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Abstract
In this paper the following result is established: For ay, fES(EX), i=1, v+, n, and
(@, 1)@ =@, D) Palaw 5 1)), |
it holds that ‘ - -
17 H1<ON s, TNl

Whel‘e a={(ay, ;“n): q 1"2001'[‘220116(0 1)) Vi, p€ (1, oo)or Vi, py=o0, p€(1, °°)J
for an infeger m;>0, '
v : C B
Py (a7, ) =ai(@) = 3} LD (o,

w(z, &) is a classical symbolﬂ of order [m]|, m= (ml, vy M), (M| =myteeetm,, mg are
nonnegative integers. Besides, a representation theorem is given.
The methods used here closely follow those developed by Coifman, R. and Meyer, Y. in

[5] and by Cohen, J. in [3].

§ 1. A"Representation Theorem

(1.1). Let gEO’”(RK), meEZ, and Z denote ‘the set of nonnegative 1ntegers
We define the remainder operator of Taylor series a1

Reg(©) =96~ — 3} L& (~ay,

where B= (B4, -, Br), Bi€Z, B! =,31-'"BK!,IBI =Bi+++Br, 9=, , a € RE,
I me=(my, -, my) €LY a=(ay, -, o) E(RO" [m| =my+eeetmy,

g€ O™ (RF), then the n—fold composition of remainder oprator of Trylor series

an be introduced as. | | -

R{tg(§) = Bax oo R, 9(§).

Denote by S'(RE x RE)the class of the symbols of order 1:

S'(RE x RE) = {& € O~ (RE x R¥): {9030 (o, £)|<06s(1+|£[)5#}, IERN
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The following theorem is established:
Theorem 1. Let w(w, &) €S'™(RE x RX) and for evefry fiwed s ER", w(w,-) E
C5 (RE), Denote

L, 9) = " (a, £)dé.
Then for f, a,€ S (RX), we have

[ 11 Puga, o 9)IGa, o—9)f )y
=0 | . R0, Hi@)F(E - [)dadf,

where a‘(a) -—51(06 1)+ Bn0n), [0] =az+ -+ +ot, do=day:dot, and C is @ constant.
Proof USmg the followmg mulhple index notation
Y= {JC{l 'n'} J= (.71, B jt)’ 1<.71< <jt<n})
T = {1, n}\J,
|/ | =number of elements in J,
by= (kiu ) .kh)x k= (k}n"') kﬁ) EZK: ,
byt =kt ooboyt, (b =hjA-o by, |by] =Ej A+,
Ny={ks:J €Y, 0<lhy<my—1}, '
(—our) s = (—auz ) (—ay) P,
we have -

(—1)We! <[kﬂ)(§ S a;) :
R{™,g(€) = Tl j‘"aj (faJ)K‘u (1.1.1)

JEG kyeN;, .

With the notation

31 (a) = 3;; (0‘3:) . '35: (“h) s
af?(5) = (0)-+afi (o),

(@%) ) (@) = (af) *(ag) -+ (o) " (aiz,) , Doty =daty, -+ -day,,
and setting ¢(&) =w (e, £)in(1.1.1), we have

[ (BEyH ¢ R0 (2, €)a(@)f(é—[a])dadé
o@D (g, £— Dlay) (—a)¥

J € QK,,EE;\I_,( 1> v J(Rx)nu o _KJJE!JI - a (a)f (5 - [a] )da df
Jgo k,; ,( 1 mJ (B®) et _"(R,)ew"’([k']) (w, & -’2 ai) a(a)daiy)
| (a%)5 (@)F (¢ - za; S
.(J(R“)'-’l (—1)|[kJ“ ( ]01 ,bl[k.rll = >da.f>df-

Integrating in da; the inner. integral equals

o(ELY' ¢~ 3.

jed’

Integrating next in da,;,, and then using the following equation
©% (s, )0 (=) ()L, )",
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we deduce ’ .

