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ARTINIAN RADICAL AND ITS APPLICATION®

- XU YONGHUA (% 7k %) **

é,bstract |

Let B be a left and right Neotherian ring with identity. Let A be the Artinian radical.
Lenagan ®lpointed out that B has Artinian quotient ring if A=0 and the Krull dimension
of R is one. In this paper first the structure of Artinian radical is investigated. Then for
B with Krull dimension one the author gives a necessary and sufficient condition under which
R has Artinian quotieﬁt ring. The main results are as follows: (i) A=eR, where ¢ is a
central idempotent element of R, if and only if r(A)"=Z(A)"-—( ﬂ p@#))*, where A is
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a positive integer, pe®) are prime ideals of R and 7(A4A)(4)) is the notation of right(:eft)
annihilatorof A(see Theorem 7). (ii) In the case(i) B=A@»(4)* (iii) If R has Krull
dimension one, then B has Artinian quotient ring if and only if there exists a positive
integer A such that 7¢(A)*=Z(A)"—-( ﬂ pa))?,
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In this paper “Ring” always means associative ring with identity. Unlegs
otherwise stated all concepts and terms used here are cited from [1]. As we know,
a right (left) ideal of a ring R is said to be Artinian’if it is Artinian as a right
(left)' R-module. As usual we define the Artinian radical A of R to be the sum of
all the Artinian right ideals of RB. When R is left and right Noetherian, it is clear
that 4 is also the sum of all Axtinian left ideals of R(see[1]).

Let R be a left and right Noetherian ring and B e the right socle of R,
i. . B is the sum of all minimal right 1deals of R.If a '€ B, then it is clear that
there exists a minimal ideal (@) such that (a) ('), ‘where (a) denotes the principal
ideal of B. Without loss of genarahty we can assume that Ba and R are minimal
left and right ideals respectively. It can be easily shown that

- 2@ Ra,R @2 @®Rb,RDL, ()

where (@;) =Ra;R and (b;) =Rb;R are minimal ideals of RB, (@)= (&), (b;)2=0, and
L is a right ideal of .R which doesn’t confain any non-zero ideal of R. For the

Manaseript received April 9, 1988.
%) Projects Supported by the Scionco Fund of the Ghmese Academy of Sciences.
*#* Department of Mathematics, Fudan University, Shanghai, China.



216 CHIN. ANN. OF MATH. Vol. 6 Ser. B

convenience we call (#) a right standard formula of #, and n-+s the length of the
right standard formula (=) of &, n the lenth of idempotent part of £ and s the
length of nilpotent part of . Finally we say that a right standard formula of &
has most length, if every length of right standard formula of A is not greater
than this length. Let the formula (») be a Tight standard formula of & having the
most length, and '

E-3®(a) ©ZO ()L
be another right standard formula havmg the most length then it is clear that
n=n, (@)= (a;)z 1, -,nands =g,

2 D) = 2@(59)

In fact, i£(b) N ((b) D @(bs)) =0, 1Jaen((oe)@ @(“n))n((bi)@ ‘@ (6.)D(8)))
=0. This shows that

i- 2@(@: )@ 2 @GO,

where L is a right ideal of B. But this contradicts the fact that K has the most
length n+s. Therefore (8}) < (by))@-+@(b,) for any (b} ) , i. e,

2@(59)22@)(5:)-
Slmllarly, we can show that 2@(51 )CE@(Z) ). We have already shown that
2@(2),) 2@ (b} ) Using the same method we can show that 2@ (@) 2@ (ai).
From this it fe_llows that (a;)? =,=21<“‘ )(a}). Therefore there exists an element, for

example (a;), in the set{(@), (a3), :-+, (ay)} such that (@)= (a1) (@1) and (@) (a;)
=0, 4=2, -, §'. Hence(a,) = (a,). We can go on in this way and obtain(a;) = (}),
i=1, -+, m, and n<<n’. Analogously we can:showv that n'<n and (&) = (&) for ¢=
1, «+, m. Bince n+s=n'-¢, it follows that s=¢'.

