THEORY OF SPECTRAL DECOMPOSITIONS WITH RESPECT TO THE IDENTITY FOR CLOSED OPERATORS*

WANG SHENGWANG (王声望)**

Abstract

In this paper, the auther discusses some properties of closed operators acting on a Banach space with the spectral decomposition property with respect to the identity (abbrev. SDI). First, some equivalent conditions are given for a closed operator T to have the SDI. Next, for every hyperinvariant subspace Y of T with the SDI, it is proved that the coinduced operator $\hat{T} = T/Y$ has the SDI. Finally, properties of maximal nets of hyperinvariant subspaces are discussed.

In the present paper, the author discusses some properties of maximal nets of hyperinvariant subspaces for a given closed operator T with the spectral decomposition property with respect to the identity (abbrev. SDI). Let C be the complex plane, X a complex Banach space. The sign O(X) denotes the set of all closed operators T acting in X and B(X) denotes [the algebra of all bounded operators acting on X. A set $E \subset O$ is called a neighborhood of ∞ , denoted by $E \in V_{\infty}$, if for r > 0 sufficiently large

$\{\lambda \in \mathcal{O}: |\lambda| > r\} \subset E.$

An open set $\Delta \subset C$ is called a Cauchy domain if it has a finite number of components and its boundary $\partial \Delta$ is a positively oriented finite system of closed, nonintersecting, rectifiable Jordan curves. The following definition was given in [2, 9].

Definition 1. Given $T \in O(X)$ and a positive integer $n \ge 1$. We say that T has the *n*-spectral decomposition property with respect to the identity (*n*-SDI), if for every open cover $\{G_i\}_{i=0}^n$ of $\sigma(T)$, where G_0 is a neighborhood of ∞ , there exists a system $\{X_i\}_{i=0}^n$ of invariant subspaces of T with the following properties:

(i) $\sigma(T|X_i) \subset G_i \text{ for } i=0, 1, 2, ..., n;$

- (ii) if $G_i(1 \le i \le n)$ is relatively compact, then $X_i \subset D_T$;
- (iii) there exists $P_i \in B(X) \ (0 \le i \le n)$ commuting with T, such that

Manuscript received April 6, 1983, Reviseb October 14, 1983.

^{*} Project supported by the Fundation of the Chinese Academy of Science.

^{**} Department of Mathematics, Nanjing University, Nanjing, China.

$$I = \sum_{i=0}^{n} P_{i}, \ R(P_{i}) \subset X_{i} \quad (0 \leq i \leq n).$$

If for every $n \ge 1$, T has the *n*-SDI, then we say that T has the spectral decomposition property with respect to the identity (SDI).

It is easily seen that if T has the *n*-SDI, then it has the *n*-SDP and hence for every closed $F \subset C$, $X_T(F)$ is closed (see [1] Theorem 3). If F is compact, then [1, Theorem 4] implies that

$$X_{T}(F) = X_{T}^{0}(F) \oplus X_{T}(\emptyset),$$

$$\sigma(T | X_{T}^{0}(F)) = \sigma(T | X_{T}(F)).$$

Hence, in Definition 1, X_0 can be replaced by $X_T(\overline{G}_0)$ and $X_i(1 \le i \le n)$ can be replaced by $X_T^0(\overline{G}_i)$. Furthermore, using a similar argument given in [2], we can prove that if T has the *n*-SDI, then it has the (n+1)-SDI. Thus, if T has the 1-SDI, then it has the *n*-SDI for every $n \ge 1$ and hence it has the SDI. As for the open cover $\{G_i\}_{i=0}^n$ of $\sigma(T)$ in Definition 1, it is easily shown that $\{G_i\}_{i=0}^n$ can be changed as the cover of C.

The following Theorem is an extension of [3, Theorem 2.2] to the unbounded case, so we only sketch out the proof.

Theorem 2. Given T, then the following assertions are equivelent:

(i) T has the SDI;

(ii) (a) T has the SDP,

(b) for every closed $F \subset C$ and every open $G \in V_{\infty}$, if $G \supset F$, then there exists an operator $P \in B(X)$ commuting with T such that

 $Px = x \text{ for every } x \in X_T(F), R(P) \subset X_T(\overline{G});$

(iii) (a) T has the SDP,

(b) for every closed $F \subset C$ and every open $G \in V_{\infty}$, if $G \supset F$, then there exists a B(X)-valued analytic function R_{λ} for $\lambda \notin \overline{G}$ commuting with T such that

$$(\lambda - T)R_{\lambda}x = x$$
 for every $x \in X_T(F)$,

$$R(R_{\lambda}) \subset X_T(G) \cap D_T.$$

Proof (i) \Rightarrow (ii). Put $G_0 = G$ and let open G_1 be relatively compact and

$$G_1 \cap F = \emptyset, \ G_0 \cup G_1 \supset \sigma(T),$$

then there exists $P_i \in B(X)$ (i=0, 1) commuting with T such that

$$=P_{0}+P_{1}, R(P_{0})\subset X_{T}(\overline{G}_{0}), R(P_{1})\subset X_{T}^{0}(\overline{G}_{1}).$$

$$(1)$$

For $x \in X_T(F)$, we have $P_1 x = 0$ and hence $P_0 x = x$. Let $P = P_0$, it follows from (1) that P satisfies the request.