j(mw 4 RE0(0, Oa(WF(E—[a)dadé |
. =02 2 (_1)1Jl+l[k:]l(w([k.v])(m )k(w' %) f) (>) (w)aJ’(w)

s
053 SR o
I RO
-0 (3,5 GRIE @) g1, a—g)f @)y
=0 [ M1 Puta, =, DI, s-9)f @)y,

The proof is thus finished.
- Remark. Ifmy=-...=m,=1, we have

wa)»u ¢ A_g 0000 l_, a(a) f(g'__ [o] ) des d

=OJ‘ xﬁ(a;(m) "‘ai(y))L(wl w“?/)f(ﬂ)dy

=0an, -, [a, o(@, D)]-+1f (@) .
which is the nth commutator of w(w, D), Where a(f) (@) = (& f) (#). Therefore we
can extend the notation of commutator and call the operator in the theorem a
commutator of oader|m| (see[8]).

~ § 2. The Boundedness of Higher Commutators
The First Case:v1, pi€ (1, 0)

(2.1). For a symbol o (2, a, ), we denote
To(a, H@) =, .. #o®, o Oi@F ¢ al)dadé.
The main result of this paper is as follows.

Theorem 2. Let w€S"™ (REx RX), q‘1=p61+§p;1€(0, 1), €, o),

o, satisfy one of the following two conditions: (i) Vi, p,E (1 o0); (ii) Vi, py=oc0. Then
jor a;, f €S (RE), we have

| et (a, £) I|q<01|f

L] . m‘ :
fiveal,,
where O=0(K, 1, m, Gavp, o, p0)is & constant, [V™ily, = 3 0%,

- In this section, we prove the theorem for the first kind of indexes: Vi, p,€
{1, o). Introduce the following notation: | |
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[V"aly=1TIV™al,, where p=(p1, -+, a);

M(m)={c (e, a, £) €C"(R*X (RM)"X BE):|To(a, f)ol <O|fls|V"al0,
O=0(K, n, m, o, p, p)is a constant}. _

To prove R{™yw(w, £) € M(m) we use the induction on [m|. The inductiom
hypothesis is that: For m= (my, -, mg), 0<|m| < |m|, 0<<n<n and @ €S8"™ (REX
R%) we have R™yw(w, &) € M (m). '

First we make the following observation.

Denote J = {i:1<<i<<n, m;=0}and J'={1, ..., n}\J. There exists

| By (“’ 3 ) =R{L0(w, & *j% %),
and hence
TriBue.e (w F) (®) = Oay () Trezgoesd (ay, f) (@).
So we can restrict ourself to the case:Vi, m;>1. And, from the above equation it
follows that for |m| =0, BR™yw(=z, §) € M (m).

(2.2). The plan of the proof: A partition of unity of space

. (BEY"={(as, -+, awy €)1 € RE, §ERT}
permits us t6 decompose R{™,w (@, £) into a finite sum. There are two posibilities
for the terms: - |

(a) The terms supported in{(a, &):|&|>C ]a[} lead to a kind of symbol
of order O. The estimate is obtained then by usmg the Gmfman-Meyer s theorem
([5], Theorem 1, see(2.7), (2.8)below); '

(b) The terms supported in{(w, £):|{|<Cla|} lead toa subtle analysis
for which a special interpolation teorem due to Ooifman and Meyer is needed ([5],
propotition 8, see(2.9) Lemma, 5).

For the technical reasons we proceed first with some primal partitions in order
to choose the biggest coordinates of the vectors a;, £(see(2.8), (2.4)).

(2.8). Suppose e 05 (B*)and p(¢) =1 for |£| <n-+1. Writing

(2, §) =w1(, &) +ox(s, £),

01(@, £) =p(E) (@, &),

we can restrict ourself to the case R{"ws(w, £) € M (m). In fact, let

(O} (w) g) = JR; Ly (wy y) 6*¢y$dy

as a result of regularity of wi, Su%) | Ly (w, ) |is rapidly deoréasing at infinity. From
) @€ RX

where

Theorem 1 and the equation

Po(ay &, 0—g) = 3 D) [Tt @mry)dr,  (2.3.1)

jai= 106'

where y = TZT’ and using Minkowski’s and Holder’s inequalities, we get
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Ry (@, §) € M (m).
(2.4) Ohoose @y, -+, pr €C~(R¥\{0})such that V;, ¢; is homogeneous of degree
0, =g+ +gpg on R¥\ {0} and

pi(€) %031 > 2 sup(|&l, s éx])-
Since |{|<n+1=w(w, §) =0, we can write

(@, 5) —p(E)or(a, £)+- +¢x(§)w(w, £)
and ¢,(§)w (2, £) =£7,(w, £), where 7,(z, £) €8™ (REx BX).
-The folowing lemma is established. :
Lemma 1. Under the induction kypothes@s shown in (2.1), fom‘ES =1 (RE %
RE) we have

