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THEORY OF SPECTRAL DECOMPOSITIONS |

WITH RESPECT TO THE IDENTITY FOR
CLOSED OPERATORS®
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Abstract

In this paper, the auther discusses some properties of closed operators acting on a
Banach space with the spectral decomposition property with respéct to the identity (abbrev.
SDI). First, some equivalent conditions are given for a closed operator T to have the SDI.
Next, for every hyperinvariant subspace ¥ of 7' with the SDI, it is proved that the
coinduced operator T'=T/Y has the SDI. Finally, properties of maximal nets of hyperinva- -
riant subspaces are discussed.

In the present paper, the author discusses some properties of maximal nels of
hyperinvariant subspaces for a given closed operator 7 with the spectral decompo—
sition property with respeot to the identity (abbrev. SDI). Let C be the complex

plane, X a complex Banach space. The sign C(X) denotes the set of all closed:

operators 7’ acting in X and B(X) denotes [the algebra of all bounded operators
acting on X. A set HC is called a neighborhood of oo, denoted by EE€V .., if for
r>0 sufficiently large |
' AEO:|A|>r}CE.

An open set A is called a Cauchy domain if it has a finite number of com-
ponents and its boundary 94 is a positively oriented finite system of closed,.
nonintersecting, rectifiable Jordan curves. The following definition was given in.
[2, 9]. . | _
Definition 1. Given T'€O(X) and a positive integer n=>1. We say that T has the:
 n~spectral decomposition property with respect to the identity (n-SDI), if for every
open cover {Qi}io of a(T), where Gy is a neighborhood of oo, there ewists a system:
{X}0 of tnvariant subspaces of T with the following properties:

(i) o(@| X))@ for i=0, 1, 2, «, n;

(ii) if G,(1<<i<<n) is relatively compact, then X, Dy

(iii) there ewists P; € B(X) (0<<i<<n) commuting with T, such that
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1=§ P, R(PY)cX, (0<i<n).

If for every n>1, T' has the n-SDI, then we say that.T has the spectral decom-
Pposition property with respect to the identity (SDI).

It i3 eaily soen that if 7’ has the n-SDI, then it has the n- 'SDP and hence for
every closed FCO, X T(F) is closed (see [1] Theorem 8). If F is compact ‘then [1,
Theorem 4] implies that

Xo(F) =XF)DX(P),
o(T|X3(F)) =o(T| Xz(F)).
Hence, in Definition 1, X, can be replaced by Xz(Go) and X,;(1<é<n) can be
replaced by X9(GY). Furthermore, using a similar argument given in [2], we can
prove _that if T' has the n-SDI, then it has the (n+1)-SDI. Thus, if T has the 1-SDI,
therx 11; has the n-SDI for every n>>1 and hence it has the SDI. As for the open.
cover {G;}o of o(T') in Definition 1, it is easily shown that {G:}1o can be changed
as the cover of O. |

The. followmg Theorem is an extension of [3, Theorem 2.2] to the unbounded
- case, so we only sketch out the proof.

* Theorem 2. - Given T', then the followfmg assertions are equivelent:

(i) T has the SDI;

(ii) (a) T -has the SDP,

(b) for every closed FC and every open G EV,,, if GDF, then there exists an
operator PC B(X) commuting with T such that :

Pu=g for every 1€ Xo(F), R(P)cX(@);

(111) (a) T has the SDP,

(b) for every closed FCC and efverry open GEV“,' o G@DF, then there exists a.
.B(X )- fvalueol analytic funotwn R, for A& G commuting with T such that

' (A—=T)R,w=w for every s € X, (F),
' R(R,) =X 4(G) N Dy.
Pfroo f (1)=>(11) Put Qo=@ and let open G; be relatively compact and
: - GiNF=0, GoUG D0 (T), :

then there exists P,€B(X) (i=0,1) commuting with T’ such that

I=Po+ Py, R(Po) =X (Go), R(Py) < X3(Gy). : D
For € X(F), we have Pyw=0 and hence Pyw=u. Lot P= Po, it follows from 1)
that P satisfies the request.

