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GLOBAL SMOOTH SOLUTIONS OF DISSIPATIVE 
BOUNDARY VALUE PROBLEMS FOR FIRST 

ORDER QUASILINEAR HYPERBOLIC SYSTEMS

О ш  T m ro ( .§ .& J t> * * *

Abstract

This paper discusses the following initial-boundary value problems for the first order
quasilinear hyperbolic systems:

=°, d>

«uB=2i,(MI),as a?=0, ( 2 )

ul —G (u11) ,as 8 II (3>
w=«°(aO, as

О11** (4>
where the boundary conditions (2), (3) satisfy F (0 )  =0, G (0 ) — 0 and the dissipative

fi TV fifr fiC1conditions, that is, the spectral radii of matrices (0) and B2=-^~j(0>
&TV-(0 ) are less than unit.
du1

Under certain assumptions it is proved that the initial-boundary problem (1)—(4) 
admits a unique global smooth solution u(oc, it)and theC -̂normlM ( t)  |oaof м(ж, t) decays 
exponentially to zero as provided that the CfI-norra|M°|0iof the initial data is
sufficiently small.

§ 1. Introduction

I t  is well known that for the initial value problems and boundary value 
problems of first order quasilinear hyperbolic systems, in general, the smooth 
solutions can exist only locally. That is to say, the solutions may develop 
singularities in  a finite time (for example, of. [1, 2, 3]). But if we add "a dissipative 
influence in  the systems or in  the boundary conditions, then it  can guarantee the 
existence on t> 0 for global smooth solutions of Oauohy problems or boundary 
problems at least for small smooth in itial data(of. [4, 6, 6, 7]).

Greenberg and Li Ta-tsien discussed in  [7] the boundary value problem for 
quasilinear wave equation with an elastic damping boundary condition on one end. 
In  practice, they discussed in  [7] the following general bounary value problem with
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two u n k n o w n  fu n ctio n s

dt •+Xi(Mi,M2) - 0 ,  Q<t<ca,  ox . w

0U%
0t «а) - 0 ,  0 « c < L ,OX (2)

Ui(t, L) = f (u 2(t, L )) , (3)
«2 Ч, 0)= д ( щ  ( t, 0 ) ) , (4)

# = 0 : и2=и%(х). (6)
Under the assumption that boundary conditions (3), (4) and initial condition (6) 

satisfy compatibility conditions, they proved that if / ,  g satisfy •
/ (0 ) .-* r (0 ) -0 , (6)

• ] / W ( 0 ) | < l ,  (7)
then boundary value problem (1)—(5) admits a unique global 0 1 smooth solution on 
t> 0 and the O1 norm of the solution decays exponentially to zero as t->°o, provided 
that | ад? | о» + 1 wi | c* is sufficiently small.

The condition (7) expresses the dissipative effect on boundary. The role of this 
condition in  guaranteeing the existence of global smooth solution for boundary 
value problem (1)— (5) is similar to that of dissipative term added in system (for 
example, as in  [4, 6, 6]) in  guaranteeing the existence of global smooth solution 
for Cauchy problem. Therefore, the condition (7) is essential. If  it is not satisfied (for 
example, |/ЧО)#ЧО) | = 1 ), then using the methods in  [8], it  is not difficult to 

construct an example in  which the solution develops a singularity in  a finite time.
In  this paper, our aim is to generalize these results to general boundary value 

problems for first order quasilinear hyperbolic systems with several unknown 
functions.

§ 2. Main results

Consider the following first order quasilinear system

where и is an unknown function vector with n components, and A (v) is an я х в  
suitably smooth function matrix which depends only on the unknown function u.

First, we state the asummptions on system (8), and then discuss how to pose the 
boundary conditions.

. (A j). Assume that system(8)is hyperbolic for sufficiently small |w|0o in
following sense: .

