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OSCILLATORY AND ASYMPTOTIC BEHAVIORS
OF FIRST ORDER FUNCTIONAL DIFFERENTIAL
| ‘EQUATIONS

Ruaw Jiona(gz ) *

| | Abstract
. In this paper the author discusses the following first order functional differential _
equations: .
2@+ 06, Oalgt, O =0, W |
dO+[ 16 & ol ODI@O=0, @

Some sufficient conditions of oscillation and nonoscillation are obtained, and two asymptotic
properties and their oriteria are given. These criteria are better than those in [1, 2], and can

be used to the following equations: _ ;

oD+ JpalaD]=0, | ®
28+ 2feCt, B =0, @

$1. Introduction

A

In this paper we consider oscillatory and asymptotic behaviors for the
following first order functional differential equations:

#@+[ b0, Oolylt, D@ =0 G>a), D
@O+ 16 € olg, ONAC® =0 GFa). @)

We first make the following agsumptions:
(Ri) i(t, §)<t, £€[a, b], R*= [to, +0), g: R* [a, b1—>R* is con’omuous,
g(t, &) is a nondecreasmg function with respect to ¢ and £, respectively.
lim min {g(t §)} 400,

t=doe £ €[50
Mozreover, there exists a continuous functlon p: B*x [a, b]—>R* such that

p(p(t, £)€) =y(i &),
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o(t, £) is a nondecreasing function with respect t0 # and ¢ respectively.
Lm min {p(%, £)} = +o0. t=¢(t, £)>g(t, £);

t~r-koo £E€[a,b]
(Ra) p: R*X [a, b]—>R™* is continuous; .
(Rs) o: [a, b]>R is a nondecreasing function;
(R4) The nonlinear function f(t, &, ») in (2) satlsﬁes “the bounded sublinear’”
condition: if |v|<<ep (¢o>>0), then

£t & 0) =0, &) ol

Furthermore, suppose

. J(G@ & 0)=0; f(, &, 0)0>0 (v#0);

(R5) The integral in. (1) or (2) is a Stieltjes integral.

Recently studies on oscillatory and asymptotic behaviors for functional
differential equations as (1) or (2) are noticed, for example, David L. Lovelady™
considered oscillatory and asymptotic behaviors for second order functional
differential equations which are analogous to (1) or (2). By

In §2 we first consider the following first order functional differential
inequalities:

0+ 0t, Oalgt, )1do(@)<0, ®
o)+ 20, Oalgt, OV ©>0 » @

and establish some sufficient conditions for (8), (4) having no ultimate positive
~ solution (ultimate negative solution). Since the integral in (1) or (2) is a Stieltjes
integral, we easily know that (1) or (2) contains the following kinds of equations:

o (£)+ 3] psla®)1 =0, | ®)
OR PO TONET . ®

where () is nonnegative and not identically zero in any subinterval [#, oo) of
[fo, o). There exists @;(#) which satisfies

‘p¢<¢‘(t)) =gi(t)) tl]ﬁlo ¢i(t) = 00, 7.'=1: 2; oee, N

So results of this paper generalize and modify the corresponding results in [11.

In§3 we establish some sufficient conditions for (1) having ndnoscillatory
solutions and we point out that asymptotic behaviors of nonoscillatory solutions ¢
(1) or (2) belong only to one of types Ao and A4;. Also we give some sufficient
conditions for (1) or (2) having a solution of the typc 4, or A respectively.

In §4 we give some examples.

If assumptions (R1) and (R,) are respectively modified by the following:

(RL) 9@, &) =t(t=>t, £€ [a, b]). ’,'[‘herev exists & continuous function (2, &)
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from B*X [@, b] into R*, which satis fies ¢ (¢), &) =g(, &), <P, £)<g(®, &)

(t>t0) fe-[a) b]):
lim min {g(t £)} =+co;

{—+oo £€1a,b ]
(Rh) R*=(—o0, t], p: R*x [a, b]>R*; i.e. (1) and (2) are functional
differential equations with advanced argument. We can use the methods of this
paper to obtain analogous results which will be considered in a forth coming

paper.

