can obfain gimilar estimates on
Wy(k=2, -+, n), so we have ‘

T woe|es e | O (LW (B). (5
"Thus if ¢ is chogen 10 be suﬁieiently.,s_mall (i..e. -8 is sufficiently sma.il), We can
obtain | a

a W <e| S| +0a, - (56)

then, W (¢)is uniformly bounded. Moreover, if it holds that
u®) [o<Or || ov,

du

then, it is eagy to see thab ‘ S , _

FH<O|le, BN 1

that is, (82) holds. I
Finally, we have to show that hypothesis (87) is reasonable Since we have

proved that (56) and (57) hold under this hypothesis, that is, can be suffi-

Oy
- O

ciently small provided that the O* norm of 40 is sufficiently small, we can always
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wmake hypothesis (87) true if the O* norm of u? is sufficiently small. The proof of
the theorem is completed. '
Now we discuss which additional assumlptions should be added o f(u) in order
to guarantee that hypothesis(H)holds.
Let fi(u) be of the following form . _
fuw) =3 fuy, =1, -, m, (58)
where fi; are constants, then we have
Lemma b. ILet fiu=Ffaa=+=Fu=a>0. If the matrizs F=(fy) is f-wéw'kly row
(or eolumn) diagonal .dom'z}mnt, then the smooth solution w fo Cauchy problem (8)
(9) satisfies ' ,
|%(t) [00<Do[°| ¢, (59)
where D, is independent of ¢. ‘
Proof Without loss of generahty, we only discuss the case where F' ig weakly
row diagonal dominant.
Integrating the ¢—th equation of system (8) along the é~th cha.ra.ctemstlc curve
o=u;(t, o)starting from the point(0, @), We can get '

e, 1ty a) et @ | +[] 3 [ful luts, 5(s, @) e
(6=1, ++, n). (60)
~ Set
Ui()= _sup |u(i, 2)],

U@i)= Iax U.(t). (61)
<4<n . .
Since F is weakly row diagonal dominant, it follows from(60)that
, . .
U:(H)e® << Iu?[go+wjoU('v)e°’dv:, g=1, <+, n. (62)

Therefore )
U@®e<<|u’| ot aL U(v)e* dw,

then we obtain immediately .
' U @) <|u’|ee (63)
The lemma is proved.

Theorem 4 together with Lemma & gives the following

Theorem 5. Assume that system (8) s sirictly hyperbolic, A(u), u®(x) €C?,
and f(u) is of form (68), where fi; are constants and fiy=fa=++=Ffu=a>0. If
matrioc F=(f;) is weakly row (or column) diagonal dominant, then Cauchy problem
(8) (9) admits a unique global smooth solntion w on >0, and

(u®) |e<Di|| e, | (64)

where Dy is o constant, provided that |u®| g 4s sufficiently small.
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Oleaarly, the result given by T. Nishida in[8]for the syftem

aaf AW — Z) +a(Z—|—W) 0,

(A(u)>0; &>0 is a congtant)
W rw-2) L raz+W)=0

isa speclal case of our results.
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