1°) The matrix A(w)has n smooth real eigenvalues •••, K (u ), and
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A* (0) < •••< *„  (0 )< 0 < W (0 )< -» < A .(0 ) ..  : (9)
2°) A  (u) has n linearly independent left eigenvectors corresponding to n real 

-eigenvalues

& (« )-(£ а (« ) , (*“  1, •••# »)•
"Without loss of generality, we suppose that matrix

/ Cu («)—&»(«)
C («0- ...........-

\  U O O —£»»(«)
is identity when U—0, that is

(10)

Now, we discuss how to pose the boundary conditions. When the condition (10) 
holds, the general initial-boundary conditions for system (8) should have following 
forms:

UU =F(UI) ,ОП 05 =  0, 
ux = G(un), on x = L ) 

t =  0: u=(p(a>),
whore

(11)
(12)
(13)

Ц1\ I um+l
I I .мт=1 : I, и

un

^Furthermore, we write

L ,

F = \ : L <?= i
F n, j  \ G m

Ba = M r (  0)

8u11
dF

du11 du1 (0),

where
8F  -  aCFm+a, F n) 8G _  8(Gb Gm)  ̂
du1 8(ut, •••, um) ’ du11 8(vm+1, •••,< ) *

(A2) . Assume that the initial-boundary conitions (11), (12), (13) satisfy the
following

1° ) F , GGO1, and
_F(0)*=<?(0). (14)

2°) The Apeotral radii of B i,S2 are less than 1.
3°) Oompatibity conditions .

?>«(0)=^(9>r(0)),?>I(i)= ^ (9 > II( i ) ) , (16)
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[ 4 ^ K o) ) - J ^ ( K o))A “ (? (o) ) ] - * £ ^

+ [ A” (r(L)) -|^(p(.b)M”(»(Z.))] ^ 2 L)

(16>

on

where corresponding to и  =
и

и II , we write <p and A  (u) in the forms of block matrices,.

for example
( A a (u) A12(m) \  
\A 21(w) A22(w)/’

Here, the assumption(Aa)3°)is used only to guarantee the local existence for 
smooth solutions. I t  is not essential for the existence of global smooth solutions. The- 
assumption (Aa) 2°) which corresponds to condition (7) is a dissipative condition on 
boundary, it is essential for our following discussion. If only the condition(Aa) 2°)is 
satisfied, from the related results in  matrix theory we know that there exists a. 
positive integer p  such that

cr0=m ax(||S?||, ||В2| |) < 1, (18)

where norm|| • [of a matrix denotes the maximum of the row sums of the absolutes of 
the entries of the matrix.

Now, we can state the main results in  the present paper.
Theorem. Suppose that (At) and (Aa) hold. Then there exists 8>0  such that the- 

mixed initial-boundary problem (8) (11) (12) (13) admits a unique global smooth- 
solution и  (t, x) on 0 and \u(t) 10i decays exponentially to zero as. t—>oo, the decay
rate being

provided that\q>\c*+ dp
8x

^mint= min | %i | 0o, .l«i=s«

< 8. Here 
o«

(19)

(20)
and cr is any real<number in  (go, 1).

Remark 1. The important and useful case is that when p = l  in  (18), that is
oo= m ax(|R tf, |В2| ) < 1. . (21)

If (21) is satisfied, then it is easy to see that (A2)2°) holds, that is, the absolutes of 
eigenvalues of B± and B2 are less than 1. For this case, the initial-boundary problem 
(8) (11) (12) (13)admits a global smooth solution w (t,#),and the exponentially decay
rete of|w(tf) |c‘ a,s is
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e i p ( i ! | (22).

Remark 2. From the decay rates (19) and (22) of solutions we can see that* for 
fixed p, the smaller the or0 is, i. e. the stronger the dissipative effectis, the more* 
rapidly the solutions decay, and that the smaller the interval L  of mixed initial 
boundary problem is or the greater the absolutes of eigenvalues are, the more* 
sufficiently the boundary dissipative effect can be used and the more rapidly the* 
solutions decay. This is reasonable.

§ 3. Proof of Theorem

Multiplying both sides of system (8) by £ (w) from the left, we obtain

• 0,

where
yl(w)=diag(A,i(w), •••, K (u )).

