Chin. Ann. of Math. 6B (2) 1985

A BIFURCATION THEOREM OF SET-CONTRACTIVE MAPS*

YU QINGYU(余庆余)** CHENG JIANGANG(程建纲)**

Abstract

In this paper, the global result on bifurcation given by P. H. Rabinowitz is extended to strictly set-contractive maps and condensing maps.

The bifurcation is an important subject in nonlinear functional analysis. There have been a lot of papers about it. The local result of M. A. Krasnosels'kii^[1] and the global result of P. H. Rabinowitz^[2] are very good ones in this direction But they only discussed completely continuous maps. [8] has extended the result of [1] to strict-set-contractive maps. In this short paper, we extend the result of [2] to more general maps, namely, to strictly set-contractive maps and condensing maps. To do this, we need some results: the index formula of isolated fixed point of set-contractive maps (Lemma 1), the multiplicative formula of topological degree (Lemma 2) and a result of spectrum of linear set-contractive maps (Lemma 3). Our main result is Theorem 1.

In this paper we always suppose X is a Banach space and $I: X \rightarrow X$ the identity map. The concepts of strictly set-contractive maps and condensing maps, and the definition of their topological degree can be seen in [3, 6].

Lemma 1.^[4] Let $F: X \to X$ be a strictly set-contractive map, x_0 a fixed point of F. If 1 is not an eigenvalue of $F'(x_0)$ (the Frechet derivative of F at x_0), then x_0 is an isolated fixed point of F and

$$index[F, x_0] = (-1)^{\mu},$$

where μ is the sum of the algebraic multiplicities of the eigenvalues of $F'(x_0)$, lying in $(1, \infty)$.

Remark according to [5] we know that Lemma 1 is still true if F is a condensing map.

Lemma 2 (multiplicative formula): Let Ω , D be bounded open sets in X, $F: \overline{\Omega} \to D$ be a k_1 -set-contractive map, $G: \overline{D} \to X$ be a k_2 -set-contractive map, f = I - F, g =

Manuscript received May 5, 1983.

^{*} This work is partially supported by Soience Fundation.

^{**} Department of Mathematics, Lanihou University, Lanzhou, China.

$I-G. If p \in X, p \in g \circ f(\partial \Omega) \cup g(\partial D), g^{-1}(p) \text{ is a finite set, } k = k_1 + k_2 + k_1 k_2 < 1, \text{ then} \\ \deg(g \circ f, \Omega, p) = \sum_{\alpha} \deg(g, D_{\alpha}, p) \deg(f, \Omega, D_{\alpha}).$

Remark. The number of terms in the summation is finite In the formula, D_{α} is a connected component of $D \setminus f(\partial \Omega)$. deg $(f, \Omega, D_{\alpha}) = \text{deg}(f, \Omega, b)$, $b \in D_{\alpha}$. By the property of connected region it is independent of the choice of b.

Proof We first suppose that $g^{-1}(p) = \{q\}$ only contains one point, and write, $f^{-1}(q) = \{q_{\beta}\}$. For conciseness we may suppose p = q = 0. If not, we discuss $F_1(x) = F(x) + q$, $G_1(x) = G(x) + p$. Write $g \circ f = h = I - H$, where H is a strictly setcontractive map because of $k = k_1 + k_2 + k_1 k_2 < 1$. Then $0 \in (g \circ f)(\partial \Omega)$, $\deg(g \circ f, \Omega, 0)$ is well defined. we only need to show

$$\deg(g \circ f, \Omega, 0) = \deg(g, D, 0) \deg(f, \Omega, 0).$$

We make the elementary-sets of F relative to Ω and G relative to D:

$$\mathcal{\Delta}_{1}^{(1)} = \overline{co}F(\overline{\Omega}), \ \mathcal{\Delta}_{1}^{(n)} = \overline{co}F(\overline{\Omega} \cap \mathcal{\Delta}_{1}^{(n-1)}), \ n \ge 2, \ \mathcal{\Delta}_{1} = \bigcap_{n \ge 1} \mathcal{\Delta}_{1}^{(n)}; \mathcal{\Delta}_{2}^{(1)} = \overline{co}G(\overline{D}), \ \mathcal{\Delta}_{2}^{(n)} = \overline{co}G(\overline{D} \cap \mathcal{\Delta}_{2}^{(n-1)}), \ n \ge 2, \ \mathcal{\Delta}_{2} = \bigcup_{n \ge 1} \mathcal{\Delta}_{2}^{(n)}.$$

