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THE ESSENTIAL MAXIMALITY AND SOME 
OTHER PROPERTIES OF A RIEMANN 

SURFACE OF 0 %

QroSHnxi ,

Abstract

The essential maximality of a Riemann surface of 0AD is verified. Actually we have 
proved something a little stronger, i. e. a modified Stoilow principle and its converse 
for a £unctiou meromorphic on a non-compact subregion on a Riemann surface of 0%.
The significance of these assertions lies in that they fail to hold for the wider and more 
familiar class 0AD.

§ 1. Introduction and Preliminaries

In the present paper we shall at first establish two theorems on the behavior of 
a meromorphic function near the ideal boundary of a Riemann surface of 0%, one 
of which asserts that a modified Stoilow principle is valid in this case. As a 
consequence the essential maximality of a Riemann surface of 0% will be verified» 
It seems worthwhile to pointout here that this is not a property possessed by every 
Riemann surface of the wider and more familiar class 0AD} though every Riemann 
surface of finite genus of 0AD should be essentially maximal113.

Let us recall briefly some notations, terminologies and preliminaries.
An AD-(resp. AB-, ABD-) function means an analytic function with finite 

Dirichlet integral (resp. bounded, bounded and with finite Dirichlet integral). A 
Riemann surface on which every AD-(resp. AB-, ABD-) function reduces to a. 
constant will be said to be of the class 0AD (resp. 0AB) 0ABD) .

M. Sakai proved in 1979 the following important theorem which we shall refer 
to as (ST)™:

(ST) 0AD= 0ABD. * * * **
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An AJ5-(resp. AB -, ABB-) function on a subregion A whose real part 
vanishes continuously on the boundary у  of A is called' an AD0-(resp. AB°-f 
ABBP-) function. A subregion on which every AD°-(resp. AB°~, ABB0-) function 
reduces to a constant is said to be of the class SO ad (resp. 80 ab, SO add) • A Riemann 
surface on which every subregion is of SO ad (resp. SOab, 80 add) is said to be of the 
-class 0% (resp. 0%, 0%D) .

The following lemma (K L ) is due to KurodaC3:1.
(KL) Let A be a subregion and Й the double of A along its boundary. Then 

A 6 Oad (resp. Oab, Oabd) if and only if A £ SOad (resp. SOab, SOabd) •
The proof is straight forw ard and will be omitted.
From (ST) and (KL) follows immediately
Corollary 1. SOad “ SOabd, O^d—Oabd»

§ 2. Stoilow Principle and its Converse

A Riemann surface В is said to have (LD)-(resp. (LB)~, (LBD)~) property if 
Tor any subregion A with boundary 7  on В and for any AD-(resp. AB~, ABB-) 
function/(g) on A\Jy, |/ (2) I — M = const, on 7  implies |/(g) | in A. We have

Lemma 1. The following statements are equivalent14,1:
( i ) В £ Oad•
( ii)  В SOabd•
(iii) В has (LD)-properiy. ,
(iv) В has ( L Bd) -property.
Proof For (i)-»(iii) and (ii)«->(iv) see [4]. That (iii)—»(iv) is evident and 

that (i)<->(ii) have been shown in Corollary 1 .
Let В be a Riemann surface spread over the complex sphere and G a domain on 

the complex sphere. A component of the set (assumed non-empty) of all points on 
В whose projections lie in G is called a pennisula over G. A pennisula of В over G is 
•laeunary if its projection is not dense everywhere in G.

Theorem 1. A Biemann surface В  6 0°AD i f  and only i f  for every subregion A 
with boundaty 7  on B, for every meromorphic function f(p) on A[] у and for every 
circular disk G such that f(y )  f)G=*0 ard f(A) f) G¥*0, every laeunary pennisula over 
G of the Biemann surface f  (A) produced by f  from A has infinite spherical area.

Proof Suppose that for a Riemann surface В  the condition stated in Theorem 
1 fails to hold, then there exists a subregion A with boundary 7  on B, a meromorphic 
function /  on A U 7  and a circular disk G as discribed above such that there is a 
laeunary pennisula Фв of f(A ) over G with finite sphreical area. Since Ф0 is 
laeunary, there exists a point w0SG  and two positive numbers V and s, such that
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the two circular disk Gn and Ge of common center w0 and radii V and s respectively 
are included in G and such that G4f]f(A) =£0 and Ge f[f(,A) =0. Hence f(A ) has a 
lacunary pennisula Ф&п over G„ with finite spherical area. Denote the inverse image 
of Фвп on A by An which is again a subregion with boundary y, on E. Define

1g{p) p£A n{Jy,

then
1 ,
V ItfClOl 1

s p €A 4 Uy„,

p £ y V9
and there exists at least one point p0 £ An such that

1? Ы 1> т .