Denote by £ -——-2”]@ (@) (—DES]@(Z),) ®L a right standard formula having the most
length. Then we call E —-Z@(wﬁ@ﬂ@ (b,) the normal socle of B and call Ei-—
'2(-9 (@) the non-nilpotent part of & and E2—§]®(b,) the nilpotent part of #. It

is clear that E’, Eq and E, are independent of the choice of the forms of rlght
standard formulas with the most length.
Similarly, denote by & the left socle of R and |
% i % - ~
| I-30RGRODOMEGL, (+%)
t= = . B .
where (&) =RuR, (b;) =Rb,R are minimal ideals of B with (a,)2+0, (5;,)2=0 and
RG,, Rb,and @R, ;R are minimal left and righi ideals respectively, L is a left
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ideal of R. Then we have the notion of left standard formula having the most
length as the right one we stated above If (#«) is such a left standard formula

7t g -~
having the most length, then 2@( a )@2@ (b;) is called the lef’o normal socle of

R. Deno’ue Ei——ZGD (&), EQ—ZQ (3). Then H, is called the non~n11potent part

.of E E, the nilpotent part of E Similarly, we can show that &, H;and &, are
independent of the choice of the forms of standard formulas with the most length.
It is easy to see that the normal socle of R is equal to the left normal socle of R.

Infact, let B =§6—) (o )@g@(bj) be the righ’o normal socle, where (m) =R¢;R, (b))

= Rb;R and Ra;, Rb; and a,R, b,-R are left and right minimal ideals respectively.
‘Hence EC E, n+s<v’?+§, i. e. the most ,length of vight normal socle of R is not
less than the length of left normal socle of R. Symmetrically we can show that
n+s<n+s. Hence E=F, i. e. the right normal socle is equal to the lefi normal
:socle. It is clear that we can introduce the notion of the normal socle of B. Using
the normal socle B of B we set E=R/E. Olearly R is left and right Noetherian.
Then we obtain again the normal socle E® of E and |

B =510 @) @2@(55”), N |
where (a®)2#0, (b)?=0, and (a,) (6;) are all minimal ideals of R. We can go on
in this way and obtain 1nduct1ve1y the followmg formula '

B — fm-1) +2 (w(m-—l)) +2‘(b(m~1)) (A)
where H©=H, E“”—O and
En="S 0@ ) ® F o Fr)
is the normal socle of R/E™V=R,
- Ep-3 O

is the non-nilpotent part of Em

| B =S @)
is the nilpotent part of E™.

We call B of (A) the m-graded socle of R, where m —0 1, oo . Denote by A the
Artinian radical of R. Then because R is left and right Noetherian, there exists a
mnon-negative 1ntege:c m such that 4 =E™,

" Definition 1. Let A be an Artinian radical of R, and B be the normal socle of

h 4. ¢. O~gradational socle of R. Denote B =E®. Then the following chain of ideals
BE= E“’)cE‘”c CEYCcEYC cE™=A4
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is called the acsending chain of normal socles of Artinian radical, whereE® isthe nor
mal socle of R=R/E*?, i, e.
E®=E"Y4(af) 4+ (aB) + BP) 4o+ (b(”

for every 1 and (a®), (5(’)) are minimal ideals of R and (a“’)2 (@®), @®P)2=0.
Moreover, we call

EY =E¢D 4 (w(”) et (a®
and

E‘”-—E“ D4 () 4 voo+ (B)
the non-mlpotent part and the nilpotent part of H® respectively.

Now we congider the following

E® — E&k)_{_ Ego)’ Eilc) —_ E‘7‘~1’+§_‘,(w )

B = E(k-1>+2<b§k>)_

_ =
Write R=R/E% Y, Then

Bp =S0@), -0
= - =
are non-nilpotant part and nilpotent part of R respectively. Denote
_ - pap ={r € B|(a®)r=0}.

Since (a{®) is minimal ideal of B, it is clear that P@mis prime ideal of E. Becauses
(@) is Artinian right ideal, B/P@@is Artinian ring by Lemmad.5c)in[1]. From,
Theorem 1.24 in [1] it follows that F@™is maximal prime ideal of B. Write

peiy={r € R| (&) r < E*V},
" Then from R/P@Em=R/pe it follows that pe® is maximal prime ideal of R..
Denote

2B (BP) = {r ER| BPr cE*D}, 1% (BP) ={r € R|rEPE*D},

We can show that

P9 (BP) =) bomr=19(BL). (1)
In fact, from (af®)x(EP) CEG“”: and (a)tpag it follows that
7@ (EP)CE ﬁ P,
Since(a®) N pa T H®D for every (af), 4=1, -+, n; and pe i atmaximal prime
ideal, it is easy to show that (1) is true. ' |