Differentiating system (8) with respect to x yields
8 ( 8 u \ ,  i / ч  a ( 8 u \  dA(u) 8u 
d t \ 8 x )  + ^   ̂ d x i d x ) ^  . d x . ' d x '

Multiplying above equation by £(w)from the left, we obtain 

' -  « •>  •

' &(*, ® )-£ 0 0 « , .
Setting

7 ( ( ,* ) - л ( о > а « )
Эи
Эх*

we can write (23) and (26) in  following forms: 

817dt
d V
dt

А М ^ - Л ( О )  [ ^ m +A ( u ) ^ - i ( u )

Taking into account that
8£(u) d j(u ) 8u 

8u dt ‘dt
du _ 
dt

du
dx -C-*(u)A-*(0)V,

(28) and (29) can be written as
8U{ i , / \ dUi
n r + h { u )

S  4i (u)UhVi,
k , l= 1

(23>

(24),

(26),

(26)

(27),

(28>

(29),

(30>

(81).

(S2>

(33>

(34>
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dVi -Я{(м) d V t
dt doa fc,! =1

2 & ^ ) F fcF*, ( « - I , - , » ) . (36)

Now we consider the initial and boundary conditions which are satisfied by U  and 
F .  I t is evident that

г - л ( о ) г ( ? ( « ) ) ^ й й . ,м  « -о . (30)

From (26) and (10), we know that

Ui=‘Ui+ ^  в1ы(и)щ,щ (®f=l, •••, n). , (37)
fc,i=i

TJsing boundary condition (11) and taking into account the assumption (14), we know 
iihat at ze=0,

m 8FS, ws= 2  Г7Г**(Р)Щ+ 2  (s—m + l,  •••, n) .■ . PI c/% fc,!=i (38)

From (37), (38) and by using (32), (10), we obtain immediately the boundary 
(Condition at <e=0, which is satisfied by JJ,

(40)
m C\ jp __

U s = 2  -a~2~ (0)17/ +  2  «м17*,17г,а8«е=0, (s= m -f-l, •••,«).)=i c/% - - -M=1
'In  the same we can obtain the boundary condition at cc=L, which is satisfied by 17,

^  d aUr= 2  ^T ~  (0)17# +  2  C&UJ7.1, as x = L  (r= 1, — ,m).<7% fc,!=l
(41)

Differentiating (40) in  t yields

a* t
•sb dFs / « \  8 П j  , / v  do&i dUi j j  j j  , s d U ic  j j  , s t j  dU i\  / л о \

h l ^ {0)~ e r + ^ \ £ t ~ d ^ r ~ d r u 'p ,+ a *' - a r u ,+ a “ U t- w ) -  (42)dt b^i \£ i  дщ dt K t et  ‘  "  a t

'Using (26), (31), (32), and (33), the above equation can be written as
dU * •ct dFs m \ dTJj 

** a - W  0t ■ 2  VUObVu
k , l= 1dt 3=! dUj 

TJsing (34) and taking into account

А ( 0 ) ^ - А ( р ) Щ & Г ( м ) А - Ч 0 ) - Г - 1 - ' ( и ) П + Г ,

we see that F  at as=0 satisfies the following boundary condition

г - Ш (0)Ш - Ш  г <+ ж т - (— + i *-> *»•
'I t  is easy to see that (44) can be written as

m Я TP n ’
F s= 2 ^ -  (0)F# +  2  /8*„l7*Fb a s » -0 ,  ( s = m + l,••.,»).j=l OUj k,l=1

(43)

(44)

(46)

I n  the same way, we can see that F  at x = L  satisfies the following boundary condition

Fr- 2 (0)F# +  2  PuUkVi, as cc^L, ( r —1, —;m ).l=m+l dU j ' ’ ' fc,l=l
(46)

Now, we discuss the system (34) (36) which is satisfied by 17 and F  with the initial 
^conditions (36) and boundary conditions (40), (41), (46) and (46). From above 
•deduction it  is not difficult to see that the coefficients alkl, bh, ah and in (34), 
(36), (40), (41), (46) and (46)are uniformly bounded for bounded[w|Oo.
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We write
X t(t)  =sup \Ui(r, as) |0o, Y f t ) = sup |F ,(* , os) |0. , . ( * - l ,  •••, »),

nr>t T >t ■

X (t) =  max X i(t) , Y( t )  =*= max F<(2), ( i= 1, •••, n),
l<i<ra l«s«n

T F(2)=X (2)+ F(2), ( < - l r » , ,* ) ,

/Л _
— Г7~-

Lemma 1. There easisis 8 i> 0  swcA that when X (t)< 8 ithe  following estimates
hold'.