) (—u) (fﬂ'(w E)) gaREﬁ)x)'V(m) f)eM (m)'
Proof Keeping in mind m;>1, and letting F'(¢) =G () H (¢), 0<i<1, G(¥) =
&1~ ton, s, H(t) =v(w, £—tay), we have |
R, (60, £) =F D) ~FO)=F(0) == potgor F(0)

=GO =H(©) == H®4(0))

6/ (0) (H (1) = H(0) =+ o
= &R, v(@, €) —an, R257(0,.6).
Repeating this programme up to a total of n times, we derive the

formula ' ‘ |

H (m;r-ﬂ)‘(.()) )

R, (éw(w, £)) =& R{yw(w, &) — Z“i,iR(m‘))'”@ f)

aﬁi

—— e, @ ) there
) awj) )' % ]2

where mf=(my,++, my—1, -, m,). By denoting @ -=<a1,

exists
T, miptre (@, ) (@) = (— )T riags (', 1) (@),
and then the induction hypothems can be used to m',

Now we have to prove that 7 €8I~ Y(RE % RK)=>£, iz (w, &) € M (m).By
introducing the class M (m) ={a’(e, @, &)o@, o &—[]) EM(m)} and applymg
the following lemma, it is reduced to proving &Ry (s, £+ [«]) €M (m).

Lemma 2. Under the induction hypotheszs shown n(2.1), for v(w, &)E
Simi-1( RE R"), we have

a[b,;RLa)T (@, §+ [o]) € M (m).

Proof Without loss of generality We can suppose 4= =j= 1 Smoe mi>1 we have
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01,1 R 7 (w, £+ [a]) =05,1. B - R™ w(», £+ [a])

iy o2 R R (o, 64 [0]) (~) =T,

and then the induction hypothesis can. be used to I; and to each term in I.
Make a further partition of unity '

ERe(a, £+ 0D =(S0:©) (3 2o )+(3 p1(an) )R (o, €+ (1)
=05, ()i (01) @;, () € Ry (m §+Tal).

By symmetry we can restiot ourtelf to the case jo=-+-=j, =1 and prove
w (@, &, §) =p1(§)p1(0r) -+ @1(0ta) §; R0 (2, + [a]) €M(m),
where 7€ §'™i~1 (RKXRK)andISI <n-+1=v(w, §) =0.
(2.5) We need the followmg formula. |
Lemma 8. Let m&Z, m=>1. Then for F € O™ *(RF)and o, £ € RF,
B =, 3 AP 3 R EOEalre D),
o<fiTem k!  r<frt "
where k= (b, -+, kx-1, 0), HEZ, 6=1, -+, K—1,
(0, k=6= (0, 1))
J ={sup{j'k >0}, kD,
ay=(0, -+, &;, 0, -+, 0), 1<i<K, a(s) =+ +as, 1<s<K, and a(K+1) =0.
Pq"oof We use the induction on m. For m=1, the formula is clearly correct.
Now, suppose the formula is correct for my: 1 <mi<Xm. We have only to prove

(%) :
GRS (2.5.1)
1l=m H
where
Ii=._ 2 EK: _ 1 F(l"'(m—l“)ar) (s a(¢+1)>(_a>t+(m—mar,

o<ty m1-j;+llt(m— !”)'

