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THE GLOBAL SOLUTION AND “BLOW UP” 
PHENOMENON FOR A CLASS OF SYSTEM 
OF NONLINEAR SCHRODINGER EQUATIONS 

WITH THE MAGNETIC FIELD EFFECT

Quo Boling (J)SifS&)* * *
Abstract

In  tliis paper, the auther considers following initial value problem for the system o f  
nonlinear Schrodinger equation with the magnetic field effect

ie(- / l8+j3q(|e|2)e+7jex (exe)=0  (1.1)
e|*„o=so(aO> (1.2)

w here/3, are real constants, 8 =  ( s 1, 82, 63) .  First, the existence o f the global solution 
for problem (1 .1 ) , (1 .2 )  is established by means o f the method o f integral estimates, and 
then the “blow up” theorem is obtained nuder some conditions.

§1. Introduction

One class of system of nonlinear Schrodinger equations was proposed in  [1, 2], 
and its scattering inverse method was studied in  [2]. The existence of the global 
solution for some systems of nonlinear Schrodinger equations has been proved in 
[3]. In  [4, 6, 6] the system of Sakharov equations (including the system of 
nonlinear Schrodinger equations) with the longitudial and transverse oscillating 
and magnetic effect has been examined, the soliton properties and collapse in  multi
dimensions have been revealed. In  this paper, we shall consider the following 
initial value problem for the system of nonlinear Schrodinger equations with the 
magnetic field effect:

f ie t—J e + /8 g '( |e |2)s+ 7jex  (е х ё )= 0 , (1.1)
1е|*=о=ео(а0, ® €й2, (1.2)

where rj are real constaants, e =  (si, s2, ез)is a 3-dimensional unknown functional 
vector, " x ’’denotes the cross product operator of two 3-dimensional vectors, ё  denotes 
the complex conjugate vector of 8, and q(s) is a real function, s£ [0, 00), We shall 
first establish the existence of the global solution for p rob lem (l.l), (1.2) by means 

. of the method of integral eatimates, and then obtain the “blow up” theorem under
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some conditions. Here we shall apply the usual notations indicated in  [3]. We shall 
always assume that as J a? | —»oo the solution and its derivatives tend to zero.

§ 2. The Integral Estimates and Existence

Lem m a 1. I f  So(&) G Ls, then for the solution of problem (1 .1), (1.2), we have

le C0 fli*'"’ !©oĈ5) ||ls. (2.1)
Proof The lemma is proved by m ultiplying (1.1) by S and integrating the 

resulting equality with respect to as, taking the imaginary and noticing 
e x  (е х ё )  =  (е* ё )е -ё (е -е )  =  |е |2е -(е * е )ё , 

where 8*8 denotes the point product, i. e.,

s*e=  |e |2= g  И 2, e -e= = S (s02.

Lem m a 2. I f  /3>0, ^ > 0  and 8o(®) G JET1, Q( |s012) GL, where

Q(s) =  f q(z)dz>0,Jo
there is the estimation

|Ve||!a< ^ a, ф О е ) 2) ^ ^ ,  . (2.2)

where the constant only depends on La norms o f the initial function and its derivatives. 
Proof Taking the inner product for (1.1) with st, we have

(.is], &\)-(A&1, e |)+ /3 (g ( |e |2y ,  sO + ’i d s l V —s!(S‘S), s!t)= 0 . (2.3)
Since

R e[-(Je1. Si)]:- A - A | |v e. | | i)

Re^gC-S'Ce-s), e!) — ^ A-j(s.s)(e-s)(Jaj.

Taking the real part of(2.3), summing up over l, it follows that

“ 1 ж [ |(е-8)|2<й!“ 0-
Therefore

B (« )- |V e (4 )ll.+ /3 jQ (|s (* ) ] е |Ш - | - | | 8 . £ | аЛ -Л г(0 ). (2.4)

As | (e*e) |<  |e  | 2, | (ё»ё) j<  ]e |a, so if ??>0, /3>0, (2.2) follows.
L em m a 3. (Sobolev estimate) m Assume that u £ L a (Bn) , Dmu G Lr (Rn) , 1 <  q, 

r< o o , We have the estimation
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(2-6)
where G is a positive constant,

J L - J L + e f — W ( l - a ) —, j /m < a < l.p  n \ r  n )  4 '  q ’
In  particular, as n = 2 , j = 0 , p =4, r =2, q = 2, we have

M i.< lv « ! 5 ,M b  ' (2.6)
L em m a 4. Suppose that the following conditions are satisfied:

(1) I q (z)dz> — CiS2, s>0, os =  const. > 0 .Jo
(2) /3<0, 4< 0.

(3) 1 e0(®) I! . < ( I /81с* +  Ы  ) -1, eoC®) £ ■
ГЛб» we have ■

. ||Ve|Us< ^ i ,  ' . (2.7)
where the constcnt E[ only depends on the norms o f the initial function So(x)and its 
derivative.