(ii) \Rightarrow (iii). Let P be the operator given in (ii). Then the operator

$$R_{\lambda} = (\lambda - T | X_T(\overline{G}))^{-1} P$$

for $\lambda \notin \overline{G}$ satisfies all the properties given in (iii).

(iii) \Rightarrow (i). Let $\{G_0, G_1\}$ be an open cover of $\sigma(T)$ with $G_0 \in V_{\infty}$ and $\overline{G}_0 \neq O$, G_1

No. 3 Wang, S. W. THEORY OF DECOMPOSITIONS FOR CLOSED OPERATORS

relatively compact. Let $H_0 \in V_{\infty}$ be another open subset such that

$$\overline{H}_0 \subset G_0, \ H_0 \cup G_1 \supset \sigma(T).$$

Then there exists a B(X)-valued analytic function R_{λ} for $\lambda \notin \overline{G}_0$, commuting with T such that

$$(\lambda - T)R_{\lambda}x = x \text{ for } x \in X_{T}(\overline{H}_{0}), \ R(R_{\lambda}) \subset X_{T}(\overline{G}_{0}) \cap D_{T}.$$

$$(2)$$

Let $\lambda_0 \notin \overline{G}_0$ be fixed. Put $P_0 = (\lambda_0 - T)R_{\lambda_0}$, $P_1 = I - P_0$, then $P_i \in B(X)$ (i=0, 1) and commutes with T. Let $x \in X$, there corresponds a decomposition

 $x=x_0+x_1$ with $x_0\in X_T(\overline{H}_0), x_1\in X_T^0(\overline{G}_1)$.

It follows from (2) that $P_0x_0 = x_0$ and hence

 $P_1 x = (I - P_0) X_0 + P_1 x_1 \in X_T^0(\overline{G}_1)$

or equivalently, $R(P_1) \subset X_T^0(\overline{G}_1)$. (2) also implies that $R(P_0) \subset X_T(\overline{G}_0)$. Then for $X_0 = X_T(\overline{G}_0)$, $X_1 = X_T^0(\overline{G}_1)$ and P_0 , P_1 , all the conditions in Definition 1 are satisfied. T thus has the SDI.

Remara. If $F \subset O$ is compact, then the conditions (ii) and (iii) given in Theorem 3 can be replaced by the following ones respectively:

(ii') (a) T has the SDP,

(b) for every compact F and every relatively compact open G, if $G \supset F$, then there exists $P \in B(X)$ commuting with T such that

 $Px = x \text{ for } x \in X_T^0(F), R(P) \subset X_T^0(\overline{G});$

(iii') (a) T has the SDP,

(b) for every compact F and every relatively compact open G, if $G \supset F$, then there exists B(X)-valued analytic function R_{λ} for $\lambda \notin \overline{G}$, commuting with T and

 $(\lambda - T)R_{\lambda}x = x \text{ for } x \in X^0_T(F), \ R(R_{\lambda}) \subset X^0_T(\overline{G}).$

Lemma 3. Let $T: D_T \rightarrow X$ be a linear operator. $Y_i (i=0, 1)$ is invariant under Tand satisfies

$$X = Y_0 + Y_1, Y_1 \subset D_T, T | Y_1 \in B(Y_1).$$
(3)

Then T is closed iff $T | Y_0$ is closed.

Proof The "only if" part is evident.

"If". It follows from (3) that there exists a number M>0 such that for every $x \in X$, there exists $y_i \in Y_i$ (i=0, 1) satisfying

$$x = y_0 + y_1, \ \|y_0\| + \|y_1\| \leqslant M \|x\|.$$
(4)

To prove the closedness of T, let $\{x_n\}_{n=1}^{\infty} \subset D_T$ satisfy

$$\{x_n\} \rightarrow x, \{Tx_n\} \rightarrow z.$$

Without loss of generality, we may suppose that

$$\sum_{n=1}^{\infty} \|x_{n+1}-x_n\| < +\infty.$$

It follows from (4) that for every x_n , there exists $y_{ni} \in Y_i (i=0, 1)$ such that

 $x_n = y_{n0} + y_{n1};$

271

$$||y_{n+10} - y_{n0}|| + ||y_{n+11} - y_{n1}|| \le M ||x_{n+1} - x_n||$$

and hence $\{y_{ni}\}_{n \ge 1}^{\infty}$ converges. Let

 $\lim y_{ni} = y_i (i=0, 1).$

Since $T|Y_1$ is bounded, we have $Ty_{n1} \rightarrow Ty_1$ and hence

$$Ty_{n0} \rightarrow z - Ty_1. \tag{5}$$

(5) and the closedness of $T | Y_0$ imply that $y_0 \in Y_0 \cap D_T$ and $Ty_0 = z - Ty_1$. Thus $x = y_0 + y_1 \in D_T$, $Tx = Ty_0 + Ty_1 = z$ and hence T is closed.

Theorem 4. Given T with the SDI. If $Z \subset X$ is hyperinvariant under T, then the coinduced operator T on X/Z of T is closed.

Proof The proof consists of three stages.

