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THE STRONG CONSISTENCY OF ERROR
PROBABILITY ESTIMATES IN NN
DISCRIMINATION

Ba1 Zripona (G & &) *

Abstract .

Let(X, 0), (Xi,01),+++ (X0, 6,) be iid. R*% {1, 2,:++, s}-valued random vectors and let
L, ‘be the posterior error probability.in NN (nearest neighbor) discrimination. Some
knowledge ef the unknown value of L, is of great meaning in many applications. For this
aim, in 1971, T. J. Wagner introduced an estimate of L,. which is defined by

13y
R"—;—I:— E I(ej *0»}): . .
where 0,; is the NN discrimination of 6, based on the training samples (X1, 61),+y (Xs-1s
P .
O41)s(Xys1s O5i1)s o++y (X, 6,). Then he showed that R, —— R, where R is the limit of

the prior error probability. But the problem of* R, 25 B is still left open since that
time. In this paper, it is shown that for any &>, there exist two positive constants ¢ and

¢ such that P(|R,— R|>s) <CO¢™. By this it is clear that R, 25 R

§ 1. Introduction

Lot (X, 8), (X3, 62), *, (X, 6,) be iid. R'x{L, 2, +-, s} valued random

vectors, where d>>1, $>>2 are positive integers. In practical applications, (X4, 61), .

=+, (X p,0,) are usually called training samples. The so—called NN (nearest neighbor)
. diserimination rule with respect to some distance p in R® is d_eﬁned' as follows. For
X =, rank the (X, 0,), j=1, 2, -+, n, according to increasing values of p(X}, #),
(ties are broken by cbmparing indices), and obtain a vector of indices (Ry, -+, Ra),
‘where X p,(#) is the ¢—th nearest neighbor of # for all ¢. Take @, (#) as the NN
diserimination of § for X =a. In general, let & be a fixed integer and 6% () be the
one which appears most frequently in {fx,, --+,0z,}, (in case uniqueness fails, use the
rule of equal probability). Then we take 6% (#) as the k—~NN discrimination of § for
X =u,

Thoughout this paper, the distance p will be the Euclidean one or the maximum
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mode of coordinates, and, for simplicity, 0z, (X) =0g, (X, (X1,61), -, (X4, 04)) is
denoted by ), and 6P (X) =09 (X, (X4, 64), -, (X, 8,)) by 0F. Write
Z®={(Xy, 0)), =) (Xu, 6,)} and X®—={Xy, -, X}

Define | -

P(0+6,|Z™), for NN case,

" { P(6+#0%|Z™), for kNN ocase;
- [P(8+6,), for NN case, '
"={ P(O#6P),  for k-NN case.

R, is the error probability of this discrimination and L, is the conditional one. Let @

be the distribution of X and set : -

' nw(@) =Pl =i| X =a), i=1,2, s (2)

It is well-known that the limit of B, always exists and is denoted by R, (see, for

example, [1] or [2]) and that

()]

R=1~:21 B(X).

Since the distribution of (X, @) is usually unknown, one can not obtain the

values of L,, R, or B, but in many practical applications, some knowledge of them

is of great significance. For thig purpose, the following estimate was introduced by T.
J. Wagner™ = -

R, =%‘ jz:;t L o6, | -3

where §,; is the NN (or £~NN) diserimination of §; using the training samples (X3,

01), =, (X sty O5-1) , (X a3, b541), =+, (X, 0,). For s=2, k=1, T. J. Wagner showed

in [8] that ﬁ,,—’;—z—) R, and that R, i—> R. The problem of s’ﬁrbng consistency of &,
was mentioned by Wagner and has been left open since then.

The aim of this paper is to solve this problem under more general conditions
than that assumed in [8]. In fact, we have obtained the exponential rate of this
convergenoe: : -

Theorem 1. Suppose that Q is non~atomic. Then for each §>0 there ewist two
constants a>>0 and O< oo, independent of n, such that -

P(|B,—R|>¢) <O oxp(—an). 4)

For convenience of presentation, in § 2 and § 3 we give the proof only for the.
case k=1 and write X ,; the nearest neighbor of X; among (X, -+, X;_1, X,
X.).

)
2

§2. Some Lemmas

Define 3 : ‘ :
' @,= maXx #H{1: X,;=X,, i<n}. ‘ (5)

i<jen -
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Here and in the sequel, the symbol 3 (A) denotes the number of elements in
the set 4.
Lemma 1. Suppose that the distribution @ of X has no atoms. Then we have
@, <m, a. 8., (6)
‘where m is an integer only depending on d. . .

