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GLOBAL SMOOTH SOLUTIONS OF DISSIPATIVE
'BOUNDARY VALUE PROBLEMS FOR FIRST
ORDER QUASILINEAR HYPERBOLIC SYSTEMS

QN TierU (A4 FE)*

Abstract

This paper discusses the following initial-boundary value problems for the first order
- quasilinear hyperbolic systems:

LVTOLET A @
ul=Fu),as 2=0, ' ' )]
w=0G W ,0s x=L, 3>

u=u%(x), as =0, 4

where the boundary conditions (2), (8) satisfy F(0)=0, G(O)—O and the dissipative
conditions, that is, the spectra} radii of matrices Bi= gul © ) 3%“ (0) and Bz—W(O)
3u1 (0) are less than unit. ;

Under certain assumptions it is proved that the initial-boundary problem (1)-—(4)
admits a unique global smooth solution w(wx, t)and theC'-norm|u (¢) |¢:0f u(z, t) decays
exponentially to zero as t-—>oo, ‘provided that the O%-norm|u®|g.of the initial data is

- sufficiently small.

§ 1. Introduction

It is well known that for the initial value problems and boundary value
problems of first order quasilinear hyperbolic systems, in general, the smooth
solutions can exist only locally. That is to say, the solutions may develop
smgula,rltles in a finite time (for example, of. [1, 2, 8]). But if we add 'a dissipative
influence in the systems or in the boundary conditions, then it can guarantee the
existence on =0 for global smooth solutions of Cauchy problems or boundary
problems at least for small smooth initial data(ef. [4, 5, 6, 7]).

' Greenberg and Li Ta-tsien discussed in [7] the bonndary value problem for
quasilinear wave equation with an elastic damping boundary condition on one end.
In practice, they disoussed in[7]the following general beunary value problem with
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two unknown funections

Bls g (s, 05) D=0, 0<t<o0, | o
%’:2 +ha(a, uz) b0, 0<o<I, (@)
x1<o<x9 |

ui(t: L) =f(u2 (t: L)): ’ (3)

uﬂ(t) 0) =g(ui (t: 0))) (4)

t=0: uy=ud(@), ua=2ud(@). (5)

Under the assumption that boundary conditions(8), (4)and initial condition (5)
satisfy compatibility conditions, they proved that if f, g satisfy
J(0)=g(0) =0, ' (6)
|f(0)g'(0) | <1, ™
then boundary value problem (1)—(5)admits & unique global 0" smooth solution on
$=>0 and the O norm of the solution decays exponentially to zero as {—>co, provided
that |uf|o+ |ud| e is sufficiently small.

The condition (7) expresses the dissipative effect on boundary. The role of this
condition in guaranteeing the existence of global smooth solution for boundary
value problem (1)—(5)is similar to that of dissipative term added in system (for
example, as in[4, 5, 6])in guaranteeing the existence of global smooth solution
for Cauchy 'pi'oblem Therefore, the condition (7)is essential. If it is not satisfied (for

example, |f'(0)g’(0) | =1), then using the methods -in (8], it is not difficult to
construct an example in which the solution develops a smgulamty in a finite time,

In this paper, our aim is to generalize these results to general boundary value
- problems for first order quasilinear hyperbolic systems with several unknown

\

funections.

§ 2. Main results

Oonsider the following first order quasilinear system
3’“ LEVIORLE | O ®

where ¢ is an unknown functmn vector with n components, and A(u)is an nxn
suitably smooth function matrix which depends only on the unknown function .
First, we state the asummptlons on system (8), and then discuss how to pose the
boundary conditions.
. (A;). Assume that system(8)is hyperbolic for sufficiently small [%] go in
following sense: . '
1°) The matrix A (x)has n smooth real eigenvalues As(u), +++, An(%), and
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2:(0) <++» <A (0) <O< A4 (0) <+ <Aa(0).. - ©)
2°) A(u)hasn 11near1y 1ndependent loft eigenvectors correvpondmg 0 » real
eigenvalues

L) = (Ealw), o, L)) (i1, oy ),

“Without loss of generality, we suppose that matrix

Caa () +++Lan ()
MO R
Zni (u) . 'Cim (u)
is identity when u=0, that is B
' i 0 . |
1/ .

