THE ESSENTIAL MAXIMALITY AND SOME OTHER PROPERTIES OF A RIEMANN SURFACE OF O_{AD}°

QIU SHUXI (邱曙熙)*

Abstract

The essential maximality of a Riemann surface of O_{AD}° is verified. Actually we have proved something a little stronger, i. e. a modified Stoilow principle and its converse for a functiou meromorphic on a non-compact subregion on a Riemann surface of O_{AD}° . The significance of these assertions lies in that they fail to hold for the wider and more familiar class O_{AD} .

§ 1. Introduction and Preliminaries

In the present paper we shall at first establish two theorems on the behavior of a meromorphic function near the ideal boundary of a Riemann surface of O_{AD}^{0} , one of which asserts that a modified Stoilow principle is valid in this case. As a consequence the essential maximality of a Riemann surface of O_{AD}^{0} will be verified. It seems worthwhile to pointout here that this is not a property possessed by every Riemann surface of the wider and more familiar class O_{AD} , though every Riemann surface of finite genus of O_{AD} should be essentially maximal^[13].

Let us recall briefly some notations, terminologies and preliminaries.

An AD-(resp. AB-, ABD-) function means an analytic function with finite Dirichlet integral (resp. bounded, bounded and with finite Dirichlet integral). A Riemann surface on which every AD-(resp. AB-, ABD-) function reduces to a constant will be said to be of the class O_{AD} (resp. O_{AB} , O_{ABD}).

M. Sakai proved in 1979 the following important theorem which we shall refer to as $(ST)^{[2]}$:

(ST)

$$O_{AD} = O_{ABD}$$
.

Manuscript received June 16, 1983.

^{*} Department of Mathematics, Xiamen University, Fujian, China.

^{**} The author would like to express his heartfelt thanks to his tutor, professor Zhang Mingyong, from whom the author got considerable benefit in the accomplishment of this thesis.

An AD-(resp. AB-, ABD-) function on a subregion Δ whose real part vanishes continuously on the boundary γ of Δ is called an AD^{0} -(resp. AB^{0} -, ABD^{0} -) function. A subregion on which every AD^{0} -(resp. AB^{0} -, ABD^{0} -) function reduces to a constant is said to be of the class SO_{AD} (resp. SO_{AB} , SO_{ABD}). A Riemann surface on which every subregion is of SO_{AD} (resp. SO_{AB} , SO_{ABD}) is said to be of the class O_{AD}^{0} (resp. O_{AB}^{0} , O_{ABD}^{0}).

The following lemma (KL) is due to Kuroda^[3].

(KL) Let Δ be a subregion and $\hat{\Delta}$ the double of Δ along its boundary. Then $\hat{\Delta} \in O_{AD}$ (resp. O_{AB} , O_{ABD}) if and only if $\Delta \in SO_{AD}$ (resp. SO_{ABD}).

The proof is straight forw ard and will be omitted.

From (ST) and (KL) follows immediately

Corollary 1. $SO_{AD} = SO_{ABD}, O^0_{AD} = O^0_{ABD}$.

§ 2. Stoilow Principle and its Converse

A Riemann surface R is said to have (L_D) -(resp. (L_B) -, (L_{BD}) -) property if for any subregion Δ with boundary γ on R and for any AD-(resp. AB-, ABD-) function f(z) on $\Delta \cup \gamma$, |f(z)| = M=const. on γ implies $|f(z)| \leq M$ in Δ . We have

Lemma 1. The following statements are equivalent^[4]:

(i) $R \in O_{AD}^0$.

(ii) $R \in O_{ABD}^0$.

(iii) R has (L_D) -property.

(iv) R has (L_{BD}) -property.

Proof For (i) \rightarrow (iii) and (ii) \leftrightarrow (iv) see [4]. That (iii) \rightarrow (iv) is evident and that (i) \leftrightarrow (ii) have been shown in Corollary 1.

Let R be a Riemann surface spread over the complex sphere and G a domain on the complex sphere. A component of the set (assumed non-empty) of all points on R whose projections lie in G is called a *pennisula* over G. A pennisula of R over G is *lacunary* if its projection is not dense everywhere in G.

Theorem 1. A Riemann surface $R \in O_{AD}^{0}$ if and only if for every subregion Δ with boundaty γ on R, for every meromorphic function f(p) on $\Delta \cup \gamma$ and for every circular disk G such that $f(\gamma) \cap G = \emptyset$ and $f(\Delta) \cap G \neq \emptyset$, every lacunary pennisula over G of the Riemann surface $f(\Delta)$ produced by f from Δ has infinite spherical area.

