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Abstract

Let(X, 9),  (Xi, 6 (Xn,$n) be iid. Bdx {1, 2 y ,  s}-valued random vectors and let 
Ln ;be the posterior error probability. in NN (nearest neighbor),discrimination. Some 
knowledge ®f the unknown value of L„ is of great meaning in many applications. For this
aim, in 1971, T. J. Wagner introduced an estimate of L„ which is defined by

 ̂ 1 «
= — 2  ;П j=l v

where 9nj is the NN discrimination of 9S based on the training samples (Xi, Q Qf-з-ь
P

^#_i),(X^+i, 0̂ +i), •••, (X„, 9„). Then he showed that &„ •— > B, where В is the limit of
■a  a. sthe prior error probability. But the problem of" B„ — > B” is still left open since that 

time. In this paper, it is shown that for any e>o, there exist two positive constants a and
. . a. s. •

C such that P { \ttn—B| > e ) <Ce~an. By this it is clear that B„ — > B.

§ 1. Introduction

Let (X , 9), (X%, 9i), •••, (X„, 9n) be iid. J25x { l ,  2, ••*, s} valued random 
Vectors, where 1, s> 2 are positive integers. In practical applications, (X 1} 9%), 
■•••,(X„,0„) are usually called training samples. The so-called NN (nearest neighbor) 
discrimination rule with respect to some distance p in Bd is defined as follows. For 
X = x} rank the (X h 9S) , j =1, 2, •••, n, according to increasing values of p (X h x), 
(ties are broken by comparing indices), and obtain a vector of indices (В1г •••, Rn), 
where X Rt (x) is the *-th nearest neighbor of x for all i. Take 9Bl (x) as the NN 
discrimination of 9 for X = x .  In general, let h be a fixed integer and 0® (x) be the 
one which appears most frequently in {0Bl, •■•,0b*}, (in case uniqueness fails, use the 
rule of equal probability). Then we take 0® (x) as the h-NN discrimination of 9 for 
X —x.

Thoughout this paper, the distance p will be the Euclidean one or the maximum
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(1>

mode of coordinates, and, for simplicity, 9Rr(X ) = 6Ri (X , (X ltOi), •••, (Х и, 9„)) is 
denoted by ff% and 9% \X ) = 9™(X, (X a, 9f), •••, (X„, 0„)) by 9(f \  Write 

^ (n) =  { (X a, 0*), (X„, On)} and ; X n}.
Define

• L _[Р(вф О 'п\ г (п)) , for NN case,
” X n)) , for й-NN case;

^  _  f for NN case,
" l P  (0 *  0<»), for Ш  case.

Rn is the error probability of this discrimination and Ln is the conditional one. Let Q 
be the distribution of X  and set

7 ji(a > ) -P (0 - i | X - « ) ,  « - 1 ,  2, s. (2)
It is well-known that the limit of R„ always exists and is denoted by R, (see, for 
example, [1] or [2]) and that

P = l-S P r ? ? (X ) .
<=i

Since the distribution of (X , 9) is usually unknown, one can not obtain the 
values of Ln, R n or R, but in many practical applications, some knowledge of them 

is of great significance. For this purpose, the following estimate was introduced by Tc 
J. Wagner1-33 _

where 9n} is the NN (or A-NN) discrimination of 9S using the training samples (X u  
9t), •••,(Xi_1, 0b l) , ( X m , 9j+1) , •••, (1 „ , 0„). For s=2, & =1, T. J. Wagner showed

in [3] that R, and that Д, — R. The problem of strong consistency of Rn
was mentioned by Wagner and has been left open since then.

The aim of this paper is to solve this problem under more general conditions 
than that assumed in [3] . In fact, we have obtained the exponential rate of this 
convergence:

T heorem !. Suppose that Q is non-atcmic. Then for each s> 0  there exist two- 
constants a > 0  and 0<.oof independent of n, such that

P ( | Д ,—P | > в ) « 7  exp( — an). (4)
For convenience of presentation, in § 2 and § 3 we give the proof only for the 

case &=1 and write X nj the nearest neighbor of X,- among (Xj, •••, X,--i, X m , •••„ 
X„).

§ 2. Some Lemmas

Define
a „ =  m a x  # { 1 :  Х ^  =  Х „ е, i < n } . ( 5 )
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Here and in the sequel, the symbol #  (A) denotes the number of elements in 
the set A.

Lemma 1. Suppose that the distribution Q of X  has no atoms. Then we have
a„<m, a. s., (6)

•where m is an integer only depending on d.
Proof Since Q has no atoms, it is a. s. true that X t , •••, X„ are distinguishable 

from each other. Therefore it is sufficient to prove an<.m under the restriction that 
X lt ” -,X n are distinguishable.