(ii)=>(iii). Let P be the operator given in (11) Then the operator :

Ri=(\~T|X(@)*P
for A€ @ satisfies all the properties given in (iii). v |
(iii)=> (i) . Let {Qo, G4} be an open cover of o(T") with Gy€V . aud Go#0, Q4
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relatively cbmpact. Let HyEV . be another open subset such that
Hoc @y, HoUQ1Da(T).
Then there exists a B(X)-valued analytic function R, for A Gy, commutmg with
T such that , _
(A—T)R,w=a for o€ Xr(H,), R(R,)cXr(Go) N Dr. (2
" Let Aot G, be fixed. Put Po=(ho—T) Ry, Py=I—P,, then P,€B(X) (i=0, 1) and
'commutes with 7', Let # € X, there corresponds a decomposition
- w=wp+a; With o€ X»(H,), mieXT(G‘i)
It follows from (2) that Pewo=wo and hence
Piy=(I—Py) X o+ Py € X3(Gy)
or equivalently, B(Py) CX2(Gy). (2) also implies that R(Po) ©Xr(Go). Then for
Xo=Xr(Go), X4~X%(G4) and Py, P;, all the conditions in Definition 1 are sa-
tisfied. T thus has the SDI. .
Remara. If FcC is ’compa_ét, then the conditions (it) and (iii) given in
Theorem 8 can be replaced by the following ones respectively: '
(i) (a) T has the SDP, ' _
(b) for every compact F and every relatively compact open @, if GO F, then
‘bhere exists P€ B(X) commuting with 7" such that ' '
Py=g for s € X3(F), R(P)CX (@);
(ii") (a) T has the SDP, |
~ (b) for every compact F' and every relatively compact open G, if @O F, then
there exists B(_X )-valued analytic function R, for A¢@, commuting with 7' and
(A~T)Ruw=a for s€ XNF), R(R)CXUG).
Lemma 3. Let T:Dp—>X be a linear opemtor Y:(i=0, 1) s invariant under T
and satisfies
X = Y0+Y1, YicDT, T[Y1€B(Y1) )
‘Then T és closed ¢ff T'|Y o is closed.
Proof The “only if” part is evident. :
“It”. It follows from (3) that there oxists & number M >0 such that for every
#€ X, there exists 4, €Y (¢ =0, 1) satisfying ‘ ~
o=+, |vo
To prove the closedness of T, let {z,}; 1c:DT sahsfy
' {@.}—w, {Tw,}—>2.
‘Without loss of generality, we may suppose that

€3

2 " wn-}-i mﬂ“ < +°°

It follows from (4) that for every #,, there exists ¢, €Y ;('b =0, 1) such that
=Yio+ Yozs : "



272 CHIN. ANN. OF MATH. Vol. 6 Ser. B

|Yns30 = Yo | + [Yns11 —Yua | < M | @1~ 50
and hence {y,;};1 converges. Let
| lim g =g (6=0, 1).
Since T'|Yy is bounded, we have T'y,;—Ty; and hence _
Tyno—>2—Ty. ()
(5)and the closedness of T'|Y imply that 4o €Yo N Dy and Tyo=2~Ty;. Thus o=
Yo+41 € Dp, T =Tyo+Tyy =2 and hence T is closed.

Theorem 4. Giwen T with the SDI. If ZCX is hyperinvariant under T, then
the coinduced operator T on X /Z of T' is closed.

Proof The proof consists of three stages.

A. Let F<O be a closed subset and let GOF be open and @+C. It follows
from Theorem 2 that there exists an operator P EB(X ) commuting with 7' such
that

Pg=g for every o« € Xn(F), Z#(P) € X(@).
Put B,=(A—T|Xr(G))*P for A¢ @, then Z(R,)CXy(@)NDr and for every
scX, - |
(A—T)R,»=Pu. (6)