§ 2. Oscillation Criteria

St P(s) = j:p@, &)do (&),

H) lm | P(s)ds>L:
(Hy) lm,{g(t.b) (s) s>—e—’

t—=r oo

(7
(H,) lim L(t | P>,

P> -00

Theorem 1. Suppose that (H,), (Hy) hold.

Then there is not any ultimate positive solution to (8). ,

Proof If conditions (Hy), (H,) are satisfied and there exists an ultimate
positive solution to (3), #(#) >0 (¢>1,), then o' (£) <0 (t=>1y) and there exists t,>¢,
.such that x{g(¢, £)1=2(¢) (t=1s, €€ [@, b]). We have

s ~Inaly(t, DI+] [[ a6, & 2LEEL da(g)]ds<o
Sot W (2) =-“Z£35(%)—@l. Tt i easy to see that W (£)=1,
W () >E«, [ f " o5, £)do (§) ] s =£(t’b)W(s)P(s) ds

Set I = Hm W (¢). The existence of ! is assured by W ({) >1.

| e =

(1) In the case of I<<4oo. There exists £,—>+oo such that W (¢,) >l (> 4-00).
- It is easy to see that ‘

InW (4, )>W(g,,)j'” P(e)ds, £,€ [g(ha, B), 0], n=1,2, -,

”

Ini— lim 1nW (%) lim [W(g,.)j P(s)ds]

=y oo

> lim W (¢,) lim [ P(s)as,

n-,-’-oo n—y+oo
_lﬂl> lim r P(s)ds,
l revsrroll BTCR ) _
- By max -l-n—q-=£ we have .
=1 ! e’

1w [f
—> Hm j P(s)ds,
A = ) :
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This is a contradiction.
(1) In the case of [ = +oo. From (8) we have

o)) ~alp(t, Y1+ [ [ ps, Oalyt, 1@<,

o) —alpth, DI +olgl, [ Peis<o, M
2[p(t, b)] 2L9(t, 811 1o [ |
i 2 00 22 D[ i3]

By (Hi) and I =40, we obtain
Jim 2lo(, D)1 _
‘ t—>+oo (%) e
From (7), we also can obtain

2T BT -1 [2e [, Pos]<o,

im’ m[g(t: b)] . 3 ’ '
{% m[‘P(t: b)] } {ﬁh%qu(tvb)P (S)ds}<1.
Using (H,) and ' A
i 210t D)) _ 3, 0008, D), D] o 1y 0000 Dy,

w=ole(, 0)] wes  olp(t, 0] ww o)
‘We can obtain

lim j’ P(s)ds>0,
¢P(t9b)

400
This is a contradiction. So there is not any wultimate positive solution to (3).

Theorm 1 is proved.
‘We can easily obtain the following results: '
‘Theorem 2. Suppose (Hi), (Hy) hold. Then there is not any ultémate negative
solution to (4).
Theorem 3. Suppose (Hy), (Hy) lwld Then all solutions to (1) are oscmllator%
For equation (5) we suppose
g1 <ga(B) << (B) <1, o »
Pp1(B) <pa () < <pa(3), | ®
- ele(®) =g:(8), tl_)l_lt_’i gﬁ('f)’:tligo @) =00,i=1, 2, ey '
Set

() tim 3 pds>2,
_)hméj oi(s)ds>0,

T F-00 651

Gorollary 1. Suppose (HY), (HY) hold. Then alll solutions to (®) are oscfbllatorg.
Theorem 4. Suppose that f in (2) is “bounded sublinear” and (HY), (H?) hold.
Then oll solutions to (2) are oscillatory.

For equation (6) we suppose (8) hold and
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fc(O) 0, lfc(w>!>:8|”|>0(}”\<co>; ‘ F
9
of (%) >0(x+0), i=1,2,
Corollary 2. Suppose (HY), (Hb:) hold Then all solutions to (6) are oscillatory.

