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WEIGHTED NORM INEQUALITIES ON MIXED
| HOMOGENEITY SPACE

Yot'r ZHONG (X, ;{k) *

Abstract

In this paper, the properties of the weight functions in mixed homogeneity spaces
are discussed and the corresponding weighted norm inequalities for maximal functions,
~ Macinkiewicz mtegral and singular integrals are glven

~ § 1. Introduction
Suppose that R"=Ri>< ><R1 R1 (=o0,+o0) and | X H” (z,2), Where (w, ¥)

tM .
is the inner product of vectors # and y in R".-Let A,=<. ~>, >0, ;=1 (§=1,
. o
) n). ObViOllS].y, A-t.A-S::-A-t.SO Let . : .
r@,n=(3(G)) 0.
| > A \EN oAy o
For any fixed #(+0), F(«, p)is a strictly decreasing function of variable p. So there

L L

exists a unique ¢ such that F(w, t) =1 for any #+0. Thus we obtain a function
(@) =1 for 8+0. Now set p(0) =0. It is eagy t0 prove that p(@) =0, p(a+y) <p(z) +
o(y) and that p(2) =0 if #=0. Hence p() may be considered as a metric on R", The
space (R", p) is a special case of the parabohc space deﬁned. in [1].

We have the following properties:

1) p(4@) —tp(a);

2) If k>1, then p (k) =p(o);

3) J(‘ ) dg/ Co”, where g0, y= EA, and p(zv, ¥) =ple—y);
o()<o - :

4) (R", p, w) is a homogeneous space, where p is the metric defined above and x4
is the Lebesgue measure on R". The definition of the homogeneous space is given in
{2]. "

5) Denote by @(w, @) the-parallelotope with center at o and- of measure 2a* X
2a* X +++ X 2a*, whose sides are parallel to the axes. Then there exist balls B(w a)
.and B(w, ,Ba) such that '
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a) B(w, ) CQ(w, a) & B(w,Ba),

b) Gi|B(s, )| = |Q(@, @) | =] B(s, Ba),
where 8, 01, Qs are constants/independent of & and a, B(z, ) ={yeER" p(w, y)<t},
and |E| denotes the Lebesgue measure of a measurable set H.

It is easy to Verify 1) and 2) by the definition of p(2). For 8) a generialized
polar coordinates transformation formula is needed. 4) follows directely from 8).
Using 2)and the following ﬁgure,v we have B)a)with B=p(z) and s=(1, 1, 1, -, 1)..
5)b)follows from 8) and the fact that |Q(, ?) | =2%".

The definitions of 4, conditions of weight functions in the mixed homogenseity
spaces are the same as that on Euclidean space except that the averrages are now
taken in balls B (=, ¢). ' '

If we use the parallelotope Q(w, #)instead of the ball B(w, #) in our definition,,
the corresponding A4, conditions will be denoted by 4.

‘We shall establish the following theorems:

Theorem 1. (Weighted norm inequality for mavimal functions)

Let

M (8) =1 (8) = SO 15T 1) 140

2) If 0(s) € 4y, then |{wE€ R £@) >1} <5 |l
b) If () € 4,(1<p<), then |f*lp.e<Cp.ulfl o uhore

~ oV
laa= (] 17@) [20@)da) .
Theorem 2. (Weighted norm inequality for mawimal vector—valued functionsy

Suppose that f(@) = (f1(@), fa(®), =), [*(@) = (fi(®@), f2(®), ++-)and

1
3

F@1=(8 15@17) @>D.