A. Let $F \subset C$ be a closed subset and let $G \supset F$ be open and $\overline{G} \neq C$. It follows from Theorem 2 that there exists an operator $P \in B(X)$ commuting with T such that

$$Px = x$$
 for every $x \in X_T(F)$, $\mathscr{R}(P) \in X_T(G)$.

Put $R_{\lambda} = (\lambda - T | X_T(\overline{G}))^{-1} P$ for $\lambda \notin \overline{G}$, then $\mathscr{R}(R_{\lambda}) \subset X_T(\overline{G}) \cap D_T$ and for every $x \in X$,

$$(\lambda - T)R_{\lambda}x = Px. \tag{6}$$

(6) implies that $T R_{\lambda} \in B(X)$ and hence $\hat{T}\hat{R}_{\lambda} = \hat{T}\hat{R}_{\lambda} \in B(X/Z)$, furthermore, we have for every $\hat{x} \in X/Z$,

$$(\lambda - \hat{T})\hat{R}_{\lambda}\hat{x} = \hat{P}\hat{x}.$$
(7)

It follows from $\mathscr{R}(R_{\lambda}) \subset X_{T}(\overline{G}) \cap D_{T}$ that

$$\mathscr{R}(PR_{\lambda}) \subset X_{T}(\overline{G}) \cap D_{T},$$

then

$$PR_{\lambda} = (\lambda - T | X_{T}(\overline{G}))^{-1} (\lambda - T) PR_{\lambda}$$

= $(\lambda - T | X_{T}(\overline{G}))^{-1} P(\lambda - T) R_{\lambda} = R_{\lambda} P.$ (8)

 \mathbf{Put}

*
$$\hat{X}_{\overline{G}} = \{ \hat{x}: \, \hat{x} \in X/Z, \, \hat{P}\hat{x} = \hat{x} \},$$

evidently,

$$\hat{X}_{\overline{G}} \supset \tilde{X}_{T}(F) = \{ \hat{x} \colon \hat{x} \cap X_{T}(F) \neq \emptyset \}.$$
(9)

Since \hat{P} commutes with \hat{T} , we have $\hat{P}\hat{T}\hat{x} = \hat{T}\hat{P}\hat{x} = \hat{T}\hat{x}$ for every $\hat{x} \in \hat{X}_{\overline{G}} \cap D_{\hat{T}}$ and hence $\hat{X}_{\overline{G}}$ is invariant under \hat{T} . It follows from (8) that \hat{P} commutes with \hat{R}_{λ} , so $\hat{X}_{\overline{G}}$ is invariant under \hat{R}_{λ} . (7) and the commutability of \hat{T} with \hat{R}_{λ} imply that

$$(\lambda - \hat{T}) \hat{R}_{\lambda} \hat{x} = \hat{x} \text{ for } \hat{x} \in \hat{X}_{a}, \ \hat{R}_{\lambda} (\lambda - \hat{T}) \hat{x} = \hat{x} \text{ for } \hat{x} \in \hat{X}_{a} \cap D$$

and hence $(\lambda - \hat{T} | \hat{X}_{a})^{-1} = \hat{R}_{\lambda} | \hat{X}_{a}$. Since $\hat{R}_{\lambda} | \hat{X}_{a} \in B(\hat{X}_{a})$, we obtain that $\lambda - \hat{T} | \hat{X}_{a}$ is closed and so is $\hat{T} | \hat{X}_{a}$. Furthermore, we have

$$\sigma(\hat{T}|\hat{X}_{\overline{a}}) \subset \overline{G}.$$
 (10)

B. Let F be compact and let open G be relatively compact and $F \subset G$. It

follows from the Remark of Theorem 2 that there exists $P \in B(X)$ such that

Px = x for every $x \in X^0_T(F)$, $\mathscr{R}(P) \subset X^0_T(\overline{G})$.

Put

$$\hat{X}_{G}^{0} = \{ \hat{x} : \, \hat{x} \in X/Z, \, \hat{P}\hat{x} = x \}, \tag{11}$$

evidently, we have

$$\widehat{X}^{0}_{\mathcal{G}} \supset \widetilde{X}^{0}_{\mathcal{T}}(F) = \{ \widehat{x} \colon \widehat{x} \cap X^{0}_{\mathcal{T}}(F) \neq \emptyset \}.$$

$$(12)$$

Using the similar manner given in stage A, we can prove that \hat{X}^0_{σ} is invariant under \hat{T} , $\hat{T} \mid \hat{X}^0_{\sigma}$ is closed and

$$\sigma(\hat{T}|\hat{X}^{0}_{\vec{G}}) \subset \overline{G}.$$
(13)

It follows from $\mathscr{R}(P) \subset X_T^0(\overline{G}) \subset D_T$ that $\mathscr{R}(\hat{P}) \subset D_{\hat{T}}$ and hence $\hat{X}_G^0 \subset D_{\hat{T}}$ by the equality (11). Thus $\hat{T} | \hat{X}_G^0$ is bounded.