Now we want to show that thé foregoing ideals pw, -+, P are all minimal
prime ideals of R. In fact,let N be the nilpotent radical of R =R/E% D, then

— | -
N =ﬂ P )
Lo §=1
where P; are minimal prime ideals of B. From (?ig’“))ﬁca‘f’) =0 it follows that there
exists an element P; of Py, «+-, P, such that paC P,. Because of the maximum of
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Pa® we have Pa =P,. Hence pe® is a minimal prime ideal of R.
We are going o show that
E(k)@,,,(k)(]ff(k)) =R (2)
In fact, since B =(a{®)@pa{™ for 4=1, .-, ny, we have pag = (af ))(—Dp(”"")ﬂﬁca‘kb
= (@)D (eP) @@ N Pz, We can go on in such way and obtain
R = EP @2 (EP).

Now we consider

Bp =3@(5P), ()=
=1

and denote p' e ={r € R| (Bf”)rc E®}. As before we can show that p'ap» is a

‘maximal prime ideal of R and (b)) <p' e for j=1, «-, s. Similarly we can prove
that

w0 (BP) =[ I o, ®)
g=1

19 (B =pp | | @
=]

where §"@ are maximal prime ideals of R. In general §' op P ep, p®(EP) +
ey (E‘g«:)) :
: . t s _
From (1), (2) and N®=\P®» where N® ig the nilpotent radical of R=R/
i=1 o : , :

E®1 we have

P&:iN-~NPP =EPON, +(EP) =[P S ®
‘We sum up the obtained results in the following _ ‘
Proposition 1. = Let R be a lgft and right Noetherian ring, A be the Afrtmmn
Radical of B. Then there ewists an ascending chain of different graded normal socles
of R(see Deﬁnfit'zfon 1). Let EW be the normal socle of R =R/E% and let N® be the
original imagee of nilpotent radical N® of R, Papand »®(E) having the same
meaning asbe fore Then-we have the following relations: |

AO(EP) = oo =1 (BP), . -
IW(EP) = ﬁp”w&"b, | S ®

- B=E{P+r®(EP), BP NrP(BP) CE*Y, 9
E®—FEP+EP, (10)

where pap, §' o) and p'eP are mawimal prime ideals of R. Moreover, if we set

fx
143
N® P,

¢=1

the imtersection of prime ideals P{" of R, then
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2® (BP) = n P®, PO =papy, §=1, oo, m<ty, (11)

B+ N® =P®_ . -NPP. (12)
Denote by m the least positive imteger which satisfies A= E"”’, and by E{™ the non-
nélpotent part of E™, Then

B=EP+ (1, Esmn(mk)cw-”

and Py, ++*y Py, are all mavimal prime ideals of R.

Using the foregoing notations and results we can prove the following
Theorem 1. Let R be a left and right Noetheriam ring, A be the Artinian
| radical of R. Denote by W(A) and 1(A4) the right and left anmihilators of A respectively.
Then

((po@™)™ cr )Ly @), 13)
([z’ﬁ A ( E‘k)) >’"+i -1 ( A) c ﬁz(k) ( E(k)), (1 4)

where m, »®and 1% have the same meam'mg as bejfore.
Pfroof We only prove the form (13) , the form (14) can be proved 31m11ar1y
. Let /rEw(b) Then Ar=0. Hence kEw"“’(E"") for k=0, 1, - » My and 7®(E®) =

7(B). On the other hand, 1f o€ ﬂm"‘)(E(")) then B® g E%D for f= 0,1,

}

where B =0. Hence A(2)"*'=0, (#)"**cr(4). This proves the theorem.

Asgin [1] denote O(I) ={cER|c+1I is regular element of R/I}, where I is an
arbltrary ideal of R. .

* Theorem 2. Let ‘R be a left and mght Noetherian mng, A be the Artinian

radical of B. Then ( A+( kOo w‘”’(E""))_) contains elemgnts of ON), where N is the
mflpotént radical of R (imd h is arbitrary positive number. )

m . h
Proof. If (A+ 7GL_)off"‘)(li}‘?‘) (E"")) N@RCN, then we can show that sRcN.
. . m h ' . -
In fact, we have saRA*C N and 2R < zD 7 (E"")) CN. 8ince N =P, -+ P, is the

intersection of prime ideals P;, we have< N m""(E(’")) P if saR¢P, where PC
{P;, +--, P,}. By Proposilion 1 we have

k=0
Therefore P is one of {pew, -, p(a;’;,;), p o, oo, p! e@}, for exam_p_le_P =J. But since
R/p is Artinian and P= =pis aminimal prime ideal we have Act:P by Lemma 4.10
in [1]. Hence from 2RA*c P it follows that 2R P. This contradicts wquP Since.
P ig any element of {Py, -+, P,}, we have sRCN. By Goldie theorem

M (ﬂp(o"") ﬂ(ﬂb' o) )CP . (15) |
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<A+<7ﬁ¢,(k)<E(m)>h .

containg elements of O(N).