2) If 0(e) € 4y, then |{wER™ [*(@) ] >1}] <5 1170 | o

b) If w(w) €4,(1<p<o0), tben If* (@) lr"p,w<0p:w" £ @) |+l pswe
Theorem 3. ' (Weighted norm inequality for Marcinkiewicz integrals)
Suppose that P is @ closed set-and 8(y) =inf P(w, y). Define

xED

_ S(@)d*(y)
Jaf (@) "J o P (a—g) 1577 (g) ¥

where 7’=‘g A and a0, If o (@) € A,, 1<p<co, then
ﬂ Ja(f) " p:w<0p:w”f” Prwe

Theorem 4. (Weighted norm inequality for singular integrals)

Assume that K (o) -——-%%))—,

where 7=’2”1 A and Qo) satisfies the following
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Cd

conditions:
1) 2(4) =2(s);
2) |2@|<B;"

) sz Q(z) H (¢)do =0, wheredw=r""2H (¢)do dr and 3,1 = {o ER", p(x)=1};

@) 2@ —y) — Q@) |<Bp (y), whors p(a/) =1 and 0<a min~}{A,} <1,

Let | Tonf (w) =K,p¢f (@),
where
K(w) @(f r<p(@)<R),
"R(w) { (otherwise),

and T*f(w) = sup | Ty, rf(2)|.

Suppose that w(w)€ A4, (1<p<oo), tken we have 171, 0<O|flp0 Inn oase:

p=1,i. e, ®E A;, we obtain
[{e€R": T"f (a) >x}lw< llfui,w

Theorem 6.  If we weaken the GO’ndfbt'I/O‘l’b of Theo'rem 4 in replacing (4) by

@) j 20 gi<oo, w() = sup  {|Q@-9)-2()[}

D€ Sp~zs (P(W<D)
true.

§ 2. Preliminaries

Lemma 1. w(e) € A,, iff w(w) € 4].

This follows directly from property b of p(z). v |

Lemma 2. (Calderon—Zygmiind decomposition on mized homogeneity space)

Suppose f€ L*(R"), (1<p<o0). Then for any a>0, there ‘is @ decomposition of'
R R =0 .Q° with Q= U Iy, satisfying:

1) IINI=¢, (K #5) (I3 is the interior of the pardllelotope I,);
" 2) For any I,=Q, there ewists a parallelotope Q=Q (@, ay), defined above,
satisfying 1,21 and |Qy| <B|IL.|, where B is independeni of Iy |
8) |I|—>0, when k—>-+o0; - | "
4) For any 1,0, '

a<ir, [f@do<Bs,
where B is a constant independent of Iy
5) If € Q°, then |f(2) | <o (a,e).
Proof Let '
R'=Ry X RyX++» X Ry, Ry= (=00, +-00) (j=1, 2, ¢+, m).

and keep the rest of the eonditions unckanged then the results of Theorem 4 remain.
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Divide R; into intervals(K#}!, (K +1)#"), (K=--, -2, —1,0, 1, 2, ««-) with
the same length #}’. Their product sets are parallelotopes {I;} of R" with the same
measure 3 X5 X «++ X t%s (We denote every such parallelotope by I, without making
distinction). We can select # large enough so that

' 1

| 2] 17 @ lda<a
for every Ij. :
Denote by Ki=[2"] the integer part of 2, Divide the §~* side of every I into
K{subintervals with the length (K{)~* ¢}*. Their product sets are sub—parallelotopes
of Ij. We denote every one of them by I' without making distinction., Now two
different cases occur: T
The first case: . )
o Tl F @) de>a.
The second case: o o
—7 ) |F (@) lda<a.
Select those It which satisfy the first case and put them into a set, say Q. We
denote them by{I;}. Now we subdivide those of I3 which satlsfy the second case into
{I;} as before and repeat the above process until we are forced into the first case. In

the »** step we subdivide I’,_, into H K} sub—parallelotopes I, with the measure
I'_[(K’K’ < K?)~*}, where '

K= [(K{K}- K} 1) 73/ (27"g)M] = [(K{K LK g) e 22M]
According to our subdivision, we obtain the following relations:
(@) (RAR Ao )26 m () L (R o K g) 102} (24} 52050,
@) (K{K K)o 2him (KKK oK) 2} < (KK +1} <.
From (1) and (2), we obtain (K{K4{---Ki) *y>2""%ty, and (KiK4§.--Ki)~ty
 <2-‘ (27"*47) respectively. ’ h
Therefore there i a parallelotope Q,=Q(x, 2~,) with the same center » as I, such
that I,C Q. Moreover we know that there exists a ball B(w, 827*%,) 21I,. Obviously,
|B(e, B27"%,) |<O|I,|. 1) and 2) are proved.
Since K> [2*]>2 for any », 8) follows directly;
Since
Ky <(KiKi:--K1)-1(20+Dn) = {(x4 Ki K’)‘i 24} QA5 D0 QM o QHitR
for any I,=Q, we have . . S
<T%:T L," F(@) | dwo< B,