(6) implies that 7' RAEB(X ) and hence TI?,_;-Z/'}%,,EB(X /Z), furthermore, we
have for every &€ X/z,

| (=T B,5=P3. M
It follows from Z(R,) <X (&) N Dy that

A(PR,) © X+(&) N Dr,

then
PR,_ AT X+(@))*(A~T)PR,
=(A\—T|Xn(@))*P(A—T)R,=R,P. (8)
Put .
* Rp={s: 0€X/Z, Po=2},
evidently, | '

| 2> Xo(F) = {8: 30 Xu(F) £} ©)
Since P commutes with 7, we have PPs=TPz=1% for every #€X;ND; and
henec X 7 is invariant under P, Tt follows from (8) that P commutes with R, so

Xg is invariant under R,. (7) and the commutability of T with B, imply that

A—1)B,5 =% for 5 € Xy,
R.(An—D&=% for s€ Xz N D3 _
and hence (A—T|Xz)-*=£,| X5 Since B,|Xz€B(X;), we obtain that P
is closed and so is 7| X ;. Furthermore, we have

o 2p)cE. L )
B. Let F be compact and let open G be relatively compact and Fc@G. It
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follows from the Remark of Theorem 2 that there exists P € B(X) such that
Py =0 for every s € X2(F), #(P)cX¥ (@),

Put
Ry={s: 5€ X/Z, Pi-a}, / (11)
-evidently, we have ' :
- S A A
DX (F)={2: e N X3(F) #0}. (12)

‘?Using the similar manner given in stage A, we can prove that 2?; is invariant
under T, 7] X3 is closed and
o (P X%) <=@. (13)

It follows from Z(P)cX¥(@F)cDy that #(P)cDp and hence X%cDp by the _

equality (11). Thus 1| X% is bounded.

0. In this final stage, we prove that P is closed. Let {Go, G} be an open cover
of o(T) with GoEV .., Go#C and Gy relatively compact. Let {H,, Hi} be another
.open cover of ¢ (') such that HoEV .., Hy<Gy and HiCGy. Then we have

X =Xp(Ho)+X3(Hy) .
and hence
X= XT(HO)'I'XT(HI) :
Applymg 9 and (12) to the pairs Ho, Gy and H,, G4 respectively, we have

X,(Ho)c)%m, XT(Hi) c Xy

-and hence . .
) : X =‘X@o+X%1'

It follows from stage A that )X, is closed and form stage B that T'|X2. is
bonuded. Thus T is closed by Lemma, 3.
Theorem 5. Given T with the SDI. If Y and Z are hyperinvariant under T and
Y >Z. Then the restriction operator P I? has the SDI, where T is the coinduced
operator on X /Z and Y=v/7.
Pfroof First we prove that for open GcO, G+0, :
- o(P|P Xy cF, | - (14)
if @ is relatively compact, then
o(P|1P nXY) <G, - (15)
where X, X’a are defined in stage 4 and stage B of Theorem 4 respectively. We
confine the proof to (14). Since Y is hyperinvariant under T, it is invariant under
R, given in stage 4 of Theorem 4 and hence ¥ is invariant under R,. It follows
from (7) and the commutability of T with R, that ,
(AT B3 =% for €Y N Xy,
R.(—1)2 =% for I nX-@n.DT,
#thus (14) is proved. :
Next, assume that {Go, G4} is an open cover of ¢ with €V .., Go#C and @,
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rolatively compact. Lot {Ho, H;} be another open cover of C such that HoEV .,
HoycGy, H;c@y Then there exists P,€ B(X)(¢=0, 1) commuting with 7’ and
satisfying ' o
. I=Po+Ps, Z(Po)cXy(H,), Z(Py)cX3(Hy),
thus we have