X C t X a o X i t - p T J + H S  X  (* ) Y  (t) d r+ ЖРХ 2 (2 -  p T f), (47)
J  t-pT i

Y C t X a o Y i t - p T f ) + H S  X  (r) F  (*) d r+ MPX  (t -  p T J  Y  ( t - p T f ) , (48)
J  t - p T i

where H p and M P are constants. .
Proof Suppose that 8t is chosen so that the assumption (Ai) in  §2 holds and V, 

V  satisfy the boundary conditions in  the forms (40), (41), (46) and" (46) forsmall | и | ок- 
which is derived from X  (t) <8j.

Set
, b j - W ) .  ■ ■'

First, we prover that for any positive integer p  the following estimates hold:

X s( t)<  2  b ifX }( f - p T t)
j —rtl+1

+ H f [ X('E,)F ( 'r )d r+ Ж 1)AГ2(^— pTf), ( s = m + l, •••, n).
J t - p T i

We consider the case when p = 1 at first. Let (t, as) is any point in  region 0<2<oo,, 
0 < x< L  and the sth backward characteristic through it hits the line ж=0 in  a point 
(ts, 0). Integrating the $ th  equation in  system (34) along this characteristic curve and*, 
taking into account boundary condition (40), we can obtain

^  -(0)Uj(ts,Q) +  2  efaUriJifa, 0) +  f S  ahUiiVidv. (60>
4=1 O U j  k , l = 1 J t s It,1=1

Let the j  th  ( l< j< m )  backward characteristic curve passing through (ts, 0) hit the. 
line as=L in  a point (vh L ). Integrating the j  th  equation in system (34) along this; 
characteristic curve and taking into account boundary condition (41), we have

T J X , 0 )=  S  ^ L ( Q ) U X ,L ) +  2  «LU Jh (rh L) + \U ±  aLUbVKfo. (61)

Substituting (61) into (60), we obtain •

4=1 {= w + l O U j  О Щ  •

P . ( * , * ) - 2 ' №

+ 2 1 ^ ( 0 )  Г  2  < ^ t 7 , r , i r + r  ± a M V , d n
4=1 O U j  J r j  k , l = l  J t s  k , i= l

+2 "■^  л (0) 2  ailU-kPXh L )+  2  <4*0f J X ,  0).
4=1 O U j  k , l= 1 k , l= l

(62)
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Taking \UiCvj, £ ) |< Х {(г-2 Т ), '
into acount, we obtain immediately

S  b ^ X ^ t - T ^  + Я *  P X ^ Y ^ & v + M i X ^ t - T s ) .  (63)
. j=m+1 Jt-Tx

I t  means that (49) holds when p = 1. .
Now suppose that (49) holds for a integer p > 0. Then from (63) weo an see that

X i( t - p T 1) < ± b j ? X i( t - ( p + l ) T f )  .
i=m+l

[t-pTi
+ Я * X  ( r ) F  ('zr)dT+ilf1X 2( i— ip + l)T i) ,  (64)

J  t-(p+i)Tx '

Substituting (64) into (49), we obtain

x , 0 ) «  ±  ±
i = m + H = m + l

+  s  f~ pri Х (г )Т (г )й г  +  Я рГ X (r )Y (r )d v
. . - J t — ( ~  ■ • - mУ=г»+1 

n
~(p+l)Tx t-pTx

+ - S  M A f х 2( г -  (p + i)T !)  + ж , х 20 - ^ 1 )=̂m+l

<  ±  ri.(«-(4>+l)Ti) .4=/rt+l

+  Я ,+1Р ^ ( ^ ( г ^ + Ж ^ Х ^ - ^ + В Д ) .
Ji-(p+l)Ti

From above equation, we can see that (49) holds for all positive integers p.
For such p  which makes (18) hold, from (49) we have

X s(t)< io-oX (t— p T i)+ H p[ X (v )Y (r )d v + M vX 2 ( t - p T t ) , (s=m+l,**«,n).
J  t-pTx

Similarly, we can obtain
(66)

X r(t)<<x0X ( t - p T i ) + Н Р[* X (v)F ( v )dv+MpX 2(t^-pT1) , (r -1 , - ,  w).
J  t-pT i

(66)
Combining (66) and (66), we can obtain immediately (47). In  the same way we can 
prove the estimate (48).

Thus Lemma 1 has been proved.