Now, we discuss how to pose the boundary conditions. “When the condition (10)
“holds, the general 1n1t1a1—boundary conditions for system (8) should have followmg
forms:

' =F (u’) ,on x=0, 1D
wi =G (™), on =1L, » (12)
t=0: u—_—_(p(m), (13)
whore : :
Uy Um 1
ul= : f) yHl= f)
Um U
F m+l) Gi
F= : , @=| .
Fm ’ Gm

Furthermore, we write

2 ). 2% ),

Ba= 6u“ (O) auI <0) ?

where :
OF _0(Fpmey, =+, Fu) 8G _ 9(Gy, -, Gy)
ou' (g, +++, Um) ou™t O (Vmy, *+0y Un) )

(Ay). Assume that the initial-boundary conitions (11), (12), (18) satisfy the
following

1°) F, GEC", and

F(0)=Q(0). 4_ (14)
2°) The Apectral radii of By, By are less than 1.
8°) Compatibity conditions

e (0) =F (¢'(0)), 9 (L) =G (p"(L)), (15)
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[42@) - 25 @) 4=(p©) ] 220
+[A22<,¢<o>>—-——1-<¢<0>>A12<¢<o>->]ﬂ”5§°—>-=0, | (16)
[ 4@ - 2% <¢<L>>Aﬂi<¢<L>>] o (L)

+[ 42 (p(T)) ~ 25 (p(1)) A4 (p(1)) | 22 E) o, 7

where corresponding to u= ( >, we write @ and A (w)in the forms of block matrices,

’U/H
for example
40 =Yy mey)
A21 (’U/) A22 (u)

. Here, the assumpti:o_n(Ag),3°)1‘s used only to guarantee the local existence for
~ smooth solutions. It is not essential for the existence of global smooth solutions. The:
assumption (A5)2°) which corresponds to condition (7) is a dissipative condition on
boundary, it is essential for our following discussion. If only the condition(A,)2°)is.
satisfied, from the related results in matrix theory we know ‘that there exists a
positive integer p such that

cro—maX(llell, IIleD<1 (18)

the entries of the matrlx
Now, we can state the main results in the present paper.
. Theorem. Supposs that (Ay) and (As) hold. Then there ewists 5>0 such that the
miwed initial-boundary problem (8) (11) (12) (18) admits a unique global smooth.
solution w (%, w)on t=>0 and |[uw(t) | decays ewponentially to 2ero as. t—>oo, the decay

rate being ,

exp(—j“—mz-‘%%y— t), | 19)
provided thatI:ploo-}—’ ‘ <. Here

A= min | il goy. (20)

and o is any real number in (oo, 1).
Remark 1. The important and useful case is that when p=1 in(18), that is
co=max(| By, | Ba) <1. - (21)
If (21) is satisfied, then it is easy to see that (A5)2°) holds, that is, the absolutes of
- eigenvalues of By and B, are less than 1. For this cage, the initial-boundary problem
(8) (11) (12) (18)admits a global smooth solution u (¢, #),and the exponentlally decay
rote of |u(t) | as t—>o0 8




No. 8 Qin, T. H. GLOBAL SOLUTIONS FOR HYPERBOLIC SYSTEMS 253'

exp( A“““é:glo‘ t), | | (22)

Remark 2. From the decay rates (19) and (22) of solutions we can see that; for
fixed p, the smaller the oo is, i. o, the stronger the dissipative effectis, the more
rapidly the solutions decay, and that the smaller the interval L of mixed initial
boundary problem is or the greater the absolutes of eigenvalues A; are, the more.
sufficiently the boundary dissipative effect can be used and the more rapidly the.
solutions decay. This is reasonable.

§ 3. Proof bf Theorém

Multiplying both sides of sy‘s’tem (8) by { (w) from the left, we obtain
c C(u) +/1( )Z(u)——=0 | (23)

where

Aw) = ding (ha (), +++, hn(u)).
Differentiating system (8)with respect to @ yields

2 ou\_ _ 8A(w) 8
e ) FAW 5 (aq;) aar e A (@8
Multiplying above equatlon by { () from the left, we obtain o
JOENCARVIGHOEICARIIOLL OR CY (25
Setting _ _
, UG, =C(U) w, (26):
RAOEVIOIO, @7)
we can write (28) and (25) in following forms: ' '
L 4@ P -[EW gy BB, - (28)

4w @V A(O)[aC(“) + A B ) 24D o (o)

Taking into account that

oL(u) _ oL(u) 2 '
5 o o (20
% oY,
o =—AW) 2, - (81)
u={"*w)U, (32)
L _rwaior, (83)

(28)and (29)can be written as
| G G 3 T, (34)
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W* T Lim B 0@V, =10, (35)

Now we consider the initial and boundary conditions which are satisfied by U and
y. It ig evident that

U=L(p@))e(@), ¥ =4(0)(p()) 3‘“ %) a3 1=0. (36)
me(26)and (10), we know that | | ‘ |
Ui=u+ 2 o (W (E=1, o, m). . ' (37)

Using boundary condition (11) and takmg into account the assumption (14), we know
dhat at =0, :

_,us,_;; 9Fs (0)u, + 2 By, (s=m+1, e, n). (38)

From (87), (38) and by usmg (82), (10), we obtain immediately the boundary
.condition at #=0, which is satisfied by U,