C. In this final stage, we prove that \hat{T} is closed. Let $\{G_0, G_1\}$ be an open cover of $\sigma(T)$ with $G_0 \in V_{\infty}$, $\overline{G}_0 \neq C$ and G_1 relatively compact. Let $\{H_0, H_1\}$ be another open cover of $\sigma(T)$ such that $H_0 \in V_{\infty}$, $\overline{H}_0 \subset G_0$ and $\overline{H}_1 \subset G_1$. Then we have

$$X = X_T(H_0) + X_T^0(H_1)$$

and hence

$$\widehat{X} = \widehat{X_T(H_0)} + \widehat{X_T^0(H_1)}.$$

Applying (9) and (12) to the pairs \overline{H}_0 , G_0 and \overline{H}_1 , G_1 respectively, we have

$$\widehat{X_{T}(\overline{H}_{0})}\subset \widehat{X}_{\overline{G}_{0}}, \ \widehat{X_{T}^{0}(\overline{H}_{1})}\subset \widehat{X}_{\overline{G}_{1}}^{0}$$

and hence

$$\hat{X} = \hat{X}_{G_0} + \hat{X}^0_{G_1}$$

It follows from stage A that $\hat{T}|\hat{X}_{G}$ is closed and form stage B that $\hat{T}|\hat{X}_{G}$ is bounded. Thus \hat{T} is closed by Lemma 3.

Theorem 5. Given T with the SDI. If Y and Z are hyperinvariant under T and $Y \supset Z$. Then the restriction operator $\hat{T} | \hat{Y}$ has the SDI, where \hat{T} is the coinduced operator on X/Z and $\hat{Y} = Y/Z$.

Proof First we prove that for open
$$G \subset O$$
, $\overline{G} \neq O$,
 $\sigma(\hat{T} | \hat{T} \cap \hat{X}_{\overline{G}}) \subset \overline{G}$, (14)

if G is relatively compact, then

$$\sigma(\hat{T}|\hat{Y}\cap\hat{X}^{0}_{\alpha})\subset \overline{G},\tag{15}$$

where $\hat{X}_{\overline{G}}$, $\hat{X}_{\overline{G}}^{0}$ are defined in stage A and stage B of Theorem 4 respectively. We confine the proof to (14). Since Y is hyperinvariant under T, it is invariant under R_{λ} given in stage A of Theorem 4 and hence \hat{Y} is invariant under \hat{R}_{λ} . It follows from (7) and the commutability of \hat{T} with \hat{R}_{λ} that

$$(\lambda - \hat{T})\hat{R}_{\lambda}\hat{x} = \hat{x} \text{ for } \hat{x} \in \hat{T} \cap \hat{X}_{\overline{g}},$$
$$\hat{R}_{\lambda}(\lambda - \hat{T})\hat{x} = \hat{x} \text{ for } \hat{x} \in \hat{T} \cap \hat{X}_{\overline{g}} \cap D_{T}$$

thus (14) is proved.

Next, assume that $\{G_0, G_1\}$ is an open cover of O with $G_0 \in V_{\infty}$, $\overline{G}_0 \neq O$ and G_1

$$I = P_0 + P_1, \ \mathscr{R}(P_0) \subset X_T(\overline{H}_0), \ \mathscr{R}(P_1) \subset X_T^0(\overline{H}_1),$$

thus we have

$$\hat{I} = \hat{P}_{0} + \hat{P}_{1}, \, \mathscr{R}(\hat{P}_{0}) \subset \widehat{X_{T}(H_{0})} \subset \widehat{X}_{G_{0}}, \\
\mathscr{R}(\hat{P}_{1}) \subset \widehat{X_{T}^{0}(H_{1})} \subset \widehat{X}_{G_{1}}^{0}.$$
(16)

(16) implies that

 $\hat{I}|\hat{Y} = \hat{P}_0|\hat{Y} + \hat{P}_1|\hat{Y}, \mathcal{R}(\hat{P}_0|\hat{Y}) \subset \hat{Y} \cap X_{\overline{G}_0}, \mathcal{R}(\hat{P}_1|\hat{Y}) \subset \hat{Y} \cap \hat{X}_{\overline{G}_1}^0$ (17) and (14), (15) imply that

$$r(\hat{T}|\hat{Y} \cap \hat{X}_{\overline{G}_{0}}) \subset \overline{G}_{0}, \ \sigma(\hat{T}|\hat{Y} \cap \hat{X}_{\overline{G}_{1}}^{0}) \overline{G}_{1}.$$

$$(18)$$

(17), (18) conclude that $\hat{T} | \hat{Y}$ has the SDI.

Corollary 1. If T has the SDI, then every hyperinvariant subspace Z of T is analytically invariant under T.

Proof Let $f: \omega_f \rightarrow D_T$ be analytic on an open connected ω_f and

$$(\lambda - T)f(\lambda) \in Z.$$

Then $(\lambda - \hat{T})\hat{f}(\lambda) = \hat{O}$. It follows from Theorem 5 that \hat{T} has the SDI and hence it has the SVEP. Thus we have $\hat{f}(\lambda) = \hat{O}$ and hence $f(\lambda) \in Y$.

Corollary 2. If T has the SDI, then for every hyperinvariant subspace Y of T|Y has the SDI.

Proof Put $Z = \{0\}$, then the SDI of T | Y is a consequence of Theorem 5.

Corolloary 3. If T has the SDI, then for every two hyperinvariant subspaces Y and Z, $Y \supset Z$ implies that $\sigma(T|Y) \supset \sigma(T|Z)$.