CD

(2)

Moreover, g(p) is an AD-function on An. In fact, denote by Da (u) and B*a(u) the 
Dirichlet integral and the spherical Dirichlet integral respectively of a function и 
on a domain Q, then

(S)

<

<

( l+ i?2)2

(l+??2)£
•Я-

I/(* )
(i+i/oo i2)2

where z=cc+iy denotes the local coordinate of the variable point p in A.
It follows from (1), (2) and (3) that E  has not (Lo)-property, hence by 

Lemma 1 ВЩО%. The necessity of the condition is proved.
In order to prove the sufficiency of the condition we suppose on the contrary 

that ЕёО%. Then by Lemma 1 E  fails to have (LBD)-property, i. e. there exist a 
subgregion A with boundary у  on E, an ARD-function f(p)  on A whose modulus 
continuously equals to a constant Ж on у and a point p%£.A such that |/(p i) | >Ж. 
Hence

Ж<вир |/(p ) | =Ж '<+ооJ>64

since f (p)  is bounded. Consequently there exists a point w0Qf(A) and |w0| 5=5 Ж',
M'—MLet G be a circular disk of center w0 and radius---- ~---- , then Gf\f(A)  =£ 0, G П

£
/ ( y) =0 and there is at least a lacunary pennisula Ф over G of the Riemann surface 
/(A) produced by f  from A. Since f  is an AD-function, Ф has finite area and hence 
finite spherical area. This shows that R  does not satisfy the condition stated in 
Theorem 1. The sufficiency is proved.

A totally disconnected closed set E  on a Riemann surface is called AD-(resp.
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AB-, ABB-) removable if, for every neighbourhood G of E, every AD-(resp. AB-„. 
ABD-) function on G\E can be extended analytically to be an AD-(resp. AB~e 
ABB-) function on G.

Lemma 2. Let R €0% , Q be any subregion with boundary a on R and w = f ( p f  
be a meromorphie function on £MJ a. Let G be a simply connected bounded subregion on 
the complex w-plane such that Gf)f(a)  =0  and Gf ] f  (Li) Фф, and let Abe a component- 
of the set {^l/C#) £G}. I f  G\f(A) is non-AB-removable, then

supT^O) = -f-oo,иie<?
where nu (w) for a given w is the cardinal number of the set / 1 1(ад), and f A(p) is the: 
restriction of f{p)  to A.

Proof Since E=G\f(A)  is non-AD-removable, the double/(d) o f/(d ) along 
the boundary or of G does not belong to 0An- By (KL)  we have /(d ) (f80AD and 
there exists a nonconstant d.D-funotion q>(w) on /(d )  whose real part vanishes 
continuously on cr. Evidently d is a subregion of R. We denote its boundary by y. 
Then <p°f(p) is a non-constant analytic function on d U У, whose real part vanishes- 
continuously on y. If

sup nu (w) =n< +OOf 
wee

then
BA (<p°f) <,nBe(p) <  +oo, 

so that ВЩО%. This contradiction shows
sup nu (w) = +oo.
wee

By means of Lemma 2 we are able to establish the following modified Stoilow 
principle for meromorphie function in a subregion on a Biemann surface of 0%.

Theorem 2. Let Q be a non-compact subregion of R £ 0 %  with compact 
boundary a and.w==f(p ) be a non-constart meromorphie function on Q\Ja. Then the 
supremum of the valence function щ(го) ==card{p ££?|/(f>) =w} is bounded is and only 
i f  the cluster set 00( f ,  ft) of f  at the ideal boundary ft of Q is AB-removable.

Proof To prove the necessity of the condition stated in Theorem 2, we show; 
that the non-d.D-removabllity of 0 D ( / ,  ft) implies the unboundedness of n}(w)« 
Suppose that 0 Q{f, ft) is non-AD-removable. Denote by A the subset of 0 Q(f ,  ft). 
consisting of all the points each of which possesses no neighbourhood intersecting 
G0( f ,  ft) in  an AD~remOVable set. Then it is not difficult to see that A is non­
empty and perfect, and every point of A  possesses no neighbourhood intersecting A 
in an AD-removable set. H e  denote by A) the intersection of A with an arbitrary 
closed circular disk centered at a point w0G.A. There are two possible cases: nf(w) =0  
for all w £Aq or nf(wf)>0 for some ад^А)*
. If it happens to be the first case, then we may construct a non-compact



subregion Q0 with compact boundary a0 such that Ц)11«о CiQ and /(ce0) ЛЛ>=0. 
Since /(«о) is compact, there exists a circular disk A centered at a point w' £  A0 such 
that dfl/(«o) =0. Hence by Lemma 2, the valence function of the restriction f 0 of 
/ t o  A> and consequently nf(w) should be unbounded. This is what we want to 
prove.