1= 3 =08 (pug— (1)) —FO(E)),

lof=m
and 5,= (0, -+, o, 1, 0, -+, 0), 1. ocoupying the rth place.
To prove (2.5.1) we take a fixed k: |#| =m and examine that in the both sides
of the equation the terms related to #® are equal. There are two cases:
(i). (B)x=0. Then in I, the terms related to F® exish and are

{20 (g —a( i+ 1)~ FO(). - (25.9)

To see I; we decompose kin b=k~ (la),ﬁ)+(k),g—l+(m-—|l|) d;, and the
term is

(=) (—a) o |
T PO —a+D). (2.5.8)

Smoe k' =I1(m~—|I])!, by adding (2.5.2) to (2.5.3) we see the term of F® in the.

1'1ght hand of (2.5. 1) is— <—“) F® ), which equals the correspondxng term in
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the left hand of (2.5.1). .
(ii). (k)g>0. Then there is no correspondmg tferm in 12 To see I, we
decompose k=I-+ (m—|l|)0x and the terms of F® in the both sides .equal

(=) o
The formula permits us to write R{",F(£) as

(m)F(é‘)_ 2 (—,061)-7‘1"‘-(?‘06»)”” 2 Rl

T g R e T
o Ry lnl bt 44 (£ Gy (g 1) — o+ — Gy (1y+1)). (2.5.4)
With the notation ‘ . o o :
 b=(hy oy B €(ZEYY, BY=Ryleohyl, dP=afade, o, ERF,

0<7G<m¢=>\fj, o<k, 1< My, = (‘7,“,..., Fu); T=(rs, Ta), -
E=(K, -, K), ju+1<r<E&Vj, ji,+1<n<K,
(lkD ‘“(Ikll) "ty “ﬁnD; [k] =fy e +kin a’r (&Lm a’hfn) € (Rk)':v

&i(l)=(0; e, 0, 0,1, o0ty Giyr) = Zai,,ERK 0<I<K,

a() =§”1,ai(z.,> E.R’f, <I<E,
we can rewrite(2.5.4)as S S '
RRFO-3 B REOFT GG, @)
Ussng(2 5.5)%0 F(§) =v(z, £+ [a]), there follows o
T D R i P o s () (o0) - ps(an),

ociTh | Bl jeiTr<®
where : ’ v
T 7 (%, & &) =REZ’%?>“””'L‘“"” (o, £+ [a] ~a(T +1))- - (2.5.6)
(2.6). Let A€Cy(RYand &€ [—10kn, 10kn]=>A(s) =1. Dénote |

e, a, §)=(1—x(%>> (1 x( »W(m . g),

We have to prove
| e, a, & €M(m), m( =) (o, , €) €M (m),
where §#J {1, -+, n}.
For the first assertlon we need 0 prove that

D0 (o, @, €)= (=ap(1—2(E))or (1=3( £ ))§;rk.;(w, a, £)01()ps (o)

01,1 Oyt
vy (e,) €M (m).
(2.7). Suppose ¢ €0~ (RFx (R¥)"), and for V,BGRK = (Rx)n 50, snoh
that for V(w &) ERE X (R, £=(&y,-+, gn) -
| D3d%o (2, §)|<Cas(l+ I§l)l‘-‘“~‘, I€R. .




236 o CHIN. ANN. OF MATH. Vol. 6.Ser. B

Then we call ¢ a symbol of order I and type(l, n), denoted by o € S'(R* X (B¥)").
- The following theorem was proved in[5].
. Theorem A. Ifo €8°(R*x (RX)"and Vj, p;€ (1, ),
=3t (0, 1),
then for f; € 9(RYX) and P /
T(fs, s F) @) = #0(o, OF:(E)Faln)
it holds that |
| ' ”T<f1: ot :fn)"q<0H ”fi”zm

where C=C(K, n, Ca,s, p;)is a constant. = :

(2.8). To deal with ©,,-€ M(m), we see that for a ﬁxed ‘@€ RF,

Supp Qk}?CA h {(a) 5) .. |§1l >10KW: : Iabi l ’
gl > ol 162> 5161, 1<ISE, 1<j<n}.
Let | L
~{(@, O 161> 18], |1 >4nlay], 1<j<n}.
It is easy to see that 4\ {0} 4. Choose 84(a, &) E.O”((RK)”“-“\ {0}), homogeneous of
degaee 0, 0;=1o0n 4\{0} and supp 6:=4U {0}. To smooth 6; we choose again a
O:(e, &) EO’”((RK)”“) such that =0 if [ (e, &) <—~ and fy=1 if| (, £) | >1 Make
 0=04+0s, It follows that §=1 on the support of Q. Therefore |
‘Qk;?’(w) o, 5) '—'0”+1‘(27ﬁﬁ(w: a, §> | . _
=11(0, &(1-1(£L)))o(0 HE(=a mr(s, 6, ) (Pu(ps(a)
""pi(“n»' _
- We make the followimg observation: v |