Proof It follows from Corollary 1 that Z is analytically invariant under T and hence is analytically invariant under T|Y. Thus we have $\sigma(T|Y) \supset \sigma(T|Z)$.

Proposition 6. If the densely defined operator T has the SDP and if for every relatively compact open G, there exists an operator $P \in B(X)$ commuting with T and satisfying $\mathscr{R}(P) \subset X_T^0(\overline{G})$, then for the operator T^* , P^* commutes with it and satisfies $\mathscr{R}(P^*) \subset X_T^{*0}(\overline{G})$.

Proof Let the open G be relatively compact. Since T has the SDP, it follows from [8, Theorem IV 5.5] that T^* has the SDP and

$$X_{T^*}^{*0}(\bar{G}) = [X_T(H)]^{\perp}, \tag{19}$$

where $H = O \setminus \overline{G}$. By the hypothesis, for the open G, there exists an operator $P \in B(X)$ such that P commutes with T and that $\mathscr{R}(P) \subset X_T^0(\overline{G})$. Let $x \in X_T(H)$, then $\sigma_T(Px) \subset \sigma_T(x)$. Since $\sigma_T(x) \cap \overline{G} = \emptyset$, we have

$$Px \in X_T^0(\overline{G}) \cap X_T(\sigma_T(x)) = X_T^0(\overline{G} \cap \sigma_T(x)) = X_T^0(\emptyset) = \{0\}$$
(20)

and hence Px = 0. Let $x^* \in X^*$, then

$$\langle x, P^*x^* \rangle = \langle Px. x^* \rangle = 0 \quad (x \in X_T(H_0))$$

and hence (19) implies that $P^*x^* \in X^{*0}_{T^*}(\overline{G})$, or equivalently, $\mathscr{R}(P^*) = X^{*0}_{T^*}(\overline{G}).$

Proposition is thus proved.

Corollary. If T is densely defined and has the SDI, then T^* has the SDI.

Proof Let $\{G_0, G_1\}$ be an open cover of C with $G_0 \in V_{\infty}$ and G_1 relatively compact, then there exists $P_i \in B(X)$ commuting with T and satisfying

 $I = P_0 + P_1, \ \mathscr{R}(P_0) \subset X_T(\overline{G}_0), \ \mathscr{R}(P_1) \subset X_T^0(\overline{G}_1).$

It follows from (21) that

$$\mathscr{R}(P_1^*) \subset X_{T^*}^{*0}(\overline{G}_1).$$
(22)

By [8, Theorem IV 5.5], T^* has the SDP and in addition to (19), we have $X_{T^*}^*(\overline{G}_0) = \lceil \overline{X_T^0(H_1)} \rceil^{\perp},$

where
$$H_1 = O \setminus \overline{G}_0$$
 and $\overline{X_T^0(H_1)} = \bigvee_{\substack{F \subset H, \\ F \text{ compact}}} X_T^0(F)$. By a similar argument used in

Proposition 7, we have

$$\mathscr{R}(P_0^*) \subset X_{T^*}^*(\overline{G}_0). \tag{23}$$

(22), (23) and the evident equality $I^* = P_0^* + P_1^*$ imply that T^* has the SDI.

Definition 7. Let T have the SDP. If there exists a sequence of relatively compact open sets $\{G_n\}_{n=1}^{\infty}$ and a sequence $\{P_n\}_{n=1}^{\infty}$ of bounded linear operators commuting with T such that $\mathscr{R}(P_n) \subset X_T^0(\overline{G}_n)$ and that for every $x \in X$ and every $x^* \in X^*$, $\langle P_n x, x^* \rangle \rightarrow \langle x, x^* \rangle$,

then we say that T has property (δ).

Theorem 8. Let T have the SDP and property (δ) , then for every family of hyperinvariant su bspaces $\{X_a\}_{a \in A}$ of T, $Y = \bigvee_{a \in A} X_a$ is also hyperinvariant under T.

Proof Let $S \in B(X)$ commute with T. Since S is bounded, it is easily seen that Y is invariant under S and hence it is sufficient to prove that Y is invariant under T.

Let $x \in X_a$, then $P_n x \in X_a \cap X_T^0(\overline{G}_n)$ and

$$\lim \langle P_n x, x^* \rangle = \langle x, x^* \rangle,$$

consequently, by the Hahn-Banach Theorem, we have

$$X_a = \bigvee_{n=1}^{\infty} X_a \cap X_T^0(\overline{G}_n).$$

Since $X_{\alpha} \cap X_{T}^{0}(\overline{G}_{n}) \subset D_{T}$, $T \mid X_{\alpha}$ is densely defined. It follows from the same reason that T is densely defined. Let X_{α}^{\perp} be the annihilator of X_{α} in X^{*} . Let $x \in X_{\alpha} \cap D_{T}$, $x^{*} \in X_{\alpha}^{\perp} \cap D_{T^{*}}$, then $\langle x, T^{*}x^{*} \rangle = \langle Tx, x^{*} \rangle = 0$ and $\overline{X_{\alpha} \cap D_{T}} = X_{\alpha}$ imply that $T^{*}x^{*} \in X_{\alpha}^{\perp}$ and hence X_{α}^{\perp} is invariant under T^{*} .