Consider now the second case, i. e. . -
nf (w1)=n1> 0 for some A*

We shall show that the assumption sup nf(w) <oo would lead to a contradiction. For 
then we should have 0<ог1<со and may assume without loss of generality that w* 
is not the projection of any branch point of the % sheets of the Riemann surface 
J(Q) produced by f  from Q that cover wt. These % sheet should cover schliohtly a 
common closed circular disk Ax centered at wx. Denote П A- Removing the
inverse image of these % sohlicht islands from Q we get a new non-compact 
subregion Qx. Denote fx the restriction of /  to Qx, then .

sup rbfl(w) <  sup nf(w) —«i<sup Mf(w) —tlx.
w e A i  w e A i

If it happens to be that sup % (w)=0, then by the same arguments as in the
w € A i

preceding paragraph, nfl(w) and consequently nf (w) would be unbounded, and we 
■arrive at a contradiction. If otherwise for some w26 A , nfl(w2) = Щ>0, then the 
similar procedure may be repeated so as to obtain a non-compact subregion Q2 and 
the restriction f 2 of fx to Q2 such that

sup nu(w) <sup nf (w) —«i—n2.
. w e A i

Since sup nf(w) is assumed finite, by repeating the same procedure at most finite 
times we shall get ultimately a positive integer Is such that

sup nh(w)=0,
wei*

where Ax, A , •••, A  and fx, f 2," ', fu are understood obviously. Therefore nh(w) 
and consequently nf (w) should be unbounded and a contradiction is obtained. The 
proof of the necessity is completed.

Next, suppose that the cluster set 0 0( f , l3 ) is AD-removable, then w=f(p)  
has looalizable Iverson's property1-53. By Stoilow principle, we have 

s sup tnf (w)< +oo
and the sufiiciency is tenable.

§ 3. The Essential Maximality of a Riemann 
Surface of 0°AD

Theorem s. I f  12 £ 0%, then the following statements are true:
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( i ) В is essentially maximal,
( i i ) I f  <p is a conformal homeomorphism of R into a Riemamn surface M, then 

S\<p(R) is AD-tfemovable.
(Ill) Any two maximal prolongations of R are conformally homeomorphic to each 

other.
Proof To prove (i) we suppose that Ё  is a prolongation of JR and <p is a 

conformal homeomorphism of R  into Ё. It suffices to show that R\<p(R) is totally 
disconnected. If, on the contrary Ё\р{В),  the complement of <p(R) relative to Ё, 
contained a continuum, then the boundary of <p (JR) relative to Ё would contain a 
continuum O. Take wo£0  and a coordinate neighbourhood G of w0- We may 
imagine G as a closed circular disk on the complex plane with center w<>- <p(R) ПФ 
would have at least a component Ф which would be an one-sheeted pennisula of 
<p(R) over G, and G\<& contained a non-AD-removable set. This contradicts Lemma
2. Therefore (i) is true.

We now prove (ii). From the above we have already observed that 
R]~R\p (R) is the boundary of <p(R) relative to Ё. By similar arguments it follows 
that every point w0G.E should possess a neighbourhood G with G[\E AD~ 
removable, (ii) is proved.

To prove (iii) we suppose that Л* and Ё2 are two maximal prolongations of a 
Riemann surface R of 0%  and <pt and <p2 are the corresponding conformal 
homeomorphism of R into Ё% and Ё2 respectively. Take Ёх\<рх(В) and a 
sufficiently small neighbourhood Gi of w% whose boundary is an analytic Jordan 
curve lying entirely in <pi(R) A s  usual we may imagine Gi as subregion lying 
within a circular disk. Then maps q>i(R) П Gi onto a subregion G2 on <p2(R).
Since R2\p2(R) is AD-removable, the inverse schlicht mapping р°рТг can be 
extended to be a conformal homeomorphism of the closure G2 of G2 relative to jR» 
into Gt. This must be an onto mapping since otherwise M2 would be prolongable. 
Therefore cp^pi1 can be extended to a conformal homeomorphism of G% into Ё2. 
Letting Wt range over the whole Л1 \̂ о1 (R), we assert that can be extended to
be a conformal homeomorphism of Ri into R2. Since Rt is maximal, this is an onto 
conformal homeomorphism. (iii) is proved.

Corollary 2. I f  R£0°AIi, then the following statements are true:
( i ) JR is essentially maximal.
( ii)  I f  q> is a conformal homeomorphism of R. into a Riemamn surface Ё, then 

M\p(R) is AB-removable.
(iii) Any two maximal prolongations of R are conformally homeomorphic to each 

other.
Proof (i) follows immediately from the fact that 0ABczO%. (ii) and (iii) may
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be proved in a similar way as for Theorem 3.
We note that there exists a maximal Riemann surface F  £  О ad®1, Let E  he an 

AD-removable set on F, then F '= F \E ^O AD. So F'£0°ad. Therefore, (i) and (ii) of 
Theorem 3 are not sufficient conditions for a Riemann surface to be of 0%.

It is known that a Riemann surface В of finite genus belonging to 0AD is 
essentially maximal and all closed extensions of В are conformally equivalent0-3. 
However Myrberg’s example ш shows that there is a Riemann surface of infinite 
genus belonging to 0AD but not essentially maximal.
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