Then Δ_1 , Δ_2 are compact convex sets. Let $F^*: \overline{\Omega} \to \Delta_1$ be a compact extension of F on $\Delta_1 \cap \overline{\Omega}$, $G^*: \overline{D} \to \Delta_2$ be a compact extension of G on $\Delta_2 \cap \overline{D}$, $f^* = I - F^*$, $g^* = I - G^*$. By [3], § 16.3, $(f^*)^{-1}(0) = f^{-1}(0) = \{q_\beta\}$, $(g^*)^{-1}(0) = g^{-1}(0) = \{0\}$ and $(g^* \circ f^*)^{-1}(0) = (g \circ f)^{-1}(0) = \{q_\beta\}$. Also by [3]

$$deg(f, \Omega, 0) = deg(f^*, \Omega, 0), deg(g, D, 0) = deg(g^*, D, 0).$$

Next we prove $[I - (tG + (1-t)G^*)]^{-1}(0) = (I-G)^{-1}(0)$ for any $t \in [0, 1]$. If $[I - (tG + (1-t)G^*)](x) = 0$, then $x = tG(x) + (1-t)G^*(x)$ and $x \in \overline{co}(G(x), \Delta_2)$ because of $G^*(x) \in \Delta_2$. By the definition of elementary-set, x belongs to Δ_2 and $G^*(x) = G(x)$. Hence $G(x) = tG(x) + (1-t)G^*(x) = x$. It is obvious that $(I-G)^{-1}(0) \subset [I - (tG + (1-t)G^*)]^{-1}(0)$. Notice $f^{-1}(0) = \{q_B\}$, we have obtained

(*)
$$\{[I - (tG + (1-t)G^*)](I-F)\}^{-1}(0) = f^{-1}(0) = \{q_{\beta}\},\$$

In the same way

(**) {
$$(I-G^*)[I-(tF+(1-t)F^*)]$$
}⁻¹(0) = $(g^* \circ f)^{-1}(0) = \{q_B\}_{\bullet}$
Define $H_1, H_2: \overline{\Omega} \times [0, 1] \to X$ as follows

$$H_1(x, t) = F(x) + [tG + (1-t)G^*](I-F)(x),$$

$$H_2(x, t) = tF(x) + (1-t)F^*(x) + G^*[I - (tF + (1-t)F^*)](x)$$

We can prove H_1 , $H_2: \overline{\Omega} \times [0, 1] \rightarrow X$ are k-set-contractive maps, where $k = k_1 + k_2 + k_1k_2 < 1$. By the condition $0 \in (g \circ f)(\partial \Omega)$ and (*), (**), we have $H_1(x, t) \neq x$ and $H_2(x, t) \neq x$ for any $t \in [0, 1]$, $x \in \partial \Omega$. Hence H_1 , H_2 are homotopy maps. Obviously $g \circ f = I - H_1(x, 1)$, $g^* \circ f = I - H_1(x, 0) = I - H_2(x, 1)$ and $g^* \circ f^* = I - H_2(x, 0)$. By the homotopy invariance of topological degree, it is easy to see that

$$\begin{aligned} \deg(g \circ f, \ \Omega, \ 0) = \deg(I - H_1(x, \ 1), \ \Omega, \ 0) = \deg(I - H_1(x, \ 0), \ \Omega, \ 0) \\ = \deg(I - H_2(x, \ 1), \ \Omega, \ 0) = \deg(I - H_2(x, \ 0), \ \Omega, \ 0) \\ = \deg(g^* \circ f^*, \ \Omega, \ 0). \end{aligned}$$

Obviously $0 \in (g^* \circ f^*)(\partial \Omega) \cup g^*(\partial D)$. The multiplicative formula of degree of Leray-Schauder gives

 $\deg(g^* \circ f^*, \Omega, 0) = \deg(g^*, D, 0) \deg(f^*, \Omega, 0) = \deg(g, D, 0) \deg(f, \Omega, 0).$ Hence

 $\deg(g \circ f, \Omega, 0) = \deg(g, D, 0) \deg(f, \Omega, 0).$

When there are more than one point in $g^{-1}(p)$, by the region addition property of topological degree, the result is easy to prove from the preceding discussion.

When one of F and G is completely continuous and the other is Remark. strictly set-contractive, the condition k < 1 is always satisfied. By the property of condensing maps, we can prove corresponding result similarly.

Lemma 3. If T: $X \rightarrow X$ is a linear k-set-contractive map, then the essentially spectral radius of T, $r_e(T) \leq k$. Therefore, out of the circular disc with radius k and center zero in camplex plane, the spectral set of T only contains finite eigenvalues and the algebraic multiplicities of these eigenvalues are all finite.