§ 3. Typies of Asymptotic Behaviors of Nonoscﬂlatory
| Solutlons and their Criteria

In what follows we remove the agsumption that'g(t, £) is a nbndecreasing

function with respect o &.
Theorem 5. A sufficient condition for (1) having a nonoscillatory solution is

that 3 T =14 such that .
ﬁ(t G)P(s)ds\— for o€ [a, b1, t>1T", ' (10)
Proof 1. We establish the mtegral equation

) == ot Doxp(~[  aas Yo ®. (11)
- 'We shall prove that there exists & solution to (11). From (1) we have

tnfa() 1+ [ p¢, OGO do@)=0 @), @)
I'b. is eaéy 1;6 seo that | : |
j:’h(s) ds=In|z(t)|,

ip(t) = texp U’:’h(s) ds ]
2. We make a sequence:
ho(t) = —eP (1), .
@ =~ pt, &eom ([ ~re(is)io®),

oooooo

@ =~ [ ot Qoxp (||

’

s (8) ds)da ©).

Using the induction, we can prove that A,(#) is a nondecreasing sequence and
—eP()<M (t) <0. By (10) we have :

M(E)=—e P(t £)do (€) =Mo(t),
Suppose Ay-1(t) SAe_a(t) =+ =hi (8) Zho (t). Then
m@=>=[ @ Ooxp(~[ x,,-2<s>ds)da<§> “hall),
3. Set ' '
IO =~ﬁ(t'.§‘ a(s)ds,
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Using Fatou Lemma, we see that there exists A(t) such that A,(3)—A(f) (n—>+o0)
and : :

¢ ¢
1 j  M(e)d =j d
e gt ) (s)ds atrd) M(s)ds.

fi->foo

Hence

1m [ o(t, Qexo ([ ~m@s)de©® = [ ptt, Qemp ([, -1 o (@),

‘So A(%) is a solution to (11).
4. Set & (t) =exp <J: A(s)ds > We have

{ONPN
‘;@ =A(%).

T4 is easy to see that »(t) satisfies (1) and #(¢)>0.. Then #(#) is a nonoscillatory
_solution to (1). Theorem 5 is proved.
Remark. In that proof of Theorem 5 we sob Ao (£) = —eP (%) <0, because A(E) <0
from (11), (12). It is easy to See that
M) <0, —eP(t)<<A($)<0,
Any solution %(¢) to (1) must satisfy #(¢)2'(#)<<0. So we take

- w(t) =éxi) q:ax(s)ds )

Theorem 6. If fin (2) only satisfies f(t, £, v)v>0(w+0), £(, &, 0) =0, then
any nonoscillatory solution to (2) belongs to one of the following typies:

do: 5()>0(t>+00), o (13)

Ay w(t)—>c#0(t—>+o00), _ ' : ‘ (14)

Proof By =(t)a’(¢) <0 we know that »(¢) must have an asymptotic behavior.

It is easy 10 see that lim #(¢) —=co is not true. Theorem 6 is proved.
oo :

Theorem 7. A sufficient coudition for (1) having a nonoscillatory solwéion of
ype Ao is that (10) and

j+°°P(s)ds=4+-oo @)

are true.
A sufficient condition for (1) having a nonoscillatory solution of type Ay is that

oo, '
o<j P(s)ds<+oo, (16)
Proof 1.1f (10) is satisfied, then there éxrsts a nonoscillatory solution =(f)
to (1). By (11) we have
o t
at) =~ ptt, & oxp [~
o (

gty

MO Jio©) <= at, Odo(®) —-P@.
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By (9) and —eP(#)<A(t)<<0 we obtain
| | | Tas)ds= oo,

So o(t) =exp (j;?» (s)ds )——>0 (t—>-+o00),

2. If (16) is satisfied, then there exists 7'>1, stch that
L P(s)ds<s for 6€(0, ).
Hence '

jg( K P(s)ds‘ <28¢ <-:—£-,

ﬁwp<s)ds{< j P(s)ds|+

It is easy to see that there exists a nonoscillatory solution #(¢) to (1) and x(%)

satisfies ,

eXp( - er P(s)ds><m(t) =exp (r A(s)ds )<exp< — J‘t P (s)ds),
By (16) we ‘ha.ve ‘ |

+oo
+00>exp<—ej _ P(s)ds>>0
lim %(8) = ¢ 0.

. 1300
Theorem 7 is proved.
Corollary 3. Foa~ (5) we suppose

g1 () <ga(t) <-- <gn(t) <t
If there emsts T*>t, such that

éj:()ﬂ(s)ds<— >, )

then there exists a nonosclllatory solutlon to (5)
Definetion. (3, &, w) in (2) is said to be a sublimear function, if

f(t, £, wy) <f(t’ £, %) (u1>u2>0)n
Uy, Ua

(18)

I, lvfi, 1) gf(t,{qi, va) (v1<wa<0),

Theorem 8. Set L
e =[ £, & DIo®.