Since $Y^{\perp} = (\bigvee_{\alpha \in A} X_{\alpha})^{\perp} = \bigcap_{\alpha \in A} X_{\alpha}^{\perp}$ and X_{α}^{\perp} is invariant under T^* , we have that Y^{\perp} is invariant under T^* . Now, suppose that $x \in Y \cap D_T$, $x^* \in Y^{\perp}$. It follows from

275

(21)

Proposition 6 that $P_n^* x^* \in X_{T^*}^{*0}(\overline{G}_n)$ and hence

$$P_n^*x^* \in Y^\perp \cap X_{T^*}^{*0}(\overline{G}_n) \subset Y^\perp \cap D_{T^*}; T^*P_n^*x^* \in Y^\perp.$$

Thus for every n,

$$0 = \langle x, T^*P_n^*x^* \rangle = \langle Tx, P_n^*x^* \rangle = \langle P_nTx, x^* \rangle = \lim_{n \to \infty} \langle P_nTx, x^* \rangle = \langle Tx, x^* \rangle,$$

which concludes that Y is invariant under T.

Now we are in a position to discuss the properties of a given maximal net of hyperinvariant subspaces of T. Let A be a totally ordered set, a family $N = \{X_{\alpha}\}_{\alpha \in A}$ of hyperinvariant subspaces of T is called a net, if for $\alpha, \beta \in A, \alpha < \beta$ implies $X_{\alpha} \subset X_{\beta}$. In virtue of Zorn's Lemma, we can show that N is contained in a maximal net of hyperinvariant subspaces of T. Without loss of generality, we may suppose that N itself is maximal. Thus we have that $\{0\}, X \in N$ and hence N is nonempty.

Lemma 9. Let T have the SDP and property (δ) and let $N = \{X_{\alpha}\}_{\alpha \in A}$ be a maximal net of hyperinvariant subspaces of T. Then for every $\alpha \in A$, there exists a $\beta \in A$ such that

$$X_{\beta} = \bigvee_{\gamma < \alpha} X_{\gamma}.$$

Proof Put $Y = \bigvee_{r < a} X_r$, by Theorem 9, Y is hyperinvariant under T, furthermore, we have

$$X_{\gamma} \subset Y \subset X_{\gamma'} \text{ for } \gamma < \alpha \leq \gamma'. \tag{24}$$

If $Y \notin N$, it follows from (24) that $N' = \{X_{\alpha}, Y\}_{\alpha \in A}$ is a net of hyperinvariant subspaces of T which contains N as a proper subset, this contradicts the maximal property of N. Thus the lemma follows.

Denote β by $\alpha - 0$, then $\alpha - 0 \leqslant \alpha$. If $\alpha - 0 = \alpha$, we will say that N is cotinuous at α .

Theorem 10. Given T with the SDI and property (δ). Let $N = \{X_a\}_{a \in A}$ be a maximal net of hyperinvariant subspaces of T, then

(i) for every $\alpha \in A$, we have

$$\sigma(T|X_{\gamma}) \subset \sigma(T|X_{\alpha-0}) \text{ for } \gamma < \alpha, \tag{25}$$

$$\sigma(T|X_{\alpha-0}) = \bigvee_{\gamma < \alpha} \sigma(T|X_{\gamma}), \qquad (26)$$

$$\sigma(T|X_{\alpha-0}) \subset \sigma(T|X_{\alpha}); \qquad (27)$$

(ii) if N is discontinuous at α , let \hat{T}_{α} be the coinduced operator of $T | X_{\alpha}$ on $\hat{X}_{\alpha} = X_{\alpha}/X_{\alpha-0}$, then either

(1°) \hat{T}_a is unbounded and $\sigma(\hat{T}_a) = \emptyset$

or

(2°) $\hat{T}_a \in B(\hat{X}_a)$ and $\sigma(\hat{T}_a)$ consists of exactly one point ξ_a , furthermore, either $\hat{T}_a = \xi_a \hat{T}_a$ or $\hat{T}_a - \xi_a \hat{I}_a$ is a quasinilpotent;

(iii) N is discontinuous at α , if either $\sigma(T|X_{\alpha-0}) \neq \sigma(T|X_{\alpha})$ or \hat{X}_{α} is finitly

dimensional, then there exists a hyperinvariant subspace Y_a of T such that

$$X_a = X_{a-0} \oplus Y_a, Y_a \subset D_T$$

and $\sigma(T|Y_a)$ consists of exactly one point ξ_a , furthermore, the conclusion given in (ii, 2°) remains true and in the case of \hat{X}_a being finitly dimensional, we have

$$T|Y_{\alpha} = \xi_{\alpha}I|Y_{\alpha}.$$

Proof Since the proof is similar to that of [3, Theorem 3.2], we only sketch out it.

(i) (25) and (27) are the consequence of Corollary 3 of Theorem 5. To prove (26), it is easy to see that

$$\sigma(T|X_{\alpha-0})\supset \bigvee_{\gamma<\alpha}\sigma(T|X_{\gamma}).$$

In virtue of the reduction to absurdity, we can prove the opposite inclusion.