Proof By, Theorem 1 of [7], $r_e(T) = \lim_{n \to \infty} (r(T^n))^{\frac{1}{n}}$, where $r(A) = \inf\{k \mid A \text{ is } k - 1\}$ set-contraction}. By, Lemma 1 of [7], $r(T^n) \leq (r(T))^n$, hence $r_e(T) \leq k$. Combining the definition of essential spectrum and the fact that a compact isolated points set is a finite set, we obtain this result.

Now we can prove our main results. Let X be a Banach space, Λ be a real parameter space. Consider the equation

(1) $f(x, \lambda) = 0$, where $f: X \times A \rightarrow X$ can be written as

25.3

(2) $\begin{cases} f(x, \lambda) = f_{\lambda}(x) = x - \lambda A x + g(x, \lambda), \\ A; X \to X \text{ is linear } k \text{-set-contractive } (k < 1), \end{cases}$

 $g: X \times A \rightarrow X$ is a completely continuous map,

 $||g(x, \lambda)|| = o(||x||)$ at x=0 for λ uniformly in a bounded interval of Λ .

So $I - \lambda A$ is Frechet derivative operator of f at $(0, \lambda)$ by $g(0, \lambda) \equiv 0$.

Theorem 1. Let $f: X \times A \rightarrow X$ satisfy (2), $|\lambda_0| < \frac{1}{k}$, λ_0 be a characteristic value of odd algebraic multiplicity of A. Suppose S denots the closure of the set of non-zero solutions (x, λ) of equation (1), and C is a connected component of S and contains (0, λ_0). If C does not intersect $\{0\} \times \left(\left\lceil \frac{1}{k}, \infty \right) \cup \left(-\infty, -\frac{1}{k}\right\rceil\right)$, then either C is noncompact or C only contains finite points $(0, \lambda_j)$ $(j=0, 1, \dots, n)$, where λ_j is a characteristic value of A, and the count of the characteristic values of odd multiplicity (including λ_0) is an even number.

Proof Notice x=0 is always the trivial solution of equation (1). By Result 9.1 of [3], the λ corresponding to of these points $(0, \lambda)$ are the characteristic values of A. Because C does not intersect $\{0\} \times \left(\left[\frac{1}{k}, \infty\right) \cup \left(-\infty, -\frac{1}{k}\right]\right)$, the absolute values of these λ are all less than $\frac{1}{k}$. By Lemma 3 the count of these points are finite, we denote them by $(0, \lambda_j)$, $j=0, 1, 2, \dots n$. Take $\eta < \frac{1}{k}$ such that $|\lambda_j| < \eta$, $j=0, 1, 2, \dots n$.

Suppose O is compact. Since O does not intersect $\{0\} \times \left(\left[\frac{1}{k}, \infty\right) \cup \left(-\infty, -\frac{1}{k}\right]\right)$, and O is a connected component of S, there is a bounded open set Ω that contains C, such that

1) on $\partial \Omega$, there isn't any nontrivial solution of (1);

2) for any characteristic value λ of A except $\lambda_j (j=0, 1, 2, \dots n)(0, \lambda)$ does not belong to Ω .

Consider the map $f_{\rho}: \overline{\Omega} \to X \times \Lambda$, $f_{\rho}(x, \lambda) = (f(x, \lambda), ||x||^2 - \rho^2)$, it is a k-setcontractive field. Obviously, the following two facts are equivalent: f_{ρ} has a zero point $(\hat{x}, \hat{\lambda})$ and $f(x, \hat{\lambda})$ has a zero point $(\hat{x}, \hat{\lambda}) \in \Omega$ with $||\hat{x}|| = \rho$. By (1), deg $(f_{\rho}, \Omega, (0, 0))$ is well defined for any $\rho > 0$, and f_{ρ} is a homotopy map when ρ is changed. Hence deg $(f_{\rho}, \Omega, (0, 0))$ is independent of ρ . It is easy to see that f_{ρ} doesn't have any zero point when ρ is very large, so deg $(f_{\rho}, \Omega, (0, 0)) = 0$.

Next we compute deg(f_{ρ} , Ω , (0, 0)) when ρ is sufficiently small. Take $\varepsilon > 0$ very small such that A has only one characteristic value on $[\lambda_j - \varepsilon, \lambda_j + \varepsilon]$ and write $K = [-\eta, \eta] \setminus_{j=0}^{n} (\lambda_j - \varepsilon, \lambda_j + \varepsilon)$. By Lemma 3, $\lambda \in K$ if a regular value of A. Hence there exists a constant R such that $||(I - \lambda A)^{-1}|| < R$ for any $\lambda \in K$. Take ρ small enough such that $||g(x, \lambda)|| \leq \frac{1}{2R} ||x||$ when $||x|| \leq \rho$.