Proof Suppose that for a Riemann surface R the condition stated in Theorem 1 fails to hold, then there exists a subregion Δ with boundary γ on R, a meromorphic function f on $\Delta \cup \gamma$ and a circular disk G as discribed above such that there is a lacunary pennisula Φ_G of $f(\Delta)$ over G with finite sphreical area. Since Φ_G is lacunary, there exists a point $w_0 \in G$ and two positive numbers η and s, such that then

the two circular disk G_{η} and G_s of common center w_0 and radii η and s respectively are included in G and such that $G_{\eta} \cap f(\Delta) \neq \emptyset$ and $G_s \cap f(\Delta) = \emptyset$. Hence $\widetilde{f(\Delta)}$ has a lacunary pennisula $\Phi_{G_{\eta}}$ over G_{η} with finite spherical area. Denote the inverse image of $\Phi_{G_{\eta}}$ on Δ by Δ_{η} which is again a subregion with boundary γ_{η} on R. Define

> $g(p) = \frac{1}{f(p) - w_0}, \quad p \in \Delta_\eta \cup \gamma_\eta,$ $\frac{1}{\eta} \leq |g(p)| \leq \frac{1}{\varepsilon}, \quad p \in \Delta_\eta \cup \gamma_\eta,$ $g(p) = \frac{1}{\eta}, \qquad p \in \gamma_\eta, \qquad (1)$

and there exists at least one point $p_0 \in \mathcal{A}_n$ such that

$$|g(p_0)| > \frac{1}{s}.$$
 (2)

Moreover, g(p) is an AD-function on Δ_{η} . In fact, denote by $D_{\mathcal{G}}(u)$ and $D^*_{\mathcal{G}}(u)$ the Dirichlet integral and the spherical Dirichlet integral respectively of a function u on a domain Ω , then

$$D_{4_{\eta}}(g) = \iint_{A_{\eta}} \frac{|f'(z)|^{2}}{|f(z) - w_{0}|^{4}} dx dy \leq \frac{1}{\varepsilon^{4}} \iint_{A_{\eta}} |f'(z)|^{2} dx dy \qquad (3)$$

$$\leq \frac{(1 + \eta^{2})^{2}}{\varepsilon^{4}} \iint_{A_{\eta}} \frac{|f'(z)|^{2}}{(1 + |f(z)|^{2})^{2}} dx dy \leq \frac{(1 + \eta^{2})^{2}}{\varepsilon^{4}} D_{4_{\eta}}^{*}(f)$$

$$\leq \frac{(1 + \eta^{2})^{2}}{\varepsilon^{4}} D_{4}^{*}(f) < +\infty,$$

where z = x + iy denotes the local coordinate of the variable point p in Δ .

It follows from (1), (2) and (3) that R has not (L_D) -property, hence by Lemma 1 $R \in O_{AD}^0$. The necessity of the condition is proved.

In order to prove the sufficiency of the condition we suppose on the contrary that $R \in O_{AD}^0$. Then by Lemma 1 R fails to have (L_{BD}) -property, i. e. there exist a subgregion Δ with boundary γ on R, an ABD-function f(p) on Δ whose modulus continuously equals to a constant M on γ and a point $p_1 \in \Delta$ such that $|f(p_1)| > M$. Hence

$$M < \sup_{p \in \mathcal{A}} |f(p)| = M' < +\infty$$

since f(p) is bounded. Consequently there exists a point $w_0 \in \overline{f(\Delta)}$ and $|w_0| = M'$. Let G be a circular disk of center w_0 and radius $\frac{M'-M}{2}$, then $G \cap f(\Delta) \neq \emptyset$, $G \cap f(\Delta) = \emptyset$ and there is at least a lacunary pennisula Φ over G of the Riemann surface $\widehat{f(\Delta)}$ produced by f from Δ . Since f is an AD-function, Φ has finite area and hence finite spherical area. This shows that R does not satisfy the condition stated in Theorem 1. The sufficiency is proved.

A totally disconnected closed set E on a Riemann surface is called AD-(resp.

AB-, ABD-) removable if, for every neighbourhood G of E, every AD-(resp. AB-, ABD-) function on $G\setminus E$ can be extended analytically to be an AD-(resp. AB-, ABD-) function on G.

Lemma 2. Let $R \in O_{AD}^{0}$, Ω be any subregion with boundary α on R and w = f(p)be a meromorphic function on $\Omega \cup \alpha$. Let G be a simply connected bounded subregion on the complex w-plane such that $G \cap f(\alpha) = \emptyset$ and $G \cap f(\Omega) \neq \emptyset$, and let Δ be a component of the set $\{p \mid f(p) \in G\}$. If $G \setminus f(\Delta)$ is non-AD-removable, then

$$\sup_{w \in \mathcal{I}} n_{f_{\mathcal{A}}}(w) = +\infty,$$

where $n_{f_{\Delta}}(w)$ for a given w is the cardinal number of the set $f_{\Delta}^{-1}(w)$, and $f_{\Delta}(p)$ is the restriction of f(p) to Δ .