f=.po+.p1, -%(Po)cxﬁﬁ@ Cfau

P
» . APy Xy(H)c Xy, | (16):
(16) implies that
| 119 =0,|9+2,|7, @(P(,]?)c?nxm, AP, |f7>c?nx (17)
and (14), (15) imply that
o(T1¥ NXz) =G0, o(P|¥ NXE,)G:. | (18):
(17) , (18) conclude that T'|¥ has the SDI. . '
Corollary 1. If T has the SDI, then every hyperinvariant subspace Z of T is.
analytically invariant under T'. |
Proof Let f: wq~>Dy be analytic on an open connected «; and
A~-T)f(MEZ.
Then (A— T) F) = 0 Tt follows from Theorem 5 that P has the SDI and hence it
has the SVEP. Thus we bave f(1) =0 and hence f(A) €Y.
Corollary 2. IfT has the SDI, then for every hyperinvariant subspace ¥ of
T|Y has the SDI. | |
Proof Put Z={0}, then the SDI of T'|Y is a consequence of Theorem 5.
Corolloary 3. If T has the SDI, then for every two hyperinvariant subspaces ¥
and Z, Y D7 implies that o(T|Y) D0 (T|Z). .
- Proof It follows from Obro]lary 1 that Z is analytically invariant under 7
and hence is analytically invariant under 7'|Y. Thus we have o (T IY Voo (T Z).
Proposition 6. If the densely defined operator T.has the SDP and if for every
relatively compact open G, there eatists an operator PEB(X) commuting with T and.
satisfying Z(P)C X (@), then for the operator T%, P* commutes with it and satisfies.
Z(P*") X7 WG). :
Proof Let the open @ be relatively compact Smce T hag the SDP, it follows
from. [8, Theorem IV 5.5] that T* has the SDP and | | |
X =[X(D, (19)
where H = O’\G‘ By the hypothesis, for the open G, there exists an operator P&
B(X) such that P commutes with{7 and that Z(P)cX}(@). Let o€ Xy(H),
then op(Pw) Cor(w). Since or(w) NG =0, we have - :
| Pi € X9(@) N Xr(or(w)) =X (G‘ ﬂaw(w)) =X7 (¢) {0} . (20)
and hence Px=0. Let #* € X*, then
(@, P'o>={Po. 5*=0 (9€X 7(Ho))
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and hence (19) implies that P*s* € X% (@), or equivalently, _
Z(P") =X71 (). (21)
Proposition is thus proved. _ ' '
Corollary. If T is densely defined and has the SDI, then T* has the SDI.
Proof Let {@Qo,” G4} be an open cover of O with GoEV .. and G4 relatively
compact, then there exists P,& B(X) commuting with T and satisfying
I=Py+Py, B(Po) =X p(Go), B(P1)X3(G).
It follows from (21) that A
' - RB(PHCXR(G). ‘ (22)
By [8, Theorem IV 5.5], T* has the SDP and in addition to (19), we have
7 (Go) = [X3(H)14, '
. where Hy=0\Go and X3(Hi)= \V X2(F). By a similar argument used in

Fc H,
JFeormpact

Proposition 7, we have
| R(PY) X in(Go). (28)
(22), (28) and the evident equality I*=Pi+Pi imply that 7" has the SDI.
Definition 7. Let T have the SDP. If there ewists a sequence of relatively
compact open sets {Gu}ey and @ sequence {Py}r-1 of bounded linear operators commuting
with T such that R(P,)CX(G,) and that for every s € X and every &*€ X*,
{Pw, ">z, o*), '
then we say that T has property (5). ~
Theorem 8. Let T have the SDP and property (), then for every family of
hyperinvariant su bspaces {Xo}tues of T, ¥ = bE/A_X_' o 48 also hyperinvariant under 7.

Proof Let SE€B(X) commute with 7. Since S is bounded, it is easily seen
that Y is invariant under S and hence it is sufficient to prove that ¥ is invariant
under 7. ' '

Let # € X, then P2 € X, N X%(G,) and

Hm{P o, o*>=<{w, o),

n—oo

consequently, by the Hahn-Banach Theorem, we have
Xo=\/ X N XH@).
n=1 '

Since XN X3(@,) <Dy, T'| X, is densely defined. It follows from the same reason
that 7' is densely defined. Let X4 be the annihilator of X, in X*, Let » € X, Dy,
e Xin DT;, then <&, T"z">=<{Tw», ") =0 and X, N De=X, imply that T"s'Cc X}
and hence X3 is invariant under 7. . _