Let 0  be a fixed point and A be a set in Rd. A  is said to be an co-cone with apex 
0  if for any x, 1/G A  with p(x, 0 )> p(y ,0 )  we have p(x, 0)> p ix , y). According to 
Fritz ш, there exists an integer m  depending only on d such that Ra can be split into 
ть &>-oones with the common apex 0 , any two of which have no common points.

Suppose that an> m . From the definition (6) we know that there exists an integer 
у0<гг and at least m +1 integers i%, •••, V +i<« such that

Xye =  X„ijt, Tc=1, 2, ••*, m +1. (7)

According to the argument about о -cones, split Ra into m disjoint w-cones with 
the common apex X jo. Then by the drawer principle there exist two distinguishable 
integers, for example it, i 2, such that X (l and X i2 simultaneously belong to a 
common о -cone and that X h= X nh =  X nk, from which we conclude that

р(А^„,Х<г) =тШ|о(Х<г, Х 4)< р (Х 4, X <a), •

for l = 1 ,2 . (8)
Without loss of generality we may assume

p ( X ilt X h) > p ( X it, x o .

Noting the definition of со-cone and the fact that X<„ X it simultaneously belong to 
a common o>-cone, we have

p ( A " 4l,  X ii) < io(Xh, X h)

which is contrary to (8) and the lemma is proved.
This lemma says that each X s appears among {Х„г •••X„„} at most m times. 
Lemma 2. Let the integer-valued function g(i) G {1, •••, n} be such that g(i) *£i 

and that max = j}< m . Then the set of integer pairs {(i,g (i)) , 1 ,2,*-»,

m} can be split into at most 2m + 2  disjoint subsets such that all the integers belonging 
to each subset (regard every integer pair as two integers) are distinguishable.

Proof There is no harm in assuming ra>2m+3. First, put each pair of {(1, 
g (  1 )), •••,((2m +2), g (2 m + 2))}  into one subset. Since g(i) фг, the2m +2 subsets 
are disjoint and the integers in each subset are distinguishable.

Suppose that we have already put {(1, g ( l ) ) ,  •••, (&,$(&))}, 2m + 2<$< n , into
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2m+2 such subsets with desirable properties. Now consider ((#+ 1 ), g(Jo+1 )) . By 
the condition max #{*<«; g(i) (&-fl) may appear among #(1), •••, g(Jo)

1 <j<n
at most m times and g (h + l)  among #(1), •••, g(Jo), 1, •••, Jo at most m +1 times. 
Hence among the 2m+2 subsets there must be at least one subset which contains 
neither 1 nor g(& +l). Put ((# + 1 ), g(Jo + 1)) into such a subset and get a new 
subset which contains distinguishable integers. Thus, we have split {(1, g( 1 )) , •••„ 
((&+1), p (& +l))} into 2m+2 desirable subsets. By induction Lemma 2 is proved.

Lemma 3. Let Q be non-atomic and let AczB1 be a meas-urable set. Then for 
any s > 0 there exist two constants 0 < oo and a > 0 independent of n such that •

1P i- S  II a. (Xs) - I A(X n}) I > s  \<0e-
, n  j= 1  J

(9)

where I A denotes the indicator of the set A.
Proof (i) First we consider a special case that A is a rectangle with a null 

measure boundary. There is no harm in assuming 0<Q(J.) < 1 , otherwise (9) is 
trivial.

By the continuity of probability, for any e>0, there exists a positive number r) 
(without loss of generality, we may assume t] is less than a half of the least edge 
length of A ) such that

а) 0 < 3 ( Л ) < 3 ( ^ Х 3 0 4 2)< 1 ,
b)- Q (As П  ̂ e,

(10>

where Ai is the rectangle obtained by cutting out a slice with thickness r) from each 
boundary surface of A, and A2 is the one obtained by sticking a slice with thickness 
rj onto each boundary surface of A. Also, we take a big rectangle A3 containing A3, 
and being such that

Q(,F3) < - |  s. (11).

Split Ait A3 and Ai into a number of small rectangles with edge length not- 
exceeding r]/2*/~d (note that there must be a finite such division) and denote by- 
Ti, •••, Tm these small rectangles with positive measure. Write ■

P =  min Q(Ti)>Q.
l< i< M

Consider events

i =  {each Tit i< ,M , contains at least two of X lt

(1 2 ) .

and

Ens =  {the number of X u •••, X„ which fall in A% U As П A\ is less than 8„},. 

