ANOTHER PROOF FOR THE SOLVABILITY OF FINITE GROUPS WITH AT MOST TWO CONJUGACY CLASSES OF MAXIMAL SUBGROUPS

XU MINGYAO (徐明曜)*

Abstract

In this paper we give a very short and elementary proof to the following theorem due to S. Adnan.

Theorem 2. Finite groups with at most two conjugacy classes of maximal subgroups are solvable.

Let *i* be a positive integer. A finite group *G* is called an M_i -group, if the number of conjugacy classes of maximal subgroups of *G* is $\leq i$.

It is nearly obvious that an M_1 -group must be a cyclic *p*-group. (See Proposition 1). And for M_2 -groups, several authors conjectured that they are solvable (See[1, 3]), and S. Adnan^[4]has proved this conjecture. The purpose of this paper is to give a short and elementary proof to this conjecture.

The notations and terminology are standard. Readers may refer to [2] when necessary.

Proposition 1. M_1 -groups are cyclic p-groups.

Proof Suppose that G is an M_1 -group and M is a maximal subgroup of G. Then $\bigcup_{x \in G} M^x \supseteq G$. Let $a \in G - \bigcup_{x \in G} M^x$, then we have $\langle a \rangle = G$. (If not, $\langle a \rangle$ must be contained in a maximal subgroup M^x . This contradicts the choice of a.) Therefore G is cyclic. Further, if G is not a p-group, then G has at least two maximal subgroups, which are of course non-conjugate, this contradicts the fact that G is an M_1 -group.

Conversely, it is clear that a cyclic p-group is an M_1 -group.

Theorem 2. M_2 -groups are solvable.

Proof Let G be an M_2 -group. By Proposition 1 we may assume that G has exactly two conjugacy classes of maximal subgroups. Let L and K be the represen-

* Department of Mathematics, Beijing Uinversity, Beijing, China.

Manuscript received March 25, 1983.

tatives of the two classes respectively. We discuss the following three cases.

Case 1. $L \triangleleft G$ and $K \triangleleft G$. In this case, all maximal subgroups of G are normal in G. This implies that G is nilpotent. The conclusion is true.

Case 2 $L \triangleleft G$ but $K \triangleleft G$.

Let $p \mid |G:K|$, $P \in Syl_p(G)$, $N = N_G(P)$. If N < G, then $N \leq L$ as $p \nmid |G: N|$. Because P is a Sylow subgroup and $N = N_G(P)$, we have $N_G(L) = L$. This contradicts the fact that $L \triangleleft G$. Thus we have N = G, i. e., $P \triangleleft G$.

Set $\overline{G} = G/P$. If $\overline{M} = M/P$ is one of the maximal subgroup of \overline{G} , then M is maximal in G. Since G is an M_2 -group and $M \ge P$, we get M = L. This implies that \overline{G} is an M_1 -group. By Proposition 1 \overline{G} is cyclic, the conclusion holds.

Case 3. Neither L nor K is normal in G.

We shall show that this is impossible. Let |G:L| = r, |G:K| = s. We have (r, s) = 1. (If not, suppose p|(r, s) and $P \in Syl_p(G)$, we have $P \leq L$, $P \leq K$. Hence there exists a maximal subgroup $M \ge P$ which is conjugate to neither L nor K, contradicting the fact that G is an M_2 -group.) Hence we have

$$|G:L^x \cap K^y| = |G:L^x| |G:K^y| = \text{rs, } \forall x, y \in G.$$

It follows that

$$|L^x \cap K^y| = |G|/rs = |L \cap K|, \forall x, y \in G.$$
(1)

Without loss of generality we may assume that r>s. Then we have

$$|G| \ge |K^{z}K^{w}| = \frac{|K^{z}| |K^{w}|}{|K^{z} \cap K^{w}|} = \frac{|G|^{2}}{s^{2} |K^{z} \cap K^{w}|}, \ \forall z, \ w \in G.$$

It follows that

$$|K^{*} \cap K^{w}| \ge |G|/s^{2} > |G|/rs = |L \cap K|, \forall z, w \in G.$$
(2)

If we can prove

$$|K^{s} \cap K^{w}|_{p} \leq |L \cap K|_{p}, \tag{3}$$

for any prime p and any $K^* \cap K^w$, which will imply that $|K^* \cap K^w| \leq |L \cap K|$, contradicting(2), the proof will be completed.