Since Y+ = (bE/AX )t =“@l X} and X3 is invariant under 7%, we have that 1™

is invariant under 7*. Now, -suppose that s €Y 1Dy, 2*€Y*. It follows from
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Proposﬂzlon 6 that P X% (G,) and hence
eYl X38(G) Y™ N Dpw; T*Pis* €V~
Thus for every n,
0=<w, T*Pla*>={Tw, Pis*y ={P, s, &*)= lim(P, T, o*> =Tz, *>,

which concludes that ¥ is invariant under T'.
Now we are in a position to discuss the properties of a given maximal net of
hyperinvariant subspaces of 7'. Let 4 be a totally ordered set, a family N ={X }sca
of hyperinvariant subspaces of T' is called a net, if for o, BE A4, a<B implies X,
X 4. In virtue of Zorn’s Lemma, we can show that N is contained in a maximal
net of hyperinvariant subspaces of 7'. Without loss of generality, we may suppose
that N itself is maximal. Thus we have that {0}, X € N and hence N is nonempty.
Lemma9. Let T have the SDP and property (8) and let N={Xo}acs be @
‘mazimal net of hypermfvammt subspaces of T'. Then for every a € A, there ewists a ,8 €

A such that
Xe=\ X,.

r<a

Proof Put Y =\/ X,, by Theorem 9, Y is hyperinvariant under 7', further- '

more, we have | : : _
X, cYcX, for y<a<y'. (24)
If Y €N, it follows from (24) that N'={X,, Y }sca is 2 net of hyperinvari ant
subs'pa,ces of 7' which contains N as a proper subset, this contradicts the maximal
property of N. Thus the lemma follows. '
Denote 8 by a—0, then a—0<e. 1f 6—0=a, we will say that N is cotinuous ab

Theorem 10. Given T with the SDI and property (5). Let N={X,}acs be a
mazimal net of hyperinvariant subspaces of T, then
(i) for every a € A, we have

o (T X,)Co(T| Xumo) for y<a, - « (25)
o(T| Xao) =Y o(T|X,), (26)
(T | Xae0) Co(T| X,); @

(ii) of N is discontinuous at a, let T, be the coinduced operator of T| X, on X,=
a/ X 40, then either ' ’
1°) T s unbounded and O‘(Ta) =0
or
(2°) P, €B(X,) and o(D,) consists of exactly one point &, furthermore, either
Po=g P, or Tu—E.1, is a quasinilpotent;
(111) N is discontinuous at a, if either o(T|X a_o) #0(T|X,) or X, is ﬁmtly

°
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dq?mens'ioml,. then there ewists a hyperinvariant subspace Y, of T such that
Xo=Xo0 o®DYs, YDy
and o (T|Y ;) consists of exactly one point &,, furthermore, the conclusion given in (ii,
2°) remains true and in the case of X, being finitly dimensional, we have
T’YaégaIIYa-

Progf Since the proof ig similar to that of [3, Theorem 3.2], we only sketch
out it. _ :

(i) (25) and (27) are the consequence of Oorollary 8 of Theorem 5. To prove
(26), it is easy to see that '

o (T| Xoa)2)/ o(T| X,).

In virtue of the reduction to absurdity, we can prove the opposite inclusion.

(ii) Theorem 5 implies that T, has the SDI. If T, is unbounded and if o(7,)
consists at least one point,  then there exists for fa, a nontrivial T,-bounded
spectral maximal space 2. Let

Z={w: s€4€2},

then X, ¢<&Z&Xqand Z is hyperinvariant under 7', this is impossible, since N is
a maximal net. Thus o(T,) is empty. It 1. is bounded and if o(P,) consists of
more than one point, then a similar argument used above shows thai there is a
- contradiction. Hence o(T,) consists of exactly one point £&,. By the reduction to
absurdity, it follows the second conclusion of (ii, 2°).

(iii) First, suppose that ¢ (7| X4-0) o (1| X,), it follows from [4, Theorem
2.1] that o(T,) is nonempty and then (ii) implies that 'a(_T.,) consists of exactly
- one point &, and T, is bounded. Evidently, {é.} and o(T| X ,—0) are spectral set of
- T| X, Then the application of [5, Theorem V. 9.1] concludes the first case of
(iii). '

Next, suppose that X, is finitly dimensional, let {%1, *+, .} be a base of X..
Then {@s, -, @,} is a linear independent system contained in X,, where o, €z;(1<<
=<n). Let ¥ » be the subspace spanned by {®;, -+, ,}, then
. ' Xo=Xoo®Y
and T'\Y ,=&.I|Y . ' '