Where B= ;H1 28t 4) is pmved

(41
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As to B), since € £, there is a sequnce of parallelotopes I} which satisfy the

"second case and 2), 8). If we apply the theorem about maximal function on

homogeneous space ¥, the proof of 5) is gimilar to the case on Euclidean space™®,
Remark 1. Lemma 2 is an extension of the Lemma 8 in [3].
Remark 2. The other decomposition of Oalderon-Zygmund on mixed homoge-

neity space has been given in [4]. But the proof of a sublemma in [4] is not correct.

However the Lemma 2 here can be used as a substltute for it.

Because of Lemma 2, 4, condition in mixed homogeneity space then plays the
same important role as in Euclidean space.

Corollary. a) If w(s)€ A, (p>1), then there exist 00 and 8>0 such. that

1 T+ '
(BT e @ 8) ™~ (15T sy ? @ %):
b) If w(w) € A,, then w(w) €A..
¢) Ifw(m)c 4, (p>1), then there is an e >0 such that w(z) € 4y)—s.
Pfroof The proof is similar to that of Lemma 2 in [6]. But we should point
oub : , .
(1) By Lemma 1, we can deal with 47 condition instead of A,, condition.
(2) Since Q(#, t) consists of 2 congfuent I, we.can apply Lemma 2 for Q(z, ¢),

although Lemma 2 is the decomposition on whole space. -
(8) By 2) of Lemma 2, for 1=, we have

(i, sy, <o

As in Euclidean spaces, A4, condition on. mixed homogeneity spaces has the

following elementary properties:

a) w(w) EIA,,, if W(w)'__fi_lEA;,, where p~t+ () t=1.
b) If w(s) € A,(p>1) and H is a measurable subset of B(«, t), then
|Blo .. __|B]
B, 51> (156, o7

Lemma 3. Let () =esssup [gv(y) [and @i (&) =177 gp(A,a;), where y = 2 Age Ij
'!!(W)ELI(R"), tkfmsup | Febe(o) | <Of* (w)
. Proof LetTf=fxp, then _ ,
AT A) @)= fA)p(arto—y)dy= e 1p(45 w—e))dem Frps

AL O =R F T s O "“%‘i%’ TEChir 07T ooy 4145

=sup
>0

1
lf (A:Z)ldz M (-Atf)<w)
B )] ey V4
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Let :
Ay=[ o=t )| =atldo=0] 1) |dy=00r).

zry)<r
Let W (t) ==(w), if t=p(&). Since W' (£) is a decreasing function and ¢(x) € L*(R"),

then j b (@)da=0w(L)r7

—2—<Nx)<r

Therefore @' (1) +r7—0. If r—0 or r—>+oo, . ‘
[ F@eG-giy|<[ 1@y iy=[ rOra] B @0t
SN ZOLYEORVROL IO RO A0
=0f*<m>j:”£v =10%

= —Of (@)% () ]:w +Of“(az)j:"@tf(t)tv—i dt<0f*(¢) (0>0).

§ 3. Proof of the theorems

Observing that

| B(#, ) | B, D] Y __C
| B(=, 2t)iw>0< I]B(wa,’ 20y ) 27

where w(z) € 4,(1<p<o0) and 7=}2”1 Ay, we know that the space (R*, p, 15) with

dv = (v)de is still a homogeneous space. The proof of Theorems 1 and 2 is similar to
the proof given in [B] and [8] by using Lemma 2 instead of Calderon Zygmund
decomposition in Euclidean space ci03, |

For the proof of Theorem 3, one can refer to [6] noticing that

(@) =1/ +p(a))"**c L'(R")
for a>0.