Therefore the following theorem (see [1]) follows immedia’oe_ly from Theorems

1 and 2.

Corollarly. Let R be a left and right Noethefrwn ring, A be the Artinian
radical of R. Then A+ 7(A)contains elemenis of o} ).

Theorem 8. Let R be a left and right Noetherian ring, N be the mlpotent_

radical and N =QP¢, the intersection of minimal prime ideals Py. Write PE {Py, o+,
f=

P}, Then either (i) AcCP, »(A)EP or (il) AEP, »(4)CP.
Pfroof If »(A) <P, then fﬁ?‘(k’) (E®Nc P by Theorem 1. Hence B/P is Artinian
. k=

for P. But P is a minimal prime ideal. Hence P25 A by the Lemma 4, 10 in[1].
Corollary. Let R be a loft and mght Noetherian frmg, P @ minimal prime ideal
of R. Then R/P is Artinian if and only of AEP.
Proof The necessity of the condition has been proved by Lemma 4.10 in [1].
The sufficiency of the condition is now o prove. In fact, if AGCP, then m(A) cP.
Hence R/P i Artinian by the proof of Theorem 3.

Theorem 4. Let R be a left and right Noetherian ring and A be the Artinian
-~ radical, N be the nilpotens radical of R. Then R=A-+ ﬂ P cmdAﬂ( M be»)

¢=1 nE =1,,n
=0, wym R i

CN wheére Pais the mavimal prime '&deal smted in form(6).

Proof By(6) p@ is a maximal prime ideal. Hence R=(a{”)+4pw@. If =0, .

then : .
" R=E+ ﬁpéaﬁ"’) |
from(2). If k=1, then it is easy to see that
Py = Hy +<Qp(ws°’) N ™) >

Hence
R E1+ (a )) +<mp(a(o)) n p((”)>>° .
By induction we obtain

R=H+FV+ ﬁp(wg‘”) N (ﬁpwy’) )
¢=1 j=1 ‘

and
m
= DVEP+ [ pup,
k=0 §=1,m g0y
k=0, ,m

Since % E{Pc A,
k-0
. R=A+ i=p ng p(a; ,).

yeery
=0, ,n0
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Now we want to show that AN( M p(a"")) cN.Lets€AN (ﬂpca‘*») Then for any

i

% we have (a{®) (¢) CE®D, Since s € A, there exists a positive integer % such that
o€ %V (o) + oo+ (@) + (b)) 4 ++-+ (b)), ot %D, Therefore
= e® D gl 4 ool Bl oo+ B, €BDERFD gl € (a®), B, € (BF).
Suppose that there exists an glement a; € {a}, -+, a} such that &} & E*D, then
(@) + E%D = (¢f) +E%D, (gf°) g+ F% = (w"“’) al 4 B&D,
This contradicts (af?) (o) cE%-Y. Hence a; € E*~Y for =1, -, ny. Therefore ()2
CE%D, gince (8))*cHE%D. Also we have

@B+ F(ap-2) + Soe).
(= J=1
Let y € (2)?. Then(a®) (y) CE% for all k. Analogously we can prove that
@) B+ 3 g).
=1

Since y is an arbitrary element of (v) and R is a loft and right Noetherian ring,
there exists a positive integer A such that o

(ai)" c E%-2 1 s’ﬁ (b§k—-1)) .

With this procedure we can find a positive integer n* such that (#)*"=0. This
proves our theorem.

Theorem 5. Let R be a le ft and right Noetherian ring, and A be the Artinian
radical of R. If A contains no nilpotent ideals of R, then

R=A+r(4), A= ﬁl BP

and

#(4) = [ pen.

k=0, ,m

Proof By the hypothesis and Theorem 4 we have R= A(—D ﬂ p(as"’) Hence

kO, ,m

G-D,nk p(ﬂ"") = <A)

=0,

From this it follows that ‘
7(A)= U pe@(AN7(4)).