Proof Bince ¢ has no atoms, it is a. s. true that X 1, *++y X, are distinguishable
from each other. Therefore it is sufficiont to prove @,<<m under the restriction that
Xy, +-, X, are distinguishable, l

- Let O be a fixed point and A be a set in R, A ig said to be an w-cone with apex
Q if for any o, y€ A with p(, 0)> p(,0) we have p(z, 0)>p(w, y). According to
Fritz ), there exists an integer m depending only on d such that R? can be split into
‘m w-cones with the common apex O, any two of which have no common points. _

Suppose that @,>m. From the definition (5) we know that there exists an integer
joSm and at least m -1 integers ¢4, *++, tm+1<n such that

‘Xio=Xnik) k=1) 2) "t m+1. (7)

Accoi'ding o the argument about w-cones, split R? into m digjoint w—cones with
the common apex X ;. Then by the drawer principle there exist two distinguishable
integers, for example 4, ¢,, such that X, .and X, simultaneously belong to a
eommon w—cone and that X ;°=X nis = X nta, Irom which we conclude that

' P(X 5, X4) =D33¢IZIP(X¢“ X)<p(X, Xu),

for I=1, 2. @®
Without loss of generality we may assume
P(X‘,, Xio) >p(Xln X{lo)
Notlng the definition of w-cone and the fact that X,,, X, simultaneously belong to

a4 common. w—cone we have
p(Xﬁ’ X‘s) <p(Xiu Xfo)

which is contrary to (8) and the lemma is proved.
This lemma says that each X; appears among {X,; «+-X,,} at most m times,
Lemma 2. Let the imteger—valued function g(4) € {1, -+, n} be such that g(¢) +4
and that max H#{i<n; 9(4) =j}<<m. Then the set of integer pairs {(4,9(4)), i=1,2,-,

n} can be split into at most 2m +2 disjoint subsets such that all the iniegers belonging
to each subset (regard every intcger pair as two integers) are distinguishable.

Proof There is no harm in assuming n>>2m-+8. First, put each pair of {(1,
g@)), -, ((2m+2), g(2m+2))} into one subset. Since g(2) #4, the 2m+2 subsets
are disjoint and the integers in each subset are distinguishable.

Suppose that we have already put {(1, g(1)), +-, (k,9(%))}, 2m+-2<k<n, into
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2m +2 such subsets with desirable properties. Now consider ((A+1), g(¥+1)). By
the condition max H{t<n; g(4) =j}<m, (k+1) may appear among g(1), ---, g(k)
Kjsn .

at most m times and g(k+1) among ¢(1), ---, g(k), 1, +++, k at most m+1 times.
Hence among the 2m +2 subsets there must be at least one subset which containg
neither k41 nor g(k+1). Put ((k+1), g(k+1)) into such a subset and get a new
subset which contains distinguishable integers. Thus, we have split {(1, g(1)), -,
((h+1), g(b+1))} into 2m +2 desirable subsets. By induction Lemma 2 is proved.

Lemma 8. Let Q be non—atomic and let ACR’ be & meas-urable set. Then for
any >0 there ewist two constants O< o0 and a>0 independent of n such that

PLL 3 (X)) ~ LX) 58 f<Or, ©

where I, denotes the indicator of the set A.

Proof (i) First we consider a special case that A4 is a rectangle with a null
measure boundary., There is no harm in assuming 0<Q(4)<1, otherwise (9) is
trivial. '

By the continuity of probability, for any &>>0, there exists a positive number
(without loss of generality, we may assume 7 is less than a half of the least edge
length of 4) such that |

a) 0<Q(4:) <Q(4) <Q(4y) <1,

b QU <Le @

where A, is the rectangle obtained by cutting out a slice with thickness 7 from each:

boundary surface of 4, and A, is the one obtained by sticking a slice with thickness-
7 onto each boundary surface of 4. Also, we take a big rectangle Ag containing A,, ‘

and being such that

Q(ds) <. | (11).

Split 44, A; and 43 into.a number of small rectangles with edge length not.
exceeding 7/2+/d (note that there must be a finite such division) and denote by-

Ty, +++, Ty these small rectangles with positive measure. Write
P= min Q(T,) >0. 12).
‘ 1<i<M
Consider events v
By ={each T, <M, contains at least two of X 1, 00, X ,.}A

and , '

B.s={the number of X, «+, X, which fall in A3U 42N 4] is less than g,}..