We have .
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if
P (U £ i)< 2 ! P(Ti contains at most one of X*, •••, X„)

■ <=i

- 2  {( l-Q (P i) )”+«Q(2I<)(l-Q (2 Ti))"-1}<=i

< « 2  (1 -  Q (Tt) ) "-ЧЖ й (1 - p )  " X  Oe~™. (13)
. <=i

Here and in the following О and a denote positive constants independent of n but 
may take different values in each appearence.

From (10), (11) we have
Q ( ^ |U ^ i ) < y 8 .

By Hoeffding’s inequality (see [6]) it follows that

P  (E°n2) < 2  exp j  -  -i- ns2/  (e + — s^j <0e~an. (14)

When Enl and En2 occur simultaneously, we consider |I A(X }) —I A(X nj) | . If X t£ Alf

by the occurence of E nl it follows that p (X jt X n}) <-^ v, hence X ttj£  A. Therefore,

1 А(Х/) = I A(X nj) =  1. If X yG Л30 |, we conclude that Х„,Е Л°, hence I A(X f) = 1 л 
<(Xnj) =0, and in both cases we have

\ I A(X }) — JA(X nj) | =0.
On the other hand, for X }£  A% U A2A\, it is obvious that

\1А( Х , ) - 1 А(Х п}) | < 1 .
By the occurence of E n2 we get

, 1 2 |1 д ( Х ,)  - I A(X nJ) I # {j; j< n .X & U  Л9Л?} < s . (15)
П j=~l n

From (13), (14), (16), we have

p {— 2  |1 А( 1 , ) - 1 д( 1 „ , ) | > « к Р ( * ) + Р » ) < 0 « Л  (16)In i=( J
The special case of the lemma is proved.

( i i )  Suppose that Л is a rectangle open from left and closed from right, i. e„ 
A  =  (ai} Ъ{\ x ••• x  (ad, bd} . Without loss of generality we assume 0<ф(Л)<1„  
Consider rectangles

Ла =  ($i+8, &1+83 X x (<zd—8, 8<j-b8]], SX ).
Since As-*A for S-»0, Я(А6Д А )-*0, where AAB=AO°\J A°B is the symmetric 
difference of A  and B. Therefore for any e> 0  there exists a positive constant 8 such 
that

ф  .0< 3(Л а)< 1,
(2) Q (Лг Д  Л) <  s /  4 (m + 1 ),
(3) the measure of the boundary of Ab is zero, Where m is the integer defined in

Lemma 1. .
By Lemma 1, it follows that
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CW>71 j ssi To j<^l

On the other hand, it is obvious that

i ± | J W X () - - U ( X . , ) |»» j=l . ■

£  I U . ( x , ) I  + v  ±  ^ № ) + A  i  z w x * )П 4=1 И 4=1 П 4=1

< i § I ^ W ) - ^ . ( X rt) | 4 - 2 2 ± i | z Mi.( r ,) .  (18>

Applying what has been proved in ease (i), we have

P { - i g U i . ( X J) - / * ( X - ) . |> | . . » } < 0 .— . (19),

Just as before, employing Hoeffding’s inequality we have

.. /  P { i g X W - ^ ) > e / 2 ( f l » + l ) |< 0 ) - “  (20>

By (18), (19) , (20), we obtain

р { А £ | Л ( х , ) - ^ ( х „ () | > Л  ', A. 1 П . J

< F  R  s 12- ' ™  i 4 + p  R §  j ^ ( x i)> » /2 (’» + i ) }
<Oe~an, . (21>

which proves case (ii) of the lemma.
. N

(iii) Suppose A = (J  Bh where all the B’{s are rectangles open from left and)<=i
closed from right, and N is a positive integer. It is easy to see that

By what proved in case (ii) with s /N  instead of e, we get

p R g l ^ < x / ) - ^ ( X w) | > e } < g p { A g  |Z .,(X /) - Z , , ( X « ) |> e/ x }

<ONe~m<Oe~m, (22>
by which case (iii) is proved.

(iv) Suppose that A is an arbitrary measurable set in B a. By the measure' 
expansion theorem, it is well known that for each e>0, there exists a set B, 
consisting of the unioii of finite many rectangles Open from left and closed from 
right, which satisfies

Q (B A A )< ls .

Taking the approach used in case (ii), we can prove that (9) holds. The proof of 
this lemma is finished.

It is well-known that for every bounded measurable function rj(x) and for any 
fixed e> 0 , there exists a simple function ij(oc) such that
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—rj(®)\<Y6- ..
From this and Lemma 3 we can easily see the following.