Now we come to the proof of Theorem 4. From the definition of p(#) we obtain
p(a)"t tr || < puer @2 , When p(a) >1;
p(8)™ 4 < o] <m0, when p(a)<L.
Since 0<a max Y <eminT{H,;} <1, we know that Q(#) is not a constant,

First of all we introduce two lemmas.
Lemma 4. Suppose that (X, p, w) is & honogeneous space, and that UC X is a
bounded open set, then there ewists a sequence of balls B(w;, t;) such that

(i) U ==’=U1 B;(s, t5);
(ii) if ¢ €U, then o belongs to at most M balls, where M is a constant;

(iil) 4f B;j=B(w; 8Kt;), then BN {X~U}+o, where K is the constant appewrmg
in the definition of homogeneous space ([2], Theorem 3.2),
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Lemma 6. Suppose that
(1) K@ € ISy and | K(o)H(o)do=0,

n-1

(i) K (40) =K (™), (@11) | | K (2—9) ~K (a) | du<0.

o(2)<2p(y)

Thon 2) [{TF@) >33 < Ifl b) 1Tl

where T' f is defined as the mawimal operator in Theorem 4 ([7],Theorem 7.1),
Now, we are going to verify that K (»)=Q(a)/p() satisfies the conditions
required in Lemma B, ‘ '
Since |Q(#)| <B and Lﬂ l.Q (w) H(0)do =0, (i) follows directly.

Observing that 2(4,2) =Q(«) and p(4x) =ip(w), We get the equality (ii).
For (iii), when p(2) >20(y), o | -
Q@—y) _ Q(w) i1 |[Q(w—y) —Q(2)| _
P R O Bl P o R o ¢ B
Since p(Ap(,,)a;) 1, N
|@(o—1) ~0(@) | = | (478 (o—9) ~@(diiha) | <Bo*(4m) < B (L)'
8o L,<Bp*(y)/p"**(w),
I 1<—27£("5 oY (@—y) —p7(@)] = py%v) Lo (43, (@ —9) — p" (475:2) ]
C el |¥ p(9) _
p7 (W) p’Y (a;) E P(w) <C p(.w)'yd-l (Aq}l),
where —jz‘—< p(®) <—-— and y'"' =A;09(p (g") =1). Here, we have used p(¢) € 0~ (R"--0).

| V61 (©) - Ayt | <

pl@)

Hence

< 2D iy W a0
Jp(z)>2p(y)l C y) K(w)ldw\o pr) p(@)r*t o+0 20w pT(w) #<0.

the conclusions of Lemma 5§ are valid for the operator defined in the theorem.

‘When p>1, we make the decomposition {wE€R": T f>A} =g By(wy, ;) by using
=1 :

Lemma 4. All we need to prove is that

() {@EB (o 4): T(@) >, f*@) <M <O 35 | By 1) (B>1, h<1),
then | {T°f(a) > Bh, F*(a) <k} | = | o € By(ay, ): T'f@)> 0, f*() <1}

<0 k31 B, 1)) <om B g >3,

where M is a constant defined in Lemma 4.
Therefore [{T™*f > BA, J*<hA})| o< | T*F>A} ] o,

and , "T*f”p:w<0ww”f"p;w: (p>1). »
However, the proof of () is standard™. In the proof, Lemma 5 and Theorem

OMh
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8.5 in [2] are used. .
In case p=1, using Lemma 4, we make the decomposition

Q={scR" f* (9’)>?~} U By(yy ;)
Let f—g+b Where

9(@) =

f(a:), when 2€ER"—-Q,

2 m;(11f) *28,(2), When wE.Q

Here y;(w) is the characteristlc function of ball B; (y;, %),

B 7IC) N, 1 »
2;1 (a’) and mj (g) _ m—j Bj(yssty) Ig (y) l dy°

Nye=

By using Lemma 4, we obtain 2, x,(m) <M, ZJ m<0 M | .Q]., and

3, 7@ lo@ao<it |15 (e
The rest of the proof of Theorem 4 b) is standard™,
The proof of Theorem 5 is similar to what we have just done,
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