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THE GLOBAL SOLUTION AND “BLOW UP’

PHENOMENON FOR A CLASS OF SYSTEM

OF NONLINEAR SCHRODINGER EQUATIONS
WITH THE MAGNETIC FIELD EFFECT

Guo Borine (3rtaR)*
Abstract

In this paper, the auther considers following initial value problem for the system of
nonlinear Schrodinger equation with the magnetic field effect
ie,— de+Bq(|e|?)e+nex (€x€)=0 e B )
| e|10=2(a), 9ERY, 1.2)
where B, 1 are real constants, &€= (&, &2, &%), First, the existence of the global solution
for problem (1.1), (1.2) is established by means of the method of integral estimates, and
then the “blow up” theorem is obtained nuder some conditions.

§ 1. Introduction

One class of system of nonlinear Schrédinger equations was proposed in [1, 2],
and its seatteﬁng inverse method was studied in [2]. The existence of tho global
solution for some systems of nonlinear Schridinger equations has been proved in
[8]. In [4, B, 6] the system of Zakharov equations (including the system of
nonlinear Schrédinger equations) with the longitudial and transverse oscillating
and magnetic effect has been examined, the soliton properties and collapse in multi~
dimensions have been revealed. In this paper, we shall consider the following
initial value problem for the system of nonlinear Schrddinger equations with the -
magnetio field effect:

te,— de+Bg(|e]*)e+nex (exE) =0, (1.1)

{s|,=o=eo<w>, € R, (1.2)

where B, 7 are real constaants, &= (sy, &9, £3)is a 8—-dimensional unknown funotional
vector, ““x ”denotes the cross product operator of two 3-dimensional vectors, € denotes
the complex conjugate vector of &, and ¢(s) is a real function, s€ [0, o), We shall
first establish the existence of the global solution for problem(1.1), (1.2) by means
. of the method of integral eatimates, and then obtain the “blow up” theorem under
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some conditions. Here we shall apply the usual notations indicated in[8]. We shall
always assume that as |@|—>co the solution and its derivatives tend to zero.

§ 2. The Integral Estimates and Existence

Lemma 1. If gy(#) € Ly, then for the solution of problem (1.1), (1.2), we have
fe(@) (2= leo(a) |1.. (2.1)
Proof The lemma is proved by multiplying(1.1)by & and integrating the
resulting equality with respect to @, taking the imaginary and noticing
| ex(ex8)=(e€)e—8(e-e)=|e|%—(g¢€)E,
where &+& denotes the point produot i. e.,
&-8=e|*= IS’IQ gee= 2(8’)2
Lemma. 2. If B>0, =0 and so(w) € H*, Q( lsolﬁ) € L, where

Q@ - ¢@d>0,
there is the estimation ,
IVelt.<Bs, 8]Q(|e|)do<T, @

where the constant By only depends on Ly norms of the initial Junciion and its derivatives.
.Proof Taking the inner product for (1.1) with &, we have

(i}, &)~ (de, &) +B(a(|e|De, &) +n(]e|2e!~ s (e-e), ) =0.  (2.8)

Sinee

d
Re[ (AS 8%) =7'J§'lv8 “Ilg}

Ro 31 (Be(|e|)e!, &) =582 Q(le|?)do,

RenZ(lel”‘S’ &)= ” dtjlelé‘dfv,

—3(g- _— _CZ_J &) (B8
Renlgl( e'(e-e), ) A T (e-€)(E-€)dw.
Taking the real part 0f(2.8), summing up over I, it follows that

3 |vels+-2 | sacieldo+ 2 & f[e a0

-——°27— dtjl(e -&) |2dw=0.
Therefore :
B()= [Ve(®) HnﬁBfQ(le(t) 12) do-+- ”J Iel‘*dw—{ |o-¢|*do~H(0). (2.4}

As |(ee)|< ls 12, | (E-8) | < |e]?, so if 70, 8>0, (2.2) follows.
Lemma 8. (Sobolev estimate)™ Assume that u € L,(R"), D"u& L,(R"), 1<q,
r<<oo, 0<j<m. We have the estimation
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| Dl <

- @.5)
where C is @ positive constant,
1_J gl _m '
E“WJF“(r >+(1 a)-- j/m<a<l.
In particular, as n=2 3 0, p=4, r=2, ¢=2, we have ;
lu[t<{Vuli.lu]3 ' (2.6)

Lemma 4. Suppose that the followmg conditions are swt'z,sﬁed
1) j g(2)dz= —cs8?, $>>0, 0;=const. >0.