If m,, 1<i<m, and m are L? Fourier muliipliers, 1<p<oo, and o (v, o, §) €
M (m), then m(&)my(an) - my(an) o (s, &, &) € M (m).

Since @ is an L? Fourier multipliex([6], Ch. VI, 8.2), we need only %o prove
that : ‘ a

@). vi, (e, &) (1—?»( §1 ))is a symbol of order 0 and type (1, n-- 1);'

9(06 E)émir (o, o, «f) is a symbol of order 0 and type (1 n+ 1)
H( Qi) " _ . .
To see (1) we make the following observation: S
If o(a, &) €0~(RF**)and it ‘is - homogeneous of degree 0. outside a -
neighborhood of the origin, then o (e, &) €S°(RE x (RX)"1), ‘
To see(ii), first, we have the following equation
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1T (—aj,)mtes ) |
.R?_'%;)(Ikl)F(g) — Tf=1 j,,.J ]:[ tg"i"‘lktl—l R
Llm— ki =Dt g™
| o FCEme 18 7 <§_é Gy, _,_2"} tiai,r‘)dti"'dtm (2.8.1)
which can be proved from (2 3.1). Let F(g) w7 (@, &, §) in (2 8.1). We need
to prove that |
6a, §)Em@3mtiisd(p, £t [o] —a(F+1) =2y, + 3] i, )
. §== {=

 ES(REx (REYL), , (2.8.2)
and the corresponding constants O, are independent of t€ [0, 1]
To see this we have, ﬁrstly
7 € §'™~1(RE x RE) =>,D.(m+z(m‘—|k‘|)ar,> c9-1 (RK X RX).
Since

,a(;+1.) — [o] +¢_21 ai,r, “‘_21 tsaim <3([0‘1! At lanl),

in the support of 4 there exists |

|6 [0 =G0 +1) — 2 o, + 3t | > 161 8L+ o)

.
>
2 4’)?; [ (a; g) ['
Now it is easy to see that(2.8.2)holds.
(2.9) To deal with

(DAL ))w(o, @ ) €T(m),

O,

. keeping in mind that Igil p1(£), pi() are I?., Fourier multipliers, from {he

observation made in (2.8) we need to prove that

el (I A(E) B, €4 Tl €M),

gyt
Lemma 4. IfA€O7(RY)and ) is even, then for Ve>>0, there is n& fé(Rl) such
that for Yi+0,

[#19.) = [t (u)du.
Proof In fact, denoting ¢ () =e*A(e”) we put n=¢',
Uging the lemma

1l (I () )REe(o, £+ 1a]) |
= (el ) B (o, 4 1a)- [ IT (A&l ) niuyans,

e
since |&;|* and |oy,;|*i are L? Fourier multipliers and n€ @ (R), it is sufficient to
show that ‘ ;
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(I s | P Rt (a, £+ [6d) € M ().

The last assertion comes from Lemma. 2 and the following lemma,.,
Lemma 8. Uuder the induction hypothesis shoum in(2.1), for

'E’E,S’l"“ I(RK RK), 0<tz<1 Et —

and all the choices of ‘ _91, - _9,,} {1, -, n}, we have
|0ty [P I“n,d,. [« Rw (@, &+ [a]) € M(m).
The proof is S1m11ar to the one in[5], Proposition 3 exeept that the definition
of w,(w, o, £) is substituted here by ..
wz<m’ 06, g) — ’-0‘1,1.’“1“1 ), ‘ , 29u+(1 #)tn.R§ 1;'(517 §+ La'])

§ 3. The Boundedness of Higher Commutators
The Second case Vz, p@

(8. 1). We are going to show that in this case
‘"‘ﬁw ((5, ) T(.f)

isa Oalderon—-Zygmund operator([é‘:] Oh. IV Deﬁmtmn 1), and hene it is bounded
on I?, 1<poo, and maps I* into weak L*([4], Ch. IV)..
For ¢ €[1, <o), f& L§,.(R¥)and a cube.Q, we. deﬁne

M(FiQ) - (iQ[[ (@) |4da)%.