§=1, 0y
=y

But A contains no nilpotent ideals of R. So #(4) N 4A=0. On the other hand, from
the proof of Theorem 4 it follows that

m
= () [ ] <K
R g .E]_ + i - p(a De

A,
Therefore A = iEi’". This proves our theorem.
k=

Theorem 6. Let R be a left and right Noetheriam ring which has an Artinian
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quotient ring. Then Jor evevy nilpotent ideal I of R which is contained in A I*™=0
holds, where m is the least integer satisfying B™ = A. Moreover

R=A®( [ bpam)?,

ny
70—0, .

where A is an integer>2".
Proof By Theorem 5.1 of [1] A =eR, ¢ ig a central 1dempoten'b element As
before we set

E(k) = E(k—1)+ 2 (w(k)) +E (b(k))
for k=1, «, m. Since e € A=H™,
B A /A S AR S e A +§} @™,
where ¢™~1 € E™-, Therefore we have

A =Ro=1"04 (i) =B+ Safm) + 37 (50) +3}(af"),

€= 6(’m-2)+2 a’ (m—1)+2 bl (m-i)_{__za!/(m) __6(m-—2) 3 2 w’ 2(m—1)+2 a(m)

f=1 . ¢=1
Hence

A =eR =T+ 3V (af") +3(af).
s §== ¢=1
Going on in such way we have

A= Z(w5)+2(b;)+ 2 @)

Ic-o, ,m

But A =eR =42 Hence
A= 2(a,)+ 2 (@®).

"y UK
*‘0, g

Now we want to prove that

AN( Hﬂ b(a;*’)" =0
7c=0',--~’.7':1,1‘:

for any integer A>2", where (a{)=(a). In fact, if € AN (Npe@)?, then o =c*,
c€ Npw@. Since A=eR and e is a céntarl idempotent element, it follows that o=
e =ec” =e0:--¢c. But ec€ AN (Npeg) N and N is nilpotent ideal. Applying the
A timo
first assertion which shall be proved below we have(ec)?™ =0, But 0+ 2= ec--ec, A>
el

27, This is impossible. Hence #=0. On the other hand, since R=eR® (1 —e)R, we
have A(1~e)R=0. Thereofore (1—e)RC Npu, (1—e)R(Npwe)*, This proves
that R=A®( ﬂ pa)?, (L—e) B=(Npe)* for A>2™,

=1, ey
=0y eyttt

Now we want to prove the first assertion. Let I be a nilpotent 1dea1 of R and
Ic A. We prove first that I EH™-Y, Suppose that I¢ E™ Y, Then from
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B4 (af) e (a0) = B

it follows that B™--I contains, for example, (™). And from E™ V4 Ipar
it follows that(a{™) Cpw. This is impossible. Now suppose that I E®, I - %D,
Since B® = F% U4 (i) 4+ 4 (a®) + (b)) 4o+ 4 (b®), then if H% V4T contains
one ideal (@), 4<<¢t<<my, then as above we obtain a contradiction that (a{®) Cpu.
Hence B* V4 ICE% D4 (b)) 4+ 4 (bF), since (af®) is a minimal ideal in R=
R/E®*Y and (a)?=(af®). But (b{)(6”)=0 for 4, j=1, ::-, 8. Hence I*=D.
Write I; =12, Then as before we can prove that there exists an %~ guch that the
ideal Iy of B=R/HE¥-Y gatisfies I}=0. We go on in such way and finally obtain.
I*"=0. This proves our theorem.

Corollary. Let R be a left and right Noetherian ring which has an Artinian
quotient ring. Then the Artinian radical

A= 2 (@), #(A)=1(4)*=(_[ pem)*=(116)R, R=ADr(4)",

k=0,---,m k 0. ,m
where A>2" and ¢ is @ central idempotent element of R such that A=eR.
Proof We only show that

PAP=IAP=C ) e

By Theorem 6 (‘ M pagn)*=(1—e) R. On the other hand, from eR(1—e¢)R=
. PR
o,

A(1—e)R=0it follows that (1—e)RC#(4). Clearly »(4) = ﬂ Py, Hence

s K

E‘ 0 s Y
s A)r=( [ pem)t,
_ k—p’.”m'f
Similarly, from (1—e)RA=0 if follows that(1—e)Rcl(4)c [ bw. Hence
. §==l, 007y
: P
Z(A)" ( Pa)?,
k,_,o’;::.’,’:,’; '