(2) B<0, n<0. :
@ leo(@) 2. <(|Bles+[n])~ %(@EH1
Then we have _
|Velu<E, @.1)
where the constent B} only depends on the norms of the initial fumction so(w)wnd its
derivative.
Proof From(2.4), we have

jQ(lel”)olw%~ 2 1slta0—2{1(er0) |05
<- 30'1”8||L4+|"7,l|3UL4<(fBl01+lﬂf)"so"n,ﬂvsﬂn,o

Hence, as (|B|01+ [n]) Jeo(®) |2,<1, (2.7) follows.
Lemma 5. If §(t)is a semigroup generated by the operator 4, for

1<g<2<p<co, _:)_+-3--= 1,

then we have .
| 18@)ple<t ™ol Vo€ Ly(R") 2.8)
and |18 plz.= o]z |
Lemma 6. Suppose that the conditions in Lemma 2 or Lemma 4 are satisfied,
and assume that
(D) |¢®(s) | <As*1~*, A=const.>0, s>0, »=0, 1, 1>0,
(2) &(2)€ H2,

Then we have
1De(8)5,<0, p>2, | (2.9)

where the constant C only depends on Ly norms of the énitial function and ¢ts second
order derivative, and D denotes the derivative with respect fo .

Proof Suppose that S(f)is a semigroup generated by the operator ¢4, the
expression of the solutmn for the problem (1.1), (1.2) is:

e(t) =S (eo() + | S(1~E) [~ Ba(|&|De—ne x (e xE)1dé.

From Lemma 2, Lemma 4, Temma B and H'(R*)G L, (R*), (2<m <o) wo
have
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|Delo, <[S @) Dea@) ], +0f, &)™ ¢ ID[-BaCle|De—nex (e xE)]|ndé

(t -—
<03||80(Q})"H:+ 04 o (t—-f d§
(i
.<03”80(w)"m+ 05 o (t § "DG”Lsdf
, (t e
<Osleo@ lmt s || (¢~ ag<0(),
where 2+2 ——1——-1 —1—+l =1, p>2,
r 2 p’p ¢
Corollary.
le®]z.<0, (2.10)

where Cis a de findte constant.
Thus we have the following theorem.
Theorem 1. Suppose that the Jollowing conditions are satisfied:
D) B=0, n=0; | '
(@) ¢(s)=0, g(s) €O, |g¥(s) | <AS*-*, A=const>0, >0, »=0, 1, I>0.
(8) &(x) € H*(m>2).
Then there ewists the global solution e(w,t) of problem (1.1), (1.2), and &(z, t) [
0°(0, T; H™(R*)) NO*(0, T'; H™2(R?)).
Proof (1.1), (1.2) can be written as
ig,—de=Je, : (2.11)
: £(0) =¢&,(2), | (2.12)
where J&e= —Bq(]sl*)s—nsx (ex¢),
If we define the set X and the distance d as follows
2={e€c0°(0, T:H"(R?)):| | r-co,mrmmmy<<M, -M> l€0() | am},
d (€1, &2) = [ €1—8a o, msmmemny,
2 is complete For e€ 2, define

¢s=S(t)eo+j:S(t—§)Je(§)d§ (2.13)
the same as in [9]. If ¢ is suitably small, it is easily shown that there is a fixed point
pe=g, which is the local solution of problem (2.11), (2.12),

&(@, ) €0°(0, T; H™)NOY(0, Ty, H™?), °
where 7'y depends on | & (@) | g». Then from the priori estimates in Lemma 2 and
Lemma 6, we can know _ '
| Ve| . <const.,|&| <const.
In addtion, using the inequality ‘
@) [ <OMi(fo, B) (L+[w(®) [m)*|(2) [ a1y
whero fo=ns:ﬁxsgpll)sf @], |v| <b=sgpﬂu(r) lz., My is a constant which depends

on %, fo and b, it follows that
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lelam<Oslleol an0a, [6(6) lunmdé

By Gronwall’s inequality, we have the boundness of le()|an Thus the theorem is
true.

Theorem 2. Suppose that the following conditions are satisfied:

(1) B<0, 7<0,

@) [g(s)|<<As, A=const.>0, s>>0;

(8) & (@) € H™(R?), m=>2;

’ -1
@ Jeo(@) 12.< (5 181 +1n1) -
Then there exists the global solution €(w, t) of problem(1.1), (1.2)
- &(w, ) €0°(0, T; H™(R?))NO(0, T; H™(R?)).
Proof By Lemma 4 and in a way similar to the proof of Theorem 1, the
theorem ocan be proved.

§ 3. “Blow up” Phenomenon of the Solution.