There isn't any zero point of f_{ρ} on $\Omega \setminus \bigcap_{j=0}^{n} \Omega_{j}$, where $\Omega_{j} \subset \Omega$ is small ball with radius $\sqrt{\rho^{2} + \varepsilon^{2}}$ and center $(0, \lambda_{j})$. In fact, if $(x, \lambda) \in \Omega \setminus \bigcup_{i=0}^{n} \Omega_{j}$ and $f_{\rho}(x, \lambda) = 0$, it is easy to see that $\lambda \in K$, $||x|| = \rho$ and

$$\|x\| = \|(I - \lambda A)^{-1}g(x, \lambda)\| < R\|g(x, \lambda)\| \leq \frac{1}{2}\|x\|.$$

This is a contradiction.

Take

$$h_t(x, \lambda) = (x, \lambda) - H((x, \lambda), t)$$

= ((I-\lambda A)x+tg(x, \lambda), t(||x||^2-\rho^2)+(1-t)(s^2-(\lambda - \lambda_j)^2)).

It is easy to see that h_t is a homotopy map. Thus

 $\deg(f_{\rho}, \Omega_{j}, (0, 0)) = \deg(h_{1}, \Omega_{j}, (0, 0)) = \deg(h_{0}, \Omega_{j}, (0, 0)).$

We can prove that $h_0(x, \lambda) = ((I - \lambda A)x, s^2 - (\lambda - \lambda_j)^2)$ has only two isolated zero points $(x, \lambda) = (0, \lambda_j \pm s)$ on Ω_j , and the differentials of $h_0(x, \lambda)$ at these two points are

 $dh_0(0, \lambda_j \pm s)(\bar{x}, \bar{s}) = ((I - (\lambda_j \pm s)A)\bar{x}, -2(\pm s)\bar{s}) = M \circ N(\bar{x}, \bar{s}),$

where $M(\bar{x}, \bar{s}) = ((I - (\lambda_j \pm s)A)\bar{x}, \bar{s}); N(\bar{x}, \bar{s}) = (\bar{x}, -2(\pm s)\bar{s}).$ When s > 0 is sufficient small, $M(\bar{x}, \bar{s})$ is a strictly set-contractive field and $N(\bar{x}, \bar{s})$ is a compact continuous field. By Lemma 2

> index $[h_0, (0, \lambda_j + \varepsilon)] = -index [I - (\lambda_j + \varepsilon)A, 0] = -i^+_{(j)};$ index $[h_0, (0, \lambda_j - \varepsilon)] = index [I - (\lambda_j - \varepsilon)A, 0] = i^-_{(j)}.$

Hence

$$\deg(h_0, \Omega_j, (0, 0)) = i_{(j)} - i_{(j)}^+$$

and

$$0 = \deg(f_{\rho}, \Omega, (0, 0)) = \sum_{j=0}^{n} \deg(f_{\rho}, \Omega_{j}, (0, 0)) = \sum_{j=0}^{n} (i_{(j)}^{-} - i_{(j)}^{+}).$$

By Lemma 1, $i_{(j)}^+ = i_{(j)}^-$ when λ_j is a characteristic value of even algebraic multiplicity and $i_{(j)}^+ = -i_{(j)}^-$ when λ_j is of odd algerbraic multiplicity. By these, it is easy to obtain this theorem.

Remark. Changing k into 1, Theorem 1 is still true for the condensing maps because we have the corresponding results of Lemmas 1, 2, and 3.

References

- [1] Krasnosel'skii, M. A., Topological methods in the theory of nonlinear integral equations, New York, 1964.
- [2] Rabinowitz, P. H., Some global results for nonlinear-eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.
- [3] Chen Wenyuan, Nonlinear Functional Analysis, 1982, Lanzhou, China.
- [4] Stuart, C. A. and Toland, J. F., The fixed point index of a linear k-set-contraction, J, Lodon Math. Soc., 6: 2 (1973), 317-320.
- [5] Yu Qingyu, The index formula of fixed points and theorem of the number of fixed points for 1-setcontractive maps, to appear.
- [6] Nussbum R. D.. Degree theory for local condensing maps, J. Math. Anal. Appl., 37 (1972), 741-766.

[7] Nussbum, R. D., The redius of the essential spectrum, Duke Math. Journal, 37: 3 (1970), 473-478.

[8] Thomas, J. W., A bifurcation theorem for k-set contractions, Pacific J. Math., 44: 2 (1973), 749-756.