(ii) Theorem 5 implies that \hat{T}_a has the SDI. If \hat{T}_a is unbounded and if $\sigma(\hat{T}_a)$ consists at least one point, then there exists for \hat{T}_a , a nontrivial \hat{T}_a -bounded spectral maximal space \hat{Z} . Let

$$Z = \{x: x \in \hat{x} \in \hat{Z}\},\$$

then $X_{\alpha-0} \subseteq Z \subseteq X_{\alpha}$ and Z is hyperinvariant under T, this is impossible, since N is a maximal net. Thus $\sigma(\hat{T}_{\alpha})$ is empty. If \hat{T}_{α} is bounded and if $\sigma(\hat{T}_{\alpha})$ consists of more than one point, then a similar argument used above shows that there is a contradiction. Hence $\sigma(\hat{T}_{\alpha})$ consists of exactly one point ξ_{α} . By the reduction to absurdity, it follows the second conclusion of (ii, 2°).

(iii) First, suppose that $\sigma(T|X_{a-0}) \subseteq \sigma(T|X_a)$, it follows from [4, Theorem 2.1] that $\sigma(\hat{T}_a)$ is nonempty and then (ii) implies that $\sigma(\hat{T}_a)$ consists of exactly one point ξ_a and \hat{T}_a is bounded. Evidently, $\{\xi_a\}$ and $\sigma(T|X_{a-0})$ are spectral set of $T|X_a$. Then the application of [5, Theorem V. 9.1] concludes the first case of (iii).

Next, suppose that \hat{X}_{α} is finitly dimensional, let $\{\hat{x}_1, \dots, \hat{x}_n\}$ be a base of \hat{X}_{α} . Then $\{x_1, \dots, x_n\}$ is a linear independent system contained in X_{α} , where $x_i \in \hat{x}_i (1 \leq i \leq n)$. Let Y_{α} be the subspace spanned by $\{x_1, \dots, x_n\}$, then

and $T|Y_{\alpha} = \xi_{\alpha}I|Y_{\alpha}$.

$$X_a = X_{a-0} \oplus Y_a$$

Given T. Suppose that there exists a function $f: G \rightarrow O$ analytic on a neighborhood G of $\sigma(T) \cup \{\infty\}$ and assuming zero at most at $\lambda = 0$ and at $\lambda = \infty$ and being non-constant on every component of G such that f(T) is completely continuous. Then $\sigma(T)$ has no non-zero cluster point on O and hence, by applying [5, Theorem V. 9.1], T has the SDI. Furthermore, we suppose that T satisfies the property (δ), then it follows from Theorem 8 that for a family $\{X_{\alpha}\}_{\alpha \in A}$ of hyperinvariant subspaces of T, $Y = \bigvee_{\alpha \in A} X_{\alpha}$ is hyperinvariant under T.

Theorem 11. Suppose that T satisfies all the conditions mentioned above. Let $N = \{X_a\}_{a \in A}$ be a maximal net of hyperinvariant subspaces of T, if for every discontinuous point α of N, the coinduced operator \hat{T}_a on X_a/X_{a-0} satisfies $\sigma(\hat{T}_a) = \{0\}$ or $\sigma(\hat{T}_a) = \emptyset$, then T is a quasinilpotent, i. e. T is bounded and $\sigma(T) = \{0\}$.

Proof First, we show that $\sigma(T) = \{0\}$ or $\sigma(T) = \emptyset$. Assume the contrary, then there exists a point $\xi_0 \neq 0$ such that $\xi_0 \in \sigma(T)$. By the hypothesis, ξ_0 is an isolated point of $\sigma(T)$. Since $\{0\}$, $X \in N$ and $\sigma(T \mid \{0\}) = \emptyset$, $\sigma(T \mid X) = \sigma(T)$, we may divide A into two parts:

$$A^{-} = \{ \gamma \colon \xi_{0} \notin \sigma(T \mid X_{\gamma}), \ \gamma \in A \};$$
(28)

$$A^{+} = \{ \gamma \colon \xi_{0} \in \sigma(T \mid X_{\gamma}), \ \gamma \in A \}.$$
⁽²⁹⁾

 A^- , A^+ are nonempty and

$$A = A^- \cup A^+, A^- \cap A^+ = \emptyset.$$

Put

$$X^{-} = \bigvee_{\gamma \in A^{-}} X_{\gamma}, \ X^{+} = \bigcap_{\gamma \in A^{+}} X_{\gamma},$$

then X^{\pm} is hyperinvariant under T and satisfies

 $X_{\gamma} \subset X^{-} \subset X^{+} \subset X_{\gamma'}$ for $\gamma \in A^{-}$, $\gamma' \in A^{+}$.