Proof From (2 .4 ), we have

/ s |Q ( |e |2) ^ + - | - J  |e |^ a j—|- | | ( e * e ) | 2̂

' « - / S ^ l e l t + h l l e l ^ d ^ l ^ + ^ D I e o l l l J l V e l l , .
Hence, as (|j3|C7i-b|»?|)ЦвоООЦх,,<1, (2.7) follows.

Lem m a б.1-83 I f  S ( t) is  a semigroup generated by the operator iA, for

then we have
v?>e£,(ie") (2 .8)

and II $  CO HU. ̂  MU.*
. Lem m a 6. Suppose that the conditions in Lemma 2 or Lemma 4 are satisfied, 
and assume that

(1) I g ^ s )  | <-4s*+1-w, J .= const.> 0 , s>0, v = 0, 1, l>0,
(2) e0 ( о е я 2.
Then we have

IW O IU ,< 0 ,p > 2 ,  (2.9)
where the constant О only depends on L2 norms o f the initial function and its second 
order derivative, and D denotes the derivative with respect to x.

Proof Suppose that S(t )  is a semigroup generated by the operator г A, the 
expression of the solution for the problem (1 .1), (1.2) is

e (0 = S  (0 So (0 + £  s  ( t -  o  i ~ pq  ( | e | a) e -  rje x (e x 5)] d£.

From Lemma 2, Lemma 4, Lemma 6 and Н 1(Да) с»-Ьп»(-йа), (2< w < oo) wo 
have .
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ID e l^ IS W B s o W ib + O ^ C f-O ^ lIB C -^ d e n s -^ x ^ x Q J U ,^  

< а > |К О )1 я .+  0 4| ‘ ( < - a ~ S? 1|| | e |2m |B s |Ц<1£

^08||So(ip)Цд.+Ob (i — “ ||e||bJ2)e||bad£

<O fs|eo(«)IU«+Of0 ( ( t—£) 9 d £ ^G (t) ,
Jo

where ® ± 2 _ 1  
r  2

Corollary.

1  1 
P* P

+ —- l , p > 2 .q • *

l« (0  IU.<cf, (2 .10)
•where G is a definite constant.

Thus we have the following theorem.
T heorem  1. Suppose that the following conditions are satisfied:
(1) /3>0, 17>0;
(2) q(s)> 0, q(s) £ O m, I g ^ s )  | J.= oonst>0, s>0, z/ = 0, 1, l> 0.
(3) е0О ) € Я т ( » 2 ) .
Then there exists the global solution e(x, t) of problem (1.1), (1.2), and e(x, i) £  

G°(0, T; H m(R 2))  П0 ^ 0 , T; H m~2(R 2) ) . .
Proof (1 .1), (1.2) can be w ritten as

is t -A e = J e ,  (2.11)
s ( 0 ) —8o(#'), (2.12)

w h e r e / e = —J8g '(|e |2) e —»jsx (e x e ) .
If  we define the set 2  and the distance d as follows

2 = {e£ G °(0 , T :H m(R 2)):\\e\\L.(0,T;Hm(m)< M , M>\\e0(x )lBm}, 
d(ei, Sa) =  I Si e21 

2  is complete. For &Q2, define

p s -S W e o  + l* S ( t-g )J e (£ )d £  
Jo

(2.13)

the same as in  [9]. If t is suitably small, it is easily shown that there is a fixed point 
<p8 = e, which is the local solution of problem (2.11), (2.12),

s(cc, t)e O °(0 , Tr, H m) n O \0 , Tty Я"*-2), • 
where Tj depends on I e0 (a;)! я». Then from the priori estimates in Lemma 2 and 
Lemma 6, we can know

II V$ I ia<  const., I e I) const.
In  addtion, using the inequality .

| / ( « ( 0 )  № т < о м ,(и  b) ( 1 + fl«(01я*-0й-1«« ( 0 I 
where / 0= max sup | D*/ (v) |, | v | <  b =  sup | и (r) | L„, M h is a constant which depends

on h, /о and b, it follows that
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By Gronwall’s inequality, we have the boundness of ||s(t) ||я*. Thus the theorem is 
true.

Theorem 2. Suppose that the following conditions are satisfiedi
(1) p<Q, rj<0.
(2) | (s) [ < J.s, A = const. > 0 , s> 0 5
(3) ео(се)вЛ т(В 2), w > 2 ;

W  !«,(») 1 5 .< ( 4  l/SI +  h l ) ' 1 .

Then there exists the global solution e(co, t) o f problem( 1 .1), (1.2) 
e(o5, t)£ C ° (О, T; Л т(В 2))  ПС^О, T; Л т~2(В 2)) .

Proof By Lemma 4 and in  a way similar to the proof of Theorem 1, the 
theorem oan be proved.
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§ 3. "Blow up” Phenomenon of the Solution.