_jzl oF, = O, + 2 U, 050=0, (s=m-+1, - m). (40)
In the same we can obtam the boundary condition at =1L, which is satisfied by U,
4 " 2 == == .se
Ur"" i %ﬂ-l au (0) U! + klzl akl UkUb as @ L (’r F"I :m) . » (41)
Diﬁ'erentiatmg (40) in ¢ yields |
U, & oF, an oy au. Uk U, '
=2 5 0Zr 3 (558 S0 TrOa T L) (42)
Using (26), (31), (32), and (33), the above equation can be written ag
aUs — a-F $ an o S .
2 "2 ou, (0) + k,12=1 UV (43)

Using (84) and taking into account , ‘
AL~ 4(0) B -2 42(0) V- ()T +7,
“we seo that V' at #=0 satisfies the followiﬁg boundary condition

V E gfj:( ) ;:((Q(B . g’lgzg V}‘*‘kgl ’}’izUkV;, (s=m-+1 n). (44)‘

It is easy to see that (44) can be written as

V=250 OV, + 3 BuUFy 180=0, (s=mtL o). (45)

In the same way, we can soe that V at @=L satisfies the followmg bounda;ry condition

Vo= 3 % @p, + 3V BRTI a5 =L, (r=1,-m).  (46)

F=m+1 3
“Now, we discuss the system (34) (88) which is satisfied by U and V" with the initial

conditions (86) and boundary conditions (40), (41), (46) and (46). From above
deduction it is not difficult to see that the coefficients af;, bi;, of; and B in(84),
(85), (40), (41), (46) and (46)are uniformly bounded for bounded|s|g.
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We write
X:(t) =sup [Ui(z, ) |, Yi(8) =s0p|V(7, @) |o,  (6=1, ++, ),
X () = max X,(1), ¥ () = max ¥(t), (4=1, =, ),
WE)=X@®+Y(®), @E=1,:-,n),

2L

Ti— }\cmin )
Lemma 1. There ewists 6,>>0 Such that when X (t)<dithe following estimates
hold: '

X <ooX (gl +H,[_ X @F @de+ M-, )

i
Y (8) <oo¥ (t—pTs) + Hy| X @F s+ M, X G=pT)F (=0T, (49
o,
where H, and M, are constanis.

Proof Suppose that 3, is chosen so that the assumption(A,) in §2 holds and U
V satisfy the boundary condltlons in the forms(40), (41), (45) and'(46) forsmall|u|g
which ig derived from X (¢) <§;.

Set
= (bP).

Flrst we prover that for any posmve mteger p the followmg estimates hold:

X(t)< 2 b@XJ(t oT'y)

+H,J X ()Y (z)dv+M, X2t —pT), (s=m+1, e, m). (49

P—
We consider the case when p=1 at first. Let (¢, ) is any point in region 0<{<co,,
0<a<L and the sth backward characteristic through it hits the line =0 in a point
(25, 0). Integrating the s th equation in system (84) along this characteristic curve and:
taking into account boundary condition (40), we can obtain

U,(t, ) = 2 g (O)U,(ts,O) + 2 o5, UU, (s, 0) +J %1 a, UV ide.  (50)
Let the § th (1<g<m) baokward characteristic curve: passing through (¢, 0) hit -the:
line =1L in a point (v;, L). Integrating the j th equation in system (84) along this;
characteristic curve and taking into account boundary oondi'bion (41), we have
U;(ts, 0) =, 2 BG‘, 0)U(w;, L) + Z o, UkUl (75, L) + 2 @ UsV 1dw. (B1)
=m Ty kyl=
" Substituting (51) into (50), we Obtain

UG, 0) =3 3y 2L ) 0% 3‘9" (0) U, (v, L)

§=1 ¢=m+1 8u

2ol 2 dsOFdet[ 3 U7 ar

Ty Moyl=1 kyl=1

+2 s (O) 2 by UU+(w, L) + 2 o U0 (%, 0) (52)

I=1
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Taking | IUi(ey, L) | <X (=T,
mto aoount we obtain immediately

X, (1)< 2 DX, (6~ T1>+H1j X@F @+ X G-Ts).  (53)

=m+

It means that (49) holds when p=1, _
Now suppose that (49) holds for a 1n1:eger >0, Then from (63) wec an see that
X;(¢—ply) < 2 b(‘”X‘(t— (p+1)Ty)
' —pTh

| | —l—HiJ 'X(r)Y('v)dfv+M1X2(t—-(p—l—l)Ti), ‘m+I<i<n.  (54)

t—(p+1)T

Substituting (64) into (49), we obtain |
| X< 3 3 bPbPX (i~ (p+1)Ts)