Given T'. Suppose that there exists a function f: G—>C analytic on a neighbor-
hood @ of o (T") U {oc} and assuming zero at most at A=0 and at A=oc and being
non-constant on every component of G such that f(7") is completely continuous.
Then ¢ (T") has no non-zero cluster point on € and hence, by applying [5, Theorem
V. 9.1], T has the SDI. Furthermore, we suppose that 7' satisfies the property (3),
then it follows from Theorem 8 that for a family {X,}scs of hyperinvariant
subspaces of 7, ¥ =a\e/4 X, is hyperinvariant under 7'.
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Theorem 11.. Suppose that T satisfies all the conditions mentioned above. Let
N ={X ,}sca be a mazimal net of hyperinvariant subspaces of T, 4f for every discontin—
uous point o of N, the coinduced operator T, on Xof/Xe o satisfies o(T,) ={0} or
o (1.) =0, then T és a quasinilpotent, . e. T is bounded and o (T) ={0}.

Proogf First, we show that o(T") ={0} or o(T") =(. Assume the contrary, then
there exists a point £,%0 such that & €0 (T). By the hypothesis, & is an isolated
point of ¢(T). Since {0}, X €N and o(T|{0}) =@, ¢(T| X) =c(T), we may divide
A into two parts: | .

A~ ={y: bo¢a(T|X,), yEA}; | (28)
t={y: és€0 (T X,), yE A}, o (29)
A-, A* are nonempty and
| A=A-UA*, A-NA*=g.
Put _
=VX, Xt= X,

YEA- yE4¥
then X* is hyperinvariant under 7' and satisfies
| X,cX-cX*CX, for yEA-, Y €AY
Since X is a maximal net and 7' has property (9), there exists « € 4 such that
X-=X,0, X*t=X, .
Since & is an isolated point of o'(T'), it follows from (26) and (28) that

b0t \/ (T1X;) =0(T| Xaro). (30)

Next, we show that £, €0 (T|X,), by Oorollary 1 of Theorem 5, for eveay v &

4, X, is analytically invariant under 7, then _
X, N X2({&o}) = X3, mx,({€6}) (81)
for y€ A. Since £o#0 and 50%00 we have f(&)+#0. Since f(T') is completely
continuous X s (f({€o})) is finitely dimensional, [1, Theorem 2.1] implies that

X 1y (f ({€o})) = X2 (FF{€)) D X3 ({6o})
- and hence X2({£&}) is finitly dimensional. Since, for every yEA*, we have &€
o(T|X,) and o(T| X8, T,X,({go}') ) ={&o} #0, it follows that

X3, 11z, ({€o}).# {0} for y € 4*.
X2({éo}) being finite dimensional, (81) implies that there exwts a Y€ A* such
that, for every y € A* with y<Cy, we have

X2({&}) N X, =X2({51) N x »7%{0}. (32)_
It follows from (81), (82) and X*=X, that

mx,({fo}) = X2({&}) N X =X3({&}) (i ([ ] X.,) L1 IX2(&6) N XS]
X2({&}h) N Xmé {0}

and hence
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§o€0(T| X5, rx.({6})) co (T X,). - (83)
(80) and (83) imply that N is discontinuous at o and o(T,) = {&}. By hypothesis,
we have either ¢ (T,)=1{0} or ¢(T,) =@. This contradicts the assumption &0,
therefore o(T,) = {0} or o(T',) = . Next, to prove that Xz(g) ={0}, let € X4(P),
by the property (&), there exist relatively compact open G, and operator
P,EB(X) -
such that P, commutes with 7' and satisfies Z(P,) = X%(G,), then

Pw€ X3(G,) N X(B) = X3(P) ={0}
and hence P,u=0. It follows from the equality
{w, ") =lim{P,», "> =0

for every &* € X* that =0 and hence X. (@) ={0}. Thus o(T) = {0} and the decom-
position |

| _ X =X ®@X (@)
with XDy implies that 7' is bounded and thus 7’ is a quasinilpotent.
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