In  the following, we consider “blow up” problem for the solution of problem 
(1.1), (1 .2) in  B 3 as /3<0,1?<0. For simplicity, we consider a class of system of 
nonlinear Sohrodinger equations with magnetic field effect inspherical symmetry 
case

ist— A r2 | l _ | s |2e-7?ex(ex8)-0  
r or or

with in itial and boundary conditions
s|*=o=S0(r), (K<r<oo,

J?£
dr r=о

=  0, t>  0,

(3.1)

(3.2)

where e =  (si, e2, s3) . For the solution of problem (3.1), (3.2), there are following 
estimations
. Lemma 7. I f  So (a?) £  L 2, we have

' ^ 0(0  =  Г ^ а|е(-г, з5) |2сг<г= Г-г2|е0(<г)|2̂ = ^ о ( 0 ) .  . (3.3)
Jo Jo

Lemma 8. I f
f pa dr<°o, f r2|e0[4dr<oo,
Jo dr  Jo

we have

+ v ■ Г г"К е**)|Ч г-Л (0 ). (3.4)

Proof Multiplying (3.1) by r% , taking the inner product, i t  follows that
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(i&t, st) — (pps- r2 ê j — ( |e12e, st) —̂ (e x (s x s), et) —0. (3.6)

Since
‘ „  f" 1 0 о 0s 2-  , 1 d Г  s— Re _ _  _  ^2gtdr ==-H--jr- r 2Jo r  a r  0r 2 dt Jo

5s
ar dr,A

0r ’ 0r

—Rej^ | s | 2s*r2stdr =  <—i - ~Зл\о^  Ie 14^r>

-Reo?(sx (ex s) , st) = -ReTj(|s|2s, s*) +Reo?((s*s)s, et)

“  “ f  ж Г г2|г|4*' + l £  A e - s ) ( e -e ) f r ,
from this (3.4) follows.

From Lemma 7 and Lemma 8, we can get the foliowing“blow up” theorem. 
Theorem 3. Suppose that the following conditions are satisfied:

(1) 7]>0.
(2) The initial function satisfies the following conditions'.

f<*> Jp 12 fee C<x>
Jo r2 ~dr~\ <̂ ’<-00> Jor4|s0|2dr<ooJ r2|e0|4dr<oo 

•«(8 .4), F70(0 )< 0  (wd Im S0d r> 0 .

Then the solution of the problem blow up, i. e., there is to>0 such that
foo

lim  |V s |||a== lim  r 2
JO

as
a r

dr =  oo. (3.6)

Proo/ We can express equation (3.1) as an integral operator form. Using the 
contraction principle, it is easy to show that the local smooth solution for problem

(3.1), (3.2) exists, and by means of Lemma 7 and Lemma 8, letting P  = J | s | 2r 4dr,

we have .
dP
dt ■i:

а[е|а
0t r 4 dr =  —21mи

s 3 as
0Г 0Г ))dr

— 4I m J > ( f U ) * - .

By calculation and using equation(3 .1), and integrating by parts, it follows that ,
d2D = —41m [ > - 2 4 i r ‘4 f  т а *Jo 2=1 0Г 0t Jo 2=1 0r0tdts Jo' 2=1 ar at Jo' 2ti 0r0t

=8f I— -I r2dr-6(l+?y) [ r2js |4dr+6i?f r2(s.s)(s.e)dr. Jo I ar I Jo Jo
Let y(t) = dn

dt ■Then

-Щ-— — 8 |0|- |~  ^ d r + e ^ l - » ? ) ^  r 2| s | 4d r — r 2| (s *s) |2dr. 

Using equality(3.1), it follows that

Г  ~  2r2dr-2 4 P o (0 )> 4  Г  
Jo 0r Jo

as
ar r2dr, (3.7)
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dDDae to the assumption 2/(0)> 0 , from (3.7) we have y ( t )>0. Thus - ^ —< 0 . Sine©

12/001 =2/00 ==4Imj 0 r3( '0 * ® )dr

»,2 Be
dr dr

we have

< [> ‘м ай0 \ 1> 1-§-Г*-Г

' Г ^ | | £ . | айг> 2/7 Р .
Jo I or I

Thus from (3.7), it  follows that
dy ^  4
dt Jo2 У2 > 2/(0) > 0 .

Hence there is the estsmation on the interval 0 < t<
p

w !
2/(0 > -

y ( 0) h2
3-42/(0)Г

7s ||ia> - | r > ^ (  y ( 0) b 2 V
V&a- 4 2 / ( 0 ) t / '

l lm I V e l i - o o ,
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dDDue to the assumption 2/(0)> 0 , from (3.7) we have y(t)> 0 . Thus < 0 . Sine©

12/(0 I =2/(0 ==4ImJ0 3̂( -0 * s )^
i

2 \  2
dry

we have

<4(1^ f-‘ | s | a* - )2( j L

< 4 ( f .  r ‘ le»la* ) 5( f (,

''lIH * * ')’' 4-4  d o  -г*|ео1а‘г»-)

A  s ^ A 2 dr>y*/w.Jo ■*dr
Thus from (3 .7), it follows that

# > т - л  m > 0 ■
Hence there is the estsmation on the interval 0 < /< W .

42/(0) *

2/(0  > -
2/ ( 0) &2

&3-% (0 )Г
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