Lemma 4. Suppose that Q has no atoms and that v{x) is a bounded measurable 
function. Then for each e> 0 , there exist two positive constants О and an independent of 
n such that

ь д а - w  1>«}<оо- (23)

Lemma 6. (Bennett. 1962, see [6]). Let U!*••, XJn be independent r. v.’s with

B U i= О, Ж7?= o f and \U{\<%. Set crs= — 2  erf. Then for each 8>0,. n 4=1

> s |< 2 e x p { —ns*/2(o2+ b s)}. .

The proof of this lemma is omitted.

§ 3. The Proof of the Main Results

Since

and

we have

П js=l
1_ 8 “ 
й S R

<=i

i a - b k s4=1 n  j= l

~  S  (j- (0„=o ~  Vi ( X j )  )  (I(enj=i)—Vi ( Хщ)  ) 
n  j - 14=1

+ si=i ± ± ч т ( 1 « п̂ - ч ( х п}))

+ 2  ~ 2  V i( X « ) ( I ^ - V i iX ; ) )i~l 91 j—1

+2
s

+2j=i

^ - S ( 4 .W ) - 4 . ( ^ » 4 . ( X , )П f~l

; г 2 ( ч ? № ) - э д д а )« *=i ■
s 5

4=1 г=1
/(те, £, l ) .

Thus for every g> 0 , we have
S 5

P { | 4 - P | > g } < 2 S - P { / K  *, l)> e /5s},
4=1 1=1

First we consider the terms for 1=6. Since 
' 0< ^ j(X )< 1 ,

it follows that 

and
h f ( X i ) - « ( X ) | < l

(24)
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вд(х,)-ад(х))я<1.
^Employing Lemma 5 we get

P (J(n , i, 6 )> 8 /6 s)< 2 e x p {-n (s /6 s )2/2 ( l  +  e/6s)K O e-an. (25)
For 2=4, applying Lemma 4 with s/5s instead of s, we have

P {J(n , i, 4 )> e /6 * }< p j— S  b«(X,) - Vl(X nj) | > s/5 s \< O e -’M. (26)
in  *-i J

When X (n) is given, in  what follows we denote the conditional probability by 
jF*(«) and the conditional expectation by $ ( • ) .

For 2=3, S  Vi(Xnj) (-ZV-<) — Vi(Xj)) is a sum of conditional у independent 

random variables satisfying

W 4  ( V ® - Ш Й »  I < 1 ,

And '
t f { [ M X M)(7 Wre-4 ,(x ,) ) : i* } < i.

Applying Bennett's lemma we obtain
P  (/  (», i , 3) >  e/5s) < 2exp {—n(e/5s) 2/2  (1 + s/5s)} < 0 e “*.

“Thus
P (J (n , i, 3 )> s/5 s) = E {P (J(m ,i, 3 )> s/5 s)}< O e-m. 

For 2 =2, we have

J  (n, i, 2)

(27)

— S 7?» (■Xj)  ( J ( 9nj= i) — t]i{Xnj))П jMl

■̂ ±'ч>да s  (/».«,-i»(x.))zaiUrfJ«I }=1 B=1

v  ±  { ±  4.(X j)Z «u, xi ( I M.„ >- 4i(X„))
П v = l  l j = l  Jf=*=u

a !
02» v=l

According to Lemma 1, and employing lemma 5, we get
P (J(n , i, 2) > s/5s) = E {P (J (n , i, 2 )> s/5s)}

< 2  exp{—n(s/5s) a/2 (m 2 +  (ms/5s) ) } <  Oe~an.
Finally we consider the case 2=1. When X (n> is given, write X n} — X  gU) 

(obviously, g (j)  Ф§) and set Y/f,g(j))=  (1(9,=4)-т?{(аз,)) (1фп1̂ - ^ ( Х п/)).
Then

• ± ± r$№>n
According to Lemma 1 and Lemma 2, the set { ( j ,  g ( j) ) , j< n }  can be split into 
2m  +2  subsets (denoted, say, by Si, S2, •••, $ 2m+2), each of which contains distin 
guishable integers. Write

(29)
Then .
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J  (n, i, 1)
2m+2 / • in  \ I 2/w+2
s  ( - s ^ ) k  si \n  Ш /I P i -  2  Z $  n p i 3

Since Isv(ij> ®==1» 2, •••, n, depend only on X м , we can easily see that
О, I Z\% I < 1 , hence S (Z $ )2< 1 ,

and that for each fixed v, {Z $ , j = 1, 2, ••*, n} are conditionally independent.. 
Applying Lemma 6 we can get