In the following, we consider “blow up” problem for the solution of problem
(1.1), (1.2) in R® as B<<0, #<<0. For simplicity, we consider a olass of system of
nonlinear Schrédinger equations with magnetio field effect inspherical symmetry
oase

i8,— 10 fr*’@——lslf’e—nex(exﬁ)=0 3.1

™ or  or

" with initial and boundary conditions

&limo=80(r), O<r<oo,

2
I @
T | ¢=0 .
where €= (gy, 83, &5). For the solution of problem (3.1), (8.2), there are followin
estimations _
Lemma 7. If &y(@)€ Ly, we have
Bo(t) =j;° e(r, ) |2da~=.j: Pleo(r) fr=Fo(0). . (3.3)
Lemma 8. If ) |
rrﬁ 980 |° g < co, rrﬁleo[“dr<oo,
0 dr 0
we have

_1 e os |2 _l *° 2 4
E(t)—-é-jo e _37‘ dr 4j0(1+n)fr le|*dr

+—Z-j:a~21 (e-€) |%dr=F(0), (3.4)
Proof Multiplying (8.1) by r%,, taking the inner product, it follows that




286 s CHIN. ANN. OF MATH. Vol. 6 Ser. B

Giey, 80— (5 210 22, &)~ (Jefte, &) —n(ex (6xE), &) =0.  (8.5)

r? or or
Since . e o ,
—Refs L2 e %0 g, L d [0
ReJ’O = or " or 7€ 2 dt qu- or ar,
- 20 . 28 =_1 dj 2old g
Rejolsl e 28, dr T3 |e|dr,

—~Ren(ex (e X&), &) =—Ren(|e|%, &) +Ren((e-€)F, &)

4 j el dr + 2" g2(e-e) (&-&)dr,

)
from this (8.4) follows.
From Lemma 7 and Lemma 8, we can get the following“blow up” theorem.
Theorem 3. Suppose that the following conditions are satisfied:
‘1) n>0. '

(2) The initial function satisfies the following condztwns
a| deo |®
J o | dr |.

in(3.4), Ho(0)<0 and Im j:ﬁ%;?-@o dr>0.

dr<o0, Jo ¢4leolsd¢<w,Jo r2|&o|* dr<<oo

Then the solution of the problem blow up, 4. e., there is t,>>0 such that !
1imuv81|%,=1imf°q~9 %}er=¢o. . (3.6)

tot; 27y

Proof We can express equation (8.1) as an integral operator form. Using the
contraction principle, it is easy to show that the local smooth solution for problem

(8.1), (8.2) exists, and by means of Lemma 7 and Lemma 8, letting D=J:|s|2o""'dfr,'

‘we have

dD _(~ 9lel® .., J°°2~.3 g 08
dt —jo ot rtdr 2Im0 (STr_)d’r_

'—"-— - ._6_8..0
- 4ImJO ( 2e s)d/r

By ocalculation and using equation(8.1), and integrating by parts, it follows that

'd—-D_'_"— J -—-—._3_6_ J 3 82 !
dt2 4Im q' 2 or 21 dT 4Im 2 & 3 37 d/r
= -—3—8— 2 — Jw »2 4 J 2(p, ‘—o—
SJO { or | " dr—~6(1+n)) 1*|e] dr+6n LIRS
Let y(t)=—%-Then ' |
iy—=--8J’°°l@_lzfrgdfr—l—ﬁ(l'l"fl)fo,q«ﬂ]s|4d¢_6njw¢zl(e.s) |2 dir
di ol or ‘ 0 o .

Using equality (8.1), it follows that
dy J Bs’ 97, > J”,asl” g
=4 ; Jq’ 24F,(0)>4 Bl T dr, 8.7
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Due to the assumption y(0) >0, from (3.7) we have y(¢)>0. Thus %lt—z-<0 Since
|9(8) | =9 () =41 42( 2 -&)dr .,
(o /(= 3
<4( 4l8l2d’)’ <J0 22 '—} d’l
(oo % 0o s 2 %
4 2
<A AR
P
=k(J' 4 } 34' ) b=4 (Jo q~4|80|2dr) ’

we have
. J’oo ¢2 e

_ 0

Thus from (8.7), it follows that

d 4
—-df—g->—k-§-y2, y(O) >0.

=y?/ k2.

3
Hence there is the estsmation on the interval O<t<—_k—-—5—:

- 4y(0
(0) #*
OES v O

Ivelt L (R )

B\ —4y (05
lim |Ve|g, =co, 5=t
o 0 4y(0)
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Due to the assumption y(0) >0, from (38.7) we have y(t)>0. Thus lfl? <0. Singce

9@ | =g(t) =4Im [ r%(22&)ar |
o[ oepan) ([ | 2 )
<«(; frleolﬂdrf frol2e]rar)
==k( r )aq, )l,k=4 (j:¢4léolﬂd¢)%,

we have
) 0
Thus from (8.7), it follows that

d 4
Fome?, 9(0)>0.

oe |? 2178
%—[ dr=92/k.

Hence there is the estsmation on the interval o<i<<

2 2 2
Vel L (00 )

k2 \k?—49(0)t
. - E?
lim |Ve|2, =00, #5=—rc.
ootz “ uLz 0 4?/(0)
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