F=m+1¢=m+1
7 T . 3
(€] ;
+ 3 W H; L oo XY @+ H,,L_M‘X(fp)yw)dg

B ]lfibg)X2(t— (p+1)T1) +~MI,X2(15‘—Z)T1)

F=m+1

< 2 b“’*”X,(t— (p+1)Ty)

f=m+1

-+ Hp+1 X(’B‘)Y('B‘) dv +Mp+1.X2(t"' (p +1) Ti)

=+ DT
From above equation, we can see that (49) holds for all positive integers p.
For such p which makes (18) hold, from (49) we have

X y(£) <o X (t—pT) +H,,j:_ﬂ X ()Y @)do+M,X?(~pT0), (s=m-+1,-,m).
| | . (85)

Similarly, we can obtain
X () <0oX (=gl + B, XY @+ MK G—pTy), (r=1, -, m).
Ramr 25 .

(56)
Combining (55)and (66), we can obtain immediately (47) In the same way we can
prove the estimate (48).
Thus Lemma 1 has been proved.

Lemma 2. For any o€ (a0, 1), set 82=min(61, crl—&ao ) Then when X <
_ _ o

da, we have

W (O <oW (t—pT) + s W@, &)

where C; i8 a constant.
Proof Combining (47) and (48), it is easily seen that

W) <o (t—pTs) + 1, WHE)dv+M,X ¢t—pT) W (¢—pT)-

Taking into account X (0) <8, and the choice of d,, from above equation, we obtain
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- immediatly (57), completing the proof. _
Lemma 3. Under the condition in Lemma 2, the following estimate holds:

W (£) <o*W (0) 400~ J: o WAz dr, - (58)

where k=
[z )
Prooy USmg Lemma 2 successively, we have

o'W (t - ?;pTi) <0“+1W (t - (’I; +1)pT1)

t—ipTh
k § 2 .= eos —
+040 j o @ (=0, Lo =D (59)
Moreover, when p;’ is not an 1nteger from the definition of W (¢)we have
1
W (t—kplT's) <a*W (0). | N (60)
Oombmmg the inequalities (59) and (60), we get
T
<gh J 2 \
W) <a*"W(0) +0, 20 3 R ('v)dz'. (61)
Moreover, for any € [t — (¢+1)pTy, t— %pTi], clearly i=2 T T 1. Therefore
1
T ]
W (£) <c"W (0) +Cio™ 2 TER T W (v) s (62)
t~(¢+1)pTh
This meaes that (88) holds, which completes the proof.
Lemma 4. Under the condition in Lemma 2, we have .
W (t) <= &~ (0) +01<r-1j DWW () d, e 1;1," >0.  (68)
1

5

Proof From k=[-1-0—17—
1

], it follows that %> —1, Therefore o¥=gfmog

PT1 .

. ‘
o~ %, Moreover, clearly ¢ =g=2¢D,  From (68) in Lemma 8, the proof of
Lemma 4 follows '

The proof of Theorem First, we assume that

W (%) <83=min<61, ";4:’0 ) ggi) (64)
At the moment, Lemma 4 holds. Set
P (&) =eW(t). (65)
From (68) in Lemma 4, it follows that ) .
P()<o™P(0) +00~* [ e *P(w)dr. (66

Now, we consider Q(t) which satisfies the following initial value problem for ordinary
differential equation, as in[6]:

{ dQ (t) = G‘le’“th(t), :

t=0: Q(t) =0™1P(0) =¢™W (0).
The solution to initial value problem (67) is

67)
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1
Q(t) = o _ _q_i- (1—-3"“’) e (68)
W) 2¢
Noticing the choice (64) of 33, from (68) we get ‘
‘ Q) <26W (0). . (69)
Moreover, from Bihari’s inequality (cf.[9]), we have '
P <Q®. (70)
Therefore, from (65), (69) and (70), it follows that ' '
W) <20~ W(0)e*. = (71)

The above inequality means that if (64) is satisfied, then the 0° norms of the solutions
and their first order derivatives for mixed initial-boundary value problem (8), (11),
(12), (18) decay exponentially to zero, ag {—>-co. |

Now, "we show the existence of the glo‘bal smooth solution for mixed problem
(8), (11), (12), (18).At fixst, we take #, such that 2o~%e~*=1.
Takeng & so small that when|p|n<d, there exists a smooth solution for mixed
problem (8), (11) (12), (18)on[0, #], and moreover

max U3, @) oo + max [Vi(t, @) |0<85, 1€ [0, %] (72)

A% the moment, from (71)we get W (t) <2086, Vi€ [0, to]. .

From (74)it is not difficult fo show that there exists a global smooth solution for
mixed problem (8),(11), (12), (18) on [0, +oc0),and moreover, the G° norms of the
solution and its first order derivatives decay exponentially to zero, as t—>-+oo. The
‘Theorem is proved. _
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