We have
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P(E,"‘,i)'gii P(T, containg at most one of Xy, -+, X,)
=31 {(1- Q)" +1Q(T) (1- Q)™

<n§5 A-QT))*<Mn(1l - p} =1L 0%, | (18)

Here and in the following O and @ denote positive constants independent of » bui
may take diﬁ'erént values in each appearence.

From (10), (11) we have ' -
Q43U 4od) <L
By Hoeffding’s inequality (see[5]) it follows that

P(E)<2 exp{-—lnsﬂ/(s+--1— s>}<0é""‘.' | R ¢ VN

. 4 2
‘When H,; and B, oécl_lr simultaneously, we consider |4 (X,;) —I,(X,)|. If X,€ 4,4,

by the occurence of H, .it follows that p(X;, X,;) <%— 7, hence X »i€ A. Therefore,

La(X) =I4(X,)=1. If X,E A0, we conclude that X,;€ A°, hence I,(X;)=1I4
(X ;) =0, and in both cases we have '
| | ILa(X ) = Li(Xw) | =O.
‘On. the other hand, for X,€ A3U 4,43, it is obvious that
[ La(X ) — La(X ) | <1
By the occurence of H,, we get

NN LX) ~Lu(X,) | < # 4y j<n X, €40 ded} <o, (1)

From (18), (14), (15), we have
P {71; 2 1 La(X) =T a(Xwy) | >e}<P(E:1) +P (H2s) <06, (16)

The special case of the lemma is proved.
(ii) Suppose that A is a rectangle open from left and closed from right, i. e.

A=(ay, bs]X++X(ag, bs]. Without loss of generalily we assume 0<Q(A) <1. -

Qonsider rectangles
Ay= (a1 +8, by+8] X -+ X (@g—9, bg+3], 3>0.
Since Ag>A for 80, Q(A,A4)—>0, where AAB=AC°JA°B is the symmuotric
difference of 4 and B. Therefore for any &>>0 there exists a positive consfant & such
that | '
® 0<Q(4s)<1,
® QAN4)<e/4(m+1),

® the measure of the boundary of A; is zero, where m is the integer defined in

Lemma 1. .
By Lemma 1, it follows thab
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1. n 7
Rl ED<T A LX) @D
On the other hand, it is obvious that

-—EIIA(XJ) IA(XM‘)I

<~EIIA6(X5) L4, (Xag) | +- 2 IAAA.;(Xi) + 2 Tapa,(Xug)

I YL E) - LX) [+ 2 B ). sy
Applying what has been proved in oase (1), we have o N
PLL 3 [ 1,(X) L (X | > o <O (19)
Just as before, employing Hoeffding’s inequality we have ’
P 3 L,0(X ) 2mD) <O oy

By (18), (19) (20), we obtain |
| {EE IIA(XJ)-L;(XM)[?S}-

P B (%) ~ Lu (X |5 of +P {—1- Lisa( X)) >e/2(m+1)}

n.—-.

<Oe™, ‘ ” ' (21); ‘

which proves case (ii) of the 1emma
(iii) Suppose A=U B;, where all the Bjs are rectangles open from left and
§=1 ‘ .

closed from right, and N is a positive integer. It is easy to see that -

n : . N 7
L 31X ~ LX) | < B2 2 n (XD - Tn (X -
By what proved in cage (ii) with ¢/N instead of e, we get

{‘;; ,=1'I{-(X’) ~I,(X,)) | >8}<§P..{ IIB.(XJ) IB,(XM) | >s/N}

KONe "<0e™™, | (22)
by which case (iii) is proved. ' ' R

(iv) Suppose that A is an arbitrary measurable set in R’ By the measure
expansion theorem it is well known that for each 8>0, there exists a set B,
consisting of the union of finite many rectangles open from left and closed from.
right, which satisfies ’

RBAA) <—— 8.

Taking the approach used in case (11), we can prove that (9) holds. The proof of
~ this lemma is finished. ' .