Suppose f in (2) is a sublinear functfwn and there ewists ’_1’1 such that for t=>T4,
S [w, bl, - '
| CICL | (19)
Then there ewists a nonoscillatory solution to (2).
~ Proof We consider the equation
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. 9@ v v ‘ S
M) =~ o bonl], 2 0) (20)

i
. 'eprta %(s)ols]
We also establish a sequence: :

A ?\;o(t)=—6Q(t),_ .

ey

oS £, exp[ o(8)ds

OB § g Tl Emws] ) aoce,
' 4 “g(ts‘)

M(t)——L f(t ¢, GXPH An— 1(s)d8]> 4o (o).

epr - 1(8)618]
It is easy to see that A, (t) is a nondecreasmg sequence and there existy A(?) such
that A, (8)—A() (n—>+ o). So there exists a positive solution to (20) Set.

o(t) =exp Ut A(s)ds ]>0.

Then it is a nonoscillatory solution to (2). Theorem 8 is proved.
Theorem 9 Suppose f in (2) is ¢ sublinear function aud (19) is true. Then a
sufficient condition for (2) having a nonoscillatory solution of type Ao is that

J:”Q(s)ds=+o"6.' S (21)

A sufficient condition for (2) Ii@ing a nonoscillatory solution of type A; is that . .

: 0<j Q(s)ds<+oo 4 (22)

_ Corollary 4. Suppose f in (6) is a sublinear funct@on and g1 (£) <ga(t) <
92 (8)<t. Then g suﬁcwnt condition’ for (6) hafumg a nonosczllatorry soZutzon is tkat

w{;erre
Q (t) = EZ’i(t)f ().

Remark. Ifn=1in (5) and (6), then these equahons aré.contained in (1)
and (2). It is easy to see that results of corollaries 1—4 are better than [2].

§ 4 Some Examples

{ Now we give some examples as apphcatlons of the results in § 2, § 3.

Example 1.

w(t)+j z)w(t+§)d§ 0, o : (24)
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where p>>0, g(%, &) =t+&, we have
| P =[ pit=p.
Q) It p>%; then all solutions to (24) are oselllatory,

(2) It p<-2-1-6—, then there exists anonoscillatory solution of type 4o for (24).

Koample 2.

e syt

v (t>+j w(t+§)d§ 0 @)
where ' L e
p(t, &) =57, P() =,
We have O<f+”P(s)ds< 400, 80 We can see that there exists a nomoscillatory

solution of type 4, for (25).
Bzample 3.

)+ g+ eae=0, (26)

where p>0, 0<y<1, 7 is a ratio of two relatively prime odd numbers. It is easy
to see that f is “bounded sublinear” and sublinear. ‘

Q) It p>%—, then all solutions to (26) are oscillatory;
.

(2) If p<-—2—e—, then there exists a nonoscillatory solution 0 (26) and it is of
type .Ao.
BEaample 4.
of () + pr(/oft)d§=0(p>0, 2>0>0), @)
where

9(8, &) =két<t, o(t, &) =~két,

1) ke (O, %-), then all solutions to (27) are oscillatory.

Comment 1. The existence of function (%, £) and the relation between o(t,
£) and g(t, &) in assumption (R;) are seldom discussed. Here we give some exam-
ples to show it. |

Q) It g(t, &) =t+o, £€[~1, 1], then (¥, &) = -+ ""25,
@) If g5, &) =ht¢, K€ (0, 1), EE[1, 21, then (%, &) =VE N EY;
(8) Ifg(t, &) =~1t€, £€1, 2], then p(t, &) =1
(4) If g(¢, &) =k(E+€), kE (0 1), £€(—2, —1), then

o, €)= \/_t+wf+1§
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(5) If g(t, &) =Int, then we can not find p(t, &), »
Comment 2. If the assumption that g(¢, &) in [1, 2] is a nondecreasing

function with & is not satisfied, then all results of this paper (except Theorem 1)
still hold. _ _ '
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