Theorem 7. Let R be a loft and right Noetherian ring, A be the Artinian
radical. Then A has a central idempotent element ¢ such that A=eR if and only if
there exists & positive imieger A>2™ such that

r(A)*=1(4)*=( ﬂ puam)*,
o,
Proof The necessity of the condition has been already proved by Theorem 6
and its corollary Now we want to.prove the sufficiency of the condition. From
Theorem 4 it follows that

RB=4+( N P,

=1, ,ng
k O’, M

where A is an arbitrary positive integer. Then
l=e¢+¢,ecCAd, e E( ﬂ Py,

’nk
k 0, N
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By the hypothesis of our theorem it is easy to see that e=¢?, ¢’ =6, e’ =¢'e=0.
Hence R=eR®(1—e)R. Since eRC A, (1—e) Rer(A)*=1(A4)* A>2™, we get
¢R(1—e)R=0,(1—¢)ReR =0,
i. e. for any rER we have er =re, e is a central idempoteot element of R. Since
(1—e)Rc( ﬂ pe@)* R eR+( ﬂ p(w""))"

-—r’k §=1, »

) k=0, 0m k= 0, ,m .
Ifo=er=c¢*, c€ [\ P, then »=ec*=cc---¢c. From Theoran 4 it follows that
f=1,0nx S
T=0, 1t Atime
ANC N pe) .
$=1,,n5
=0y 1y

Because R is left and right Noetherian, there exists a positive integer ¢ such thas
Nt=0. Ohoosmg A.>t+2'" we obtain m——ec ec=0 from ec€AN( [) pe®). This

Atime k'f.lo’, i
proves that : . ' ;
eRN( [ pwu@)*=0 [

:10: :’”rﬁ i
for a suitable integer A. Hence R=¢R®( ﬂ pe#))*, From this it follows that

§=1 nE
b= d, ',m

(1— 6)R C_[) pam)r=r(4)™ :

gLy, tty i
E=0,m,m !

It is clear that A=eR®A n (1—e)R. Write s€ AN (1—¢)R. Then from Am(A)”
it follows that 2(1—e) =0, i. e. ¥ €eR, =0. This proves 4=cR.

Theorem 8. Let R be a left and right Noetheriam ring and A be the Artinian
radical of R. Then A has a central idempotent element e such that A=eR if and only
if the p' ohp={r € R| (b(’”’)'r CE("‘”} and the p”(b"”) = {rER[fr(bU”) CE(" DY oll belong
to the set {p(a?")},,i, o s Where §=1, <« g5 k=0,

k=0,,m

Proof Necessity: By Theorem 7
r( = A)*=( [ peit,

§=1, 505
6=0yym

It is eagy to see from the above definition that
728 (E(k) = <ﬁ ‘p(a,;k))) N (ﬁ‘pf @p) )’

Sg
&) ( 7Y e
1 (E®) =([pa )0 (e ).
Hence from (18) and (14) it follows that any P’ @ and p"e® contain( 1ﬂ Plag)*,
- . {= oy llg .
k=0, 10
Therefore from the property of maximal prime ideal pw, follows. immediately
the assertion of the theorem, where k=0, -+, m, t=1, -+, n.
Sufficiency: By the hypothesis
(YO B®Y = (BP) = m D),
k=0 k=0

PR
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From (1), (13) and (14) it follows that
m D(Gm)D?‘(A) D( n p(acg)))m+1 m p(w"")DZ(A) D( m p(wck)))m+1

—-1 ng TRt §=l, e yng §= g
7c ’m : k—d, .y k-()',--f,m = 0’. ’.m

From the proof of Theorem 7 we have
( ﬂ )+ A=R,

é=1,. ar¥(% 7

where A can be an arbitraay positive integer. Therefore B=A+ (2(4) NI(4))*
Write 1=¢-+¢, e€ 4, ¢ €2(4A) NI(4). We have ¢?=¢, ¢2=¢, ee’=e’e=0, R=¢R®
(1—e)R. Hence eR(1—e) =0, (1—¢)Re=0. This means that for any » €R we have
r=er, where ¢ is a central idempotent element of R, Because of

(1=OB () NUHY'<( ) por)?, R=eB+( _[) pe)

g=l, o, ny §=1,w,n%
k—d, ol k=0’.---’.m

Similarly, as in the proof of Theorem 7 we have

BN [ pam)=0.