Tt is well-known that for every bounded measurable function n(¢) and for any
fixed §>>0, there exigls a simple function %(#) such that
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. " 1

|n(@) (@) | <5 e
" From this and Lemma 8 we can easily see the following. :

Lemma 4. Suppose that Q has no atoms and that n(z) is o bounded measurable
Junction. Then for cach ¢>0,there exist two positive constants O and an independent of
n such that

P{L 3 |5(X) —n(Xu) | >e} <o - ®
Lemma §. (Bennett. 1962, see [5]) Let Uy--, U, be independent r. v.’s with
EU;-—O BU}=c? (md lU;l b, Set o ———»2 oi. Then for each >0,

{’ Z U;’ ?s}<2 exp { —ne?/2(0®+be)}.

N =1
The proof of this lemma is omitted.

' § 8. The Proof of the Main Results

Since

12 143
E =_‘;;a- jEI(OJ%OnJ) 1—_ 2 2 IQFDI(B”F‘)

n =1 j=1
and

R'=—-1—§3]1 En}(X),

§=.

we have
I-én_'Rl <

8

3
-t

Toyep e — B (X) |

(Lo =) Tmo =1 X)) |
0D T =)
(o) (Lo =m(XD) |

(WX = (X)) (X |

s 5
+3|E 3 @ (X - B (D) | 433 T, 4, D,
Thus for every >0, we have

'P{|ﬁ"-R|>s}<§gP{J(n, i, 1) >s/Bs} (24y

=1t

S| 8=
i

¢

« |
o]
[
fary

A

-,
'l.(‘
i 14

+
Mm
T R P A

M:)

Ly
s
Py

‘First we consider the terms for I =5, Since
| 0<"7‘(X) <1)
it follows that

|n3 (X)) — Bi (X) | <1
and
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B (ni(Xy) — Eq (X))*<1.
Employing Lemma 5 we get

P(J(n, i, B)>=>8/5s) <2exp{—-n(s/5s)2/2(1+e/5s)}<06 (25) |

For I=4, applying Lemma 4 with ¢/Bs instead of s, we have
P{I(n, 4, )>o/5}<P{L 3 (X)) —m(X) [>o/Bs} <0 (26)
When X® ig given, in what follows we denote the conditional probability by
P(.) and the conditional expectation by E(:). ‘
For 1=8, é; ﬁ,(X ,.,).(I@F‘) — (X)) is a sum of_ conditionaly independent
random variables satisfying

[0 (X ap) (L™ —mi (X)) | <1,
B{n(X o) T —m(X 0)}=0,

E{{((Xw) Lo —m (X)) 1%} <1.
Applying Bennett’s lemma we obtain ‘
B(J(n, i, 8)=¢/Bs)<2exp{ —n(s/Bs)2/2(1+/bs) }<Ce~,

and

Thus N
P(J (n, 4, 8)>5/8s) =EB{P(J (n,i, 3)>s/5s)}<03""' @D
For 1=2, we have E ‘

Ty, 2) = | B (XD Tamo = Xu)|

m(Xy) 2 (I(o.,-o ~1:(Xo)) Lz,s=xy)

Vet

{ > (X DL (x..,=x.,>} (Loy=p— (X))

i

)
s nM:

-
ll

i
sk s|m s|=

uM:-

>
S|+

VWOV D
Z}l WRYP.
According to Lemma 1, and employing lemma 5, we get
P(J (n, ¢, 2)>5/B8) =B{P(J (n, 4, 2)>s/8s)}
<2 exp{—fm(s/5s)2/2(m2+(m_s/5s))}<09‘“”.
Finally we consider the oase I=1, When X® ig given, write X=X,y

(obviously, g(5) #J) and set Y= Lw=0—m(25)) (Lourmty = 0(Xn1))

Then _
T, 4,1 = | £ 31 F G |-

Accordmg to Lemma 1 and Lemma 2, the set {(4, 9(4)), j<<n} can be split into
2m 42 subsets (denoted, say, by 84, Sa, -, Sam+a), ©ach of which contains distin
guishable integers. Write |

Then

Z® =Y QainIs, ({4, 9D} (29)
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J(n, i, 1)=

2§2 ( 1 2 Z(é))

v=1 n

3

v=1

L5z

WJ Je=1

Since Iy, ({4, (DD, f;-—'l‘ 2, ++-, m, depend only on X, we can easﬂy see that:
Ezp=o, ]Z“’[<1 hence B (Z$)2<1, :

and that for each fixed v, {Z{, j=1, 2, ---, n} are conditionally independent..