The following proposition was established( [5])
Propositioe A. Suppose K (a;, g) deﬁned on{ (w, y) GRK X R¥: maéy} satzsﬁes the

following conditions:

@) K (o, 9)) <Olo=yl*, (3.1.1)
(ii> , IV,K((IJ, ?/) [<Olw_y [ _K_i} (3 12)

| VK (3, y) | <O|o—y| 2, | (3.1.8)

(i) Vf €05 (BY), o I

T(f) () =1imJ' K@ f@)dy  wids a. o. 319

Then T can be extended to a bounded operator on I2(R¥) if and only if there

is a pair of real numbers: ¢, r, 1<q<fr<oo sueh that for every cube @ and
fFECF(RE), supp fCQ, we have | -

M(T(f); Q<OM(f;Q). o 3L

Furthermore - - |
|T]22<<0(K, ¢, 7):0, (3.1.6)

where {7 |a,s denotes the norm of T': I7~>L?, C is the largest constant in'(3.1.1)—

(8.1.8)and(3.1.5).
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(3.2). Take pC€O5(REY, pu(£) =¢(_f7), v>1. Let

wo(@, §) =po(§)0 (5, &) o, ) =| e Lo(a, 9)dy

and ‘ .

. Koz, y) =E’Pm¢(ab @, ¥) Lo(2, 5—19),
Tt holds that . . S

T(f) (2) =Lim T(f) (o) =lia [ K (o, 9) 9.

Tt is sufficient to examine(i)—(iii) and (8.1.5) for K, and T, with some constants
mdependent of ». For the assertion that T is a Oalderon—Zygmund operaior, refer
to[4], the proofs of Theorem 19 and Theorem 18. :

(8.8). Suppose Vi, [V™a).=1. By using (2 8.1), Leibnitz formula ‘the

following formulas ,
V"P m_{(“b m} ?I) =P my~1 (vﬁwi; o, ?l) : R (3.3.1)

VPu(a, 8, §) = (31 (090D, ) Vas) (3.8.2)

and by a standard argument on the kernel corresponding to a symbol of order |m |
([4], Ch. IV), we get (8.1.1)—(8.1.8) for K, with some constants independent of
. ‘
Now we are going to show (3.1.5). Take a cube Q and denote by § the double
of Q. Take € 5 (BX), which equals 1 on @, supp y<§ and .
V% | «<O:(diam (@), 1EZ. (8.8.3)
For the existence of such a y, refer t0[6], Ch. VI, 1.3. Now let
Ay (@) = Pp,(as, 2, ©0)x(2),
where 2, is the center of Q. It is easy to see that for », y €Q, we have
P, (4, v, y) =Ppnay, v, y).
Therefore, for #€Q and f €05 (RF), supp f<Q, it follows that
To(f) (@) =Ty,e(f) (2),

where

Tool @[, (P4, 5, 9))Lo(e, a—4)f 4)dy.

According to the result obtained in § 2, for a choice of p, ¢, r such that p, g,

red, oo)and g i= np'1+r’1, we have

1
q

(RE&EH) o =([, 1Zoot1e) <0151, LTIV,

where the constant O is mdependent of v.
By using Leibnitz formula, (3.8.8), (3.3.1), (2.3.1)and keepmg in mmd that

supp 4,cQ, sEQ=>|v— a:0[<\/K diam (Q), we have
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[V™di].<C

and therefore

1
[v™di| <o |Ql*.

So we finally obtain

5]
7 Amer. Math. Soc., Provindence, R., 1' ,(1967), 1—17.

[2]

[4]

I51
‘T 28t 3(1978), 177—202.

61

, (8.1.5), and the congtant O is 1ndependent of .

(|71 <0115 1<ole i,
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