Since N is a maximal net and T has property (δ), there exists $\alpha \in A$ such that $X^- = X_{\alpha-0}, \qquad X^+ = X_{\alpha}.$

Since ξ_0 is an isolated point of $\sigma(T)$, it follows from (26) and (28) that

$$\xi_{0} \notin \bigvee_{\gamma \in \mathcal{A}^{-}} (T | X_{\gamma}) = \sigma(T | X_{\alpha - 0}).$$
(30)

Next, we show that $\xi_0 \in \sigma(T|X_a)$, by Corollary 1 of Theorem 5, for every $\gamma \in A$, X_{γ} is analytically invariant under T, then

 $X_{\gamma} \cap X_{T}^{0}(\{\xi_{0}\}) = X_{\gamma,T|X_{\gamma}}^{0}(\{\xi_{0}\})$ (31)

for $\gamma \in A$. Since $\xi_0 \neq 0$ and $\xi_0 \neq \infty$, we have $f(\xi_0) \neq 0$. Since f(T) is completely continuous $X_{f(T)}(f(\{\xi_0\}))$ is finitely dimensional, [1, Theorem 2.1] implies that $X_{f(T)}(f(\{\xi_0\})) = X_T^0(f^{-1}(f(\{\xi_0\})) \supset X_T^0(\{\xi_0\}))$

and hence $X_T^0(\{\xi_0\})$ is finitly dimensional. Since, for every $\gamma \in A^+$, we have $\xi_0 \in \sigma(T|X_\gamma)$ and $\sigma(T|X_{\gamma,T|X_\gamma}(\{\xi_0\})) = \{\xi_0\} \neq \emptyset$, it follows that

$$X^0_{\gamma,T|X_r}(\{\xi_0\}) \neq \{0\} \text{ for } \gamma \in A^+.$$

 $X_T^0(\{\xi_0\})$ being finite dimensional, (31) implies that there exists a $\gamma_0 \in A^+$ such that, for every $\gamma \in A^+$ with $\gamma \leq \gamma_0$ we have

$$X_{T}^{0}(\{\xi_{0}\}) \cap X_{\gamma} = X_{T}^{0}(\{\xi_{0}\}) \cap X_{\gamma_{0}} \neq \{0\}.$$
(32)

It follows from (31), (32) and $X^+ = X_a$ that

$$\begin{aligned} X^{0}_{\alpha,T|X_{\alpha}}(\{\xi_{0}\}) &= X^{0}_{T}(\{\xi_{0}\}) \cap X_{\alpha} = X^{0}_{T}(\{\xi_{0}\}) \cap (\bigcap_{\gamma \in A^{+}} X_{\gamma}) = \bigcap_{\gamma \in A^{+}} [X^{0}_{T}(\{\xi_{0}\}) \cap X_{\gamma}] \\ &= X^{0}_{T}(\{\xi_{0}\}) \cap X_{\gamma} \neq \{0\} \end{aligned}$$

and hence

 $\xi_0 \in \sigma(T \mid X^0_{\alpha, T \mid X_{\alpha}}(\{\xi_0\})) \subset \sigma(T \mid X_{\alpha}).$ (33)

(30) and (33) imply that N is discontinuous at α and $\sigma(\hat{T}_a) = \{\xi_0\}$. By hypothesis, we have either $\sigma(T_\alpha) = \{0\}$ or $\sigma(T_\alpha) = \emptyset$. This contradicts the assumption $\xi_0 \neq 0$, therefore $\sigma(T_\alpha) = \{0\}$ or $\sigma(T_\alpha) = \emptyset$. Next, to prove that $X_T(\emptyset) = \{0\}$, let $x \in X_T(\emptyset)$, by the property (δ), there exist relatively compact open G_n and operator

 $P_n \in B(X)$

such that P_n commutes with T and satisfies $\mathscr{R}(P_n) \subset X_T^0(\overline{G}_n)$, then

$$P_n x \in X_T^0(\overline{G}_n) \cap X_T(\emptyset) = X_T^0(\emptyset) = \{0\}$$

and hence $P_n x = 0$. It follows from the equality

$$\langle x, x^* \rangle = \lim \langle P_n x, x^* \rangle = 0$$

for every $x^* \in X^*$ that x = 0 and hence $X_T(\emptyset) = \{0\}$. Thus $\sigma(T) = \{0\}$ and the decomposition

$X = X_0 \oplus X_T(\emptyset)$

with $X_0 \subset D_T$ implies that T is bounded and thus T is a quasinilpotent.

References

- [1] Wang Shengwang and Erdelyi, I., Spectral Decompositions of closed operators in banach Spaces, (to appear).
- [2] 王声望、刘光裕,具有可单位分解性质的谱容量,将发表于数学研究与评论。

[3] 王声望,局部预解式与可单位分解算子,数学学报,26:2 (1983),153-162.

- [4] Wang Shengwang and Erdelyi, I., Analytically Invariant Spectral Resolvents of Closed Operators, J. Functional Analy. 58 (1984), 53-78
- [5] Taylor, A. E. and Lay, D. C., Introduction to Functional Analysis, Wiley, New York 1980.
- [6] Colojoara, I. and Foias, C., Theory of Generalized Spectral Operators, Gordon and Breach Sci. Publ. New York (1968).
- [7] Apostol, C., Restrictions and Quotients of Decomposable Operators in Banach Spaces, Rev. Roumaine Math. Pures Appl., 13 (1968), 147-150.
- [8] Vasilescu, F.-H., Analytic Functional Calculus and Spectral Decompositions, D Reidel Publ. Co. Dordrecht, Boston, London, 1982.

[9] 张奠宙、王漱石, 无界可单位分解算子, 华东师大学学报(自然科学), 4 (1981), 5-11.