Lemma 2. For m y cr£ i<r0, 1), set 82=min^5i, — Then when X( t )  <

S2, we have
W (ft< < rW (t-gP i) + o S  W \r )d r ,  (67)

J  t-pTx

where 0± is a constant.
Proof Combining (47) and (48), it is easily seen that

Wi t )  < ^ W  ( t -p T i)  + n S  W 2 (*) dr + M PX  ( t-p T f)  W it - p T t) .
• Jt-pFi .

Taking into account X  (0) < S 2 and the choice of S2, from above equation, we obtain
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immediatly (67), completing the proof.
Lemma 3, Under the condition in Lemma 2, the following estimate holds'.

W  00 (0) + 0 1or~11 a ‘p5’»" Wa(r)dr, (68)

where 1—4 -
I p T i

Proof Using Lemma 2 successively, we have 
a*W (t -  ipTi) <<r<+1lF (t -  ( i + l)pT i)

+ 0 1a i [t~iP!Pl W2(T)dr ( i - 0 , 1 / - Д - 1 ) .  (69)Jt-U+DpTi у . \ /

Moreover, when t
pT i is not an integer, from the definition of W  (t) we have

^ ? ( | - № ) < а ^ ( 0 ) .
Combining the inequalities (69) and (60), we get

fc-l r t- ip T i .
T F (t)< c rW (0 )+ a a So-M TP(r)dr.

{=0 J

Moreover, for any r £  [ i— ( i+ l)p T 1} t — ipT{\, clearly t —r
№

■1. Therefore
fc—1 (t—ipTi

W ( t ) < o aW ( 0 ) + O 1< r ^ ^ \
4=0 L -

This meaes that (68) holds, which completes the proof.
Lemma 4. Under the condition in Lemma 2, we have

W(t )  e~atW (0) Ч-аю -1 £ <r“«-*W2(тг) dr, «=  W

-«+1)гйЧ

> 0.

Proof From й =  [^ 5 “ ], ^  follows that — 1

(60)

(61)

(62)

(63)

Л

p T i

Therefore a2—efc ln

<x~4~at. Moreover, clearly Cr‘p5V=e~“(t-'r>. From (68) in  Lemma 3, the proof of 
Lemma 4 follows

The proof o f Theorem First, we assume that

T r ( i)< 8 ,-m ln (s 1, - ^ - ,  | 0  (64)

At the moment, Lemma 4 holds. Set
P (* )= e “W (*). (66)

From (63) in  Lemma 4, it  follows that
P  (0  <  cr^P  (0) +  O ^ - 1 £  e~atP 2 (r) dr. (66)

Now, we consider Q(t) which satisfies the following initial value problem for ordinary 
differential equation, as in  [6]

dQ(t) 
dt =Oao - V “#Q2(i) ,

Ц = 0 : Q(t) =cr_1P(0) =cr"1lF (0). 
The solution to initial value problem (67) is

(67)



298 ОНШ. ANN. OF*MATH. Vol. 6 Ser. В

Q СО о- о  *
W(0) 2(T{1 '

(68)

“Noticing the choice (64) of 83, from (68) we get
Q 0)<2o--1TF(0). (69)

Moreover, from Biharf s inequality (cf. [9]), we have
(70)

‘Therefore, from(66), (69) and (70), it follows that
(71)

The above inequality means that if (64) is satisfied, then the 0° norms of the solutions 
and their first order derivatives for mixed initial-boundary value problem (8), (11), 
(12), (13) decay exponentially to zero, as t—*+oo.

Now, ’we show the existence of the global smooth solution for mixed problem 
(8), (11), (12), (13) .A t first, we take to such that 2ar~1e~aU=1.
Takeng 8 so small that w h en |^ |0l<S, there exists a smooth solution for mixed 
problem (8), (11) (12), (13) on [0, tf0L  and moreover

max jUi(t, a?) |0, +  max j V ((t, <v) |c°<<53, [0, /0] . (72)

At the moment, from (71) we get W  (t) <2о-_183е- “4, [0, t0] .
From (74) it is not difiicult to show that there exists a global smooth solution for 

mixed problem(8),(11), (12), (13) on [0, + oo),and moreover,the 0° norms of the 
solution and its first order derivatives decay exponentially to zero, as oo. The 
Theorem is proved.
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