k=0, ,m

Hence

(t-0R=( ) _pm)= (#(4) NI(4))

0, ,m
It is easy to see that A=eR®AN (1——e)R. Ifa€ AN (T—e)R, then from x(2(4) N
1(4))*cA»(4) =0 it follows that ¢(1—e) =0, w=exCeRN (1—e)RB=0. Hence A=
eR. ' ' '
Theorem 8. ILet R be a left and right Noetherian ring which has Artinian
quotient ring and A be the Artinian radical. Then Q%(A) *c=Dcr(A)’“=O, OZ( A)*e

_ =Ocl (A)*=0, where ¢ denotes all reqular elements of B, A is a positive integer.
Proof By Theorem 5.1 A=QRO=OCR. By Theorem 6 and it corollary
ORC =A(—BD (ReN#(4)%) =A®LGJ¢!(A) *g,
Hence (:]%(A) *¢=0. Analogously we can show that [’Dc'ﬂ(A)"=O. On. the other hand,

since R is left and right Noetherian, the right Artinian radical is also lelt one.
Faom the A assumption that R has Artinian quotient ring it follows symmetrically

shat{ W (A)*e=e(4)*=0.

§ 2

In this section we shall discuss mainly the following problem: When does a
left and right Noetherian ring with Krull dimension 1 have quotient ring? In the
preceding section we knew from Theorems 7 and 8 that if B is a left and right
Noetherian ring which has Artinian quotient ring, then the Artinian radical A4 of
R must have



No. 2 Xu,Y.H. ARTINIAN RADICAL AND ITS APPLICATION 227

#(A)*=1(4)*=( [ pa)*, 1>27
=

this is equivalent to saying that p’ @y and p”@® all belong to the set {pw&"’)},:i, vy ©

Now we ask whether B has Artinian quotient ring if the Arfinian radiaal 4 of R
satisfies the above stated condition. To reply this quastion we need to establish the
following theorem which expands Lenagan’s theorem (see [1], p. 78, Theorem 5.6).

Theorem 10. Let R be a-left and right Noetherian ring with Krull dimension
one and let A be the Artinian radical. Then R has Artinian quotient ring <f and only

if #(A)*=1(4)*= ([0 pom).

=0, ,m

Proof The necessity of the condition has been shown by Theorems 5.1 and 7

in [1]. Now we need only to show the sufficiency of the condition. If
r(Ar=1()*=( [ pam)?,
. T=0,,m I

then from Theorem 8 it follows that B=A®#»(4)*. Write 8§ =A4@»(A)* Then we I
can show that the Krull dimension of § is one. In fact, the minimal left and right ;
ideals of S are also the left and right ones of R, and R/A@L=#(A)*/L, where L is |
a right(left)ideal which contains nilpotent radical N of S. Set S=S/N. Then L is
essential right (left)ideal of S if and oxily if A@L/N is essential right(left)ideal of ‘
R/N, where N is nilpotent radical of B. It is clear that NON. Because the Krull
dimension of R is one, the Krull dimension of § is also one. Since the Artinian.
radical of § is zero, by Lenagan’s theorem 8 has Artinian quotient ring. It is
well-known that the Artinian quotient ring of 4 is itself. On the other hand, if ¢
is regular element of R, then ¢=c¢1+0a, 61 € A, ca €S, ciand ¢, are regular elements
of A and § respectively. It is easy to see that the Artinian quotient ring of R is
the sum of the Artinian quotient rings of A and S. This proves the theorem.

Theorem 11. Let R be a left and right Noetherian ring with Krull dimension
one, let A be the Artinian radical of R,

r(AP=U(A)*=( [ p)%

= g
76—0', ',m

and let K be a right ideal of R, KD A. Then R/ K is Artinian as right R-module if
and only if K contains regular elements.

Proof From the hypothesis it follows that R= A@r(A)" Hence K =A®DB,
B=K N#(4)* and R/K =A(A)*/B. 8ince the Artinian radical of ring 7(4)* is
zero, by Lenagan’s theorem (see p. 74 in [1]) #(4)%/B is Artinian as right 7(4)*-
module if and only if B contains the regular element ¢’ of #(A4). Hence R/K is
Artinian as R-module if and only if K contains regular element e-+¢’, where A=
¢R, ¢ is the central idempotent element of R. This proves the theorem.
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