2m+2 г f -i I n
P { j ( n ,  i , i ) > s/6s}<  s  щ  Р\— Ы г ^u=i Ц Lw lt~i > s /1 0 s(m + l) <0<T (30)

By (24), (26), (26), (27), (28) and (30) it follows that
P (j& b -R \> s )< O e ~ ,m. (31)

Theorem 1 is proved.
Rem ark 1. For Jo> 1, Theorem 1 is also true. Here we shall only give a brief 

note to its proof. Let X i(i) be the Z-th nearest neighbor of X ) among { Х г,---, X s_lf 
X i+1,~“, X n}  and let be the value of в paired with X m . Write 0$  as the h-NN. 
discrimination of 6j using the training samples Z in)\ (X j, в

By the approach used in § 2, we can modify the three main lemmas as follows.. 
Lem m a 1'. Let Q be mom-atomic. Them for Z=l, 2, h, 

max # { i : X y= X <№, i<ra}<Zm. a. s.
1 <j<n

Lem m a 2'. Let g{(i) £  {1, 2, •••,(№}, Z =1, 2, ••*, h; i = l ,  2, •••, n, such ihaf 
SiXi) ^ 9i,(i) for all ±<1%ф12<]с. Them the vector set {(i, g i(i), •••, gu(i)), i< n }
cam be split imto at most mkk\ 4-1 +  (т*&! + l ) fe subsets such that all the integers 
belomgimg to each subset (each vector is regarded as ft+1 integers) are distinguishable i f  
the following relations hold:

max & {i’-gi(i) = j, i<»}<Zm , Z=l, 2, •••, h.
1 <j<n

Lemma 4'. Let Q be mom-atomic and let r)(a>) be a bounded mersurable function„ 
Then for any s> 0  there eooist two positive constants a and О independent of n such that

p { - S  Ы Х ,) - ч ( Х т )\ >а\<0~<Г, for Z - l ,  ..., *.

We omit the proofs of these modified lemmas since there is no essential difference, 
from those for the orignal lemmas. Since 9 $  depends only upon {9j<lh •••, 9m }  ̂
and since {) (1), •••, j  (Jc) } is determined by X (n\  using Lemma 1' and Lemma 2' We

П _
can divide 2  { I <«,=«, «<&>=«> -  X I еЪ Ы))}

t— i

into at most mHl +  (тЩ! + l ) fc conditionally independent sums when X (n) is given,, 
Thus by Bennett’s Lemma we obtain

P { \P n- P ( P n) \> s }< O e -m. (32)
By a very tedious computation we can show that Р (1 (в}Ы)в<̂ =1)) й-рУКХ;, X j(i), 
X m ) is a polynomial of гц(Х;), гц{Хк1)) } ’••,rji(X m ) of degree A +l with bounded
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coefficients. From this and Lemma 4' we can show that

, Xf<1>’ "•« х т )~ Г ? (Х „  x i. X ,) |> e } « 0 ,r * - . (88)

It can be shown that <р^(Х, X ,  •••, X )  does not depend upon n and j ,  so we denote 
it simply by <pw (X ). Therefore

J?{| я  (A )  - l + g ( i  g  ?>“>(X,) ) |  (34)

Since J2—1 —2  Е р ^ ( Х ) ,  we have

< S - P { |^ - 2  - ^ (,)m ) |> s /s } < C J e -“  (35)

From (32), (34), (35) we obtain P {\& n—R \>e}<O e~m, 
which proves the assertion.

Remark 2. It is essential to assume that Q has no atoms, we have the following 
example. .

Example 1. Let the distribution of (X ,  0) be as follows: P (X  = 0=1) =  P (X  =

9 - 2 )  - 1 /8 ,  P ( X - 1, 9 - 2 )  - P ( X - 2, 0 - 1 )  - 8 /8 .  Then 4,(1) - 4a(2) - I - ,  4 l(2) -

%(1) — 8/4, P ( X —1) — P (0 = 1 ) — ~  and JB—3/8.J
When X 1=01=1 and X a =  02=2, we have

2 W i = “  S  -f{ê l,9„j=2)U(9i=2,9Bi= l) )+ 0 (^

=— • S  ((0,=1, X,=2) U (9J=2, Xj=l)}
71 j= 3 + 0 Ш

—— » P (X  = 1 , 0=2) -KP(X=2, 0= 1) = 3/4 , the last step follows from Borel
• . g “J

strong law of large numbers. Similarity, when X 1= 02=1, X a= 0 i= 2 , Ba —■■■—■ > -j-.

This example says that even though the limit of exists, it may not be a 
constant, but a random variable. Hence “$ n-*R” fails.
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