In order to prove(3), we choose two conjugate subgroups $K^{z_0} \neq K^{w_0}$ of K such that $|K^{z_0} \cap K^{w_0}|_p$ reaches the maximum value. Without loss of generality we may assume that $z_0 = 1$ and $|K \cap K^{w_0}|_p > 1$. Suppose that $P \in \operatorname{Syl}_p(K \cap K^{w_0})$, $P_1 \in \operatorname{Syl}_p(K)$. Then $P_1 \ge P$. Set $N = N_G(P)$. We may assume $N \neq G$. (If not, we get $P \triangleleft G$. Set $\overline{G} = G/P$, we can complete the proof by induction on |G|.) Let M be a maximal subgroup of G containing N. We discuss the following three possibilities.

(i) $P_1 > P$: In this case, we have $M \cap K \ge N \cap K = N_K(P)$. Then $|M \cap K|_p > |P|$ as $P_1 > P$. Similarly, $|M \cap K^{w_0}|_p > |P|$. By the choice of K^{w_0} , we get M is not conjugate to K, i. e., $M = L^x$ for some $x \in G$. Without loss of generality we may assume M = L. Hence

$$|L \cap K|_{p} = |M \cap K|_{p} > |P| = |K \cap K^{u_{0}}|_{p}$$

(3) holds.

(ii) $P_1 = P \notin \operatorname{Syl}_p(G)$: In this case, we have p | |G:K|, hence $p \nmid |G:L|$. Therefore $|L|_p = |G|_p > |P|$. By(1)we get $|L \cap K|_p = |P| = |K \cap K^{w_0}|_p$, (3) holds.

(iii) $P_1 = P \in \operatorname{Syl}_p(G)$: Suppose that M is conjugate to K. Without loss of generality we may assume that $M = K^{w_0}$. Since $P \leq K^{w_0}$ and $P^{w_0} \leq K^{w_0}$, by Sylow theorem there exists an element $k \in K^{w_0}$ such that $P = P^{w_0 k}$. Then $w_0 k \in N_G(P) \leq K^{w_0}$. This implies $w_0 \in K^{w_0}$ and $K = K^{w_0}$, a contradiction. Thus, we have $M = L^x$ for some $x \in G$. Therefore $|L|_p = |K|_p = |G|_p$. By(1) we get $|L \cap K|_p = |G|_p = |K \cap K^{w_0}|_p$, (3) holds. The proof is completed.

Corollary 3 The number of conjugacy classes of maximal subgroups of a finite nonabelian simple group is ≥ 3 .

Because A_5 and PSL (2, 7) has exactly 3 conjugacy classes of maximal subgroups, the bound in Corollary 3 is best possible.

Remark. Applying Theorem 2, we can slightly simplify the group-theoretic proof of Burnside's p^aq^b -theorem for the case of odd order. In analyzing the minimal counterexample G of this case, we can deduce that G has exactly two conjugacy classes of maximal subgroups (See [5, Lemma 4. 135]), then Theorem 2 can be applied to deduce the final contradiction.

Acknowledgments

I would like to thank Professors H. F. Tuan and C. Y. Ho for their help and encouragement. I am also indebted to Professor O. H. Kegel for sending me reprints of Adnan's works [3, 4].

References

- [1] Goncales, A. and Ho, C. Y., Finite groups with at most two conjugacy classes of maximal subgroups, Trabalho de Matemática No. 163. Fundação Universidade de Brasilia, 1980.
- [2] Gorenstein, D., Finite Groups, Harper and Row. New York, 1980.
- [3] Adnan, S., On groups having exactly 2 conjugacy classes of maximal subgroups, Lincei-Rend. Sc. fis. mat. e nat., 66(1979), 175-178.
- [4] Adnan, S. On groups having exactly 2 conjugacy classes of maximal sabgroups II. (to appear).
- [5] Gorenstein, D., Finito Simplo Groups, Plenum Press, New York, 1982.