Applying Lemma 5 we can get

. 2m4-2 F 1 n ®
P{J (n, 4, 1)>s/Bs}< 3} E[ |2 2

>¢/10s (m +1) }]<Oe—_"“o (80)

By (24), (28), (26), (27), (28) and (80) it follows that .
| P(|R,—R|>s)<0e . (81)
Theorem 1 is proved. » |
Remark 1. For k>1, Theorem 1 is also true. Here we shall only give a brief
note to its proof. Let X, be the I-th nearest neighbor of X i amdng {Xy,, Xy,
X 11,0+, X} and let 0,4, be the value of § paired with X ;. Write 6% as the h-NN
diserimination of §; using the training samples Z™| (X, 6;).
By the approach used in § 2, we can modify the three main lemmas as follows..
Lemma 1'. Lot Q be non—atomic. Then for 1=1, 2, ---, k,
max #{i:X;=X,,, i<n}<lIm. a. s.

l<j<n
Lemma &. Let g,(3) E{1, 2, -, n}, b =1,2, -, k; i=1, 2, -, n, such that
9 (%) # 91, (8) 4, for all 1<<ly#la<<h. Then the vector set {(4, g1(2), =, gu(2)), 4<n}
can be split imto at most m¥k)+-1-(m¥k!+-1)* subsets such that all the imtegers:
belonging to each suhset (edck vector s regarded as k+1 integers)are distinguishable if
the following relations hold:
max. 4 {i:0,(3) =, i<n}<lm, 1=1,2, -, b.

Lemma &. Let Q be non-atomic and let n(x) be @ bounded mersurable function..
" Then for any >0 there exist two positive constants a and O independent of n such that

PIL 3 [0(X) (X o) | >0} <O6", for 11, -, E.

‘We omit the proofs of these modified lemmas since there is no essential difference
~ from those for the orignal lemmas. Since 6% depends only upon {Oys, -+, G},
and since {j(1), +--, j(k)} is determined by X, using Lemma 1’ and Lemma 2’ we

7
can divide 521 {L 9,4, o;zg’=¢),“EI Coy=t, 0 =1)) }

into at most m*%! 4 (m¥%! +1)* conditionally independent sums when. X® is given..

Thus by Bennett’'s Lemma we obfain _
P{|B,—~HE(&,)|>s}<0e™. (3“2)

By a. very tedious computation we can show that H (I empaty) 205" (X, Xjiy, *

X ;4,) is a polynomial of 2,(X D, (X)), < Xiaw) of degree b+1 with boundec&
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coefficients. From this and Lemma 4’ we can show that
. { 2,4”@()5;, Xy s Xiay) — o (X4, Xy, o, X,)l>s}<00“¢", ,(33)

It can be shown that ¢’ (X, X, +-, X) does not depend upon n and 4, so we denote
it simply by ¢® (X). Therefore

{]E(ﬁ,,) —1+3(L z,pw(x,) ]>s}<0@‘“" (34)

Sinoe R=1— 2 Eqp“’ (X)), we have

P{1-2(1 200X -B) >}

<B P[5 B 00X ~Bpo ) |>ofs| <o (35)

" From (32) (34) (35). we obtain P{|R,—R| >s}<Oe“‘"'
Whmh proves the assertion. . :

Remark 2. It is essent1a1 t0 assume that @ has no atoms. we have the followmg
-example ' ,
Emmple 1. Let the dlstrlbutlon of (X, 6) be as followJ P(X =9——=1) =P(X=

0=2)=1/8, P(X=1,0=2)= P(X 2,0=1)=38/8, Then m(l) =15(2) ———, 171(2) =
79(1) =8/4, P(X =1)=P(0=1): =5 and R=38/8.
‘When Xy=0;=1and Xy=0,= 2 we have

12 1 1
ﬁn—-—-r--—— 2 I(gj*o”,)=‘ﬁ" %_I{a,ﬂ.em:z)u(o;=2.0m.=1))»_'*7’0 71‘-

n
12 1
= 2 I (0;=1, X =2) 0 (04=2, X;=1»+0( - )

Rt P(X =1, §=2)+P(X =2, §=1) =3/4, the last step follows from Borel
strong law of large numbers. Similarily, when X;=0,=1,X = 61=2, R,,if——% _1_11.:
This example says that even though' 'the lirit of R, exists, it may not be a
constant, but a random variable. Hence “R,—>R” fails.
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