Proof Since $E = G \setminus f(\Delta)$ is non-AD-removable, the double $f(\Delta)$ of $f(\Delta)$ along the boundary σ of G does not belong to O_{AD} . By (KL) we have $f(\Delta) \in SO_{AD}$ and there exists a nonconstant AD-function $\varphi(w)$ on $f(\Delta)$ whose real part vanishes continuously on σ . Evidently Δ is a subregion of R. We denote its boundary by γ . Then $\varphi \circ f(p)$ is a non-constant analytic function on $\Delta \cup \gamma$, whose real part vanishes continuously on γ . If

$$\sup_{w\in \tilde{G}} n_{f_{4}}(w) = n < +\infty,$$

then

$$D_{\Delta}(\varphi \circ f) \leqslant n D_{G}(\varphi) < +\infty$$
,

so that $R \in O_{AD}^0$. This contradiction shows

$$\sup_{w\in G} n_{f_A}(w) = +\infty.$$

By means of Lemma 2 we are able to establish the following modified Stoilow principle for meromorphic function in a subregion on a Riemann surface of O_{AD}^{0} .

Theorem 2. Let Ω be a non-compact subregion of $R \in O_{AD}^{\circ}$ with compact boundary α and w = f(p) be a non-constart meromorphic function on $\Omega \cup \alpha$. Then the supremum of the valence function $n_f(w) = \operatorname{card} \{p \in \Omega | f(p) = w\}$ is bounded is and only if the cluster set $C_{\Omega}(f, \beta)$ of f at the ideal boundary β of Ω is AD-removable.

Proof To prove the necessity of the condition stated in Theorem 2, we show that the non-AD-removability of $\mathcal{O}_{\Omega}(f,\beta)$ implies the unboundedness of $n_{f}(w)$. Suppose that $\mathcal{O}_{\Omega}(f,\beta)$ is non-AD-removable. Denote by A the subset of $\mathcal{O}_{\Omega}(f,\beta)$ consisting of all the points each of which possesses no neighbourhood intersecting $\mathcal{O}_{\Omega}(f,\beta)$ in an AD-removable set. Then it is not difficult to see that A is nonempty and perfect, and every point of A possesses no neighbourhood intersecting Ain an AD-removable set. We denote by A_{0} the intersection of A with an arbitrary closed circular disk centered at a point $w_{0} \in A$. There are two possible cases: $n_{f}(w) = 0$ for all $w \in A_{0}$ or $n_{f}(w_{1}) > 0$ for some $w_{1} \in A_{0}$.

If it happens to be the first case, then we may construct a non-compact

subregion Ω_0 with compact boundary α_0 such that $\Omega_0 \cup \alpha_0 \subset \Omega$ and $f(\alpha_0) \cap A_0 = \emptyset$. Since $f(\alpha_0)$ is compact, there exists a circular disk Δ centered at a point $w' \in A_0$ such that $\Delta \cap f(\alpha_0) = \emptyset$. Hence by Lemma 2, the valence function of the restriction f_0 of f to Ω_0 and consequently $n_f(w)$ should be unbounded. This is what we want to prove.

Consider now the second case, i. e.

 $n_f(w_1) = n_1 > 0$ for some $w_1 \in A_0$.

We shall show that the assumption $\sup n_f(w) < \infty$ would lead to a contradiction. For then we should have $0 < n_1 < \infty$ and may assume without loss of generality that w_1 is not the projection of any branch point of the n_1 sheets of the Riemann surface $\widetilde{f(\Omega)}$ produced by f from Ω that cover w_1 . These n_1 sheet should cover schlichtly a common closed circular disk Δ_1 centered at w_1 . Denote $A_1 = \Delta_1 \cap A_0$. Removing the inverse image of these n_1 schlicht islands from Ω we get a new non-compact subregion Ω_1 . Denote f_1 the restriction of f to Ω_1 , then

$$\sup_{w \in A_1} n_{f_1}(w) \leq \sup_{w \in A_1} n_f(w) - n_1 \leq \sup n_f(w) - n_1.$$

If it happens to be that $\sup_{w \in A_1} n_{f_1}(w) = 0$, then by the same arguments as in the preceding paragraph, $n_{f_1}(w)$ and consequently $n_f(w)$ would be unbounded, and we arrive at a contradiction. If otherwise for some $w_2 \in A_1$, $n_{f_1}(w_2) = n_2 > 0$, then the similar procedure may be repeated so as to obtain a non-compact subregion Ω_2 and the restriction f_2 of f_1 to Ω_2 such that

$$\sup_{w\in A_1} n_{f_1}(w) \leqslant \sup n_f(w) - n_1 - n_2.$$

Since $\sup n_f(w)$ is assumed finite, by repeating the same procedure at most finite times we shall get ultimately a positive integer k such that

$$\sup_{w\in A_k} n_{f_k}(w) = 0,$$

where A_1, A_2, \dots, A_k and f_1, f_2, \dots, f_k are understood obviously. Therefore $n_{f_k}(w)$ and consequently $n_f(w)$ should be unbounded and a contradiction is obtained. The proof of the necessity is completed.

Next, suppose that the cluster set $O_{\mathcal{O}}(f,\beta)$ is AD-removable, then w=f(p) has localizable Iversen's property^[5]. By Stoilow principle, we have

$$\sup n_f(w) < +\infty$$

and the sufficiency is tenable.

§ 3. The Essential Maximality of a Riemann Surface of O_{AD}^{0}

Theorem 3. If $R \in O_{AD}^{0}$, then the following statements are true:

(i) R is essentially maximal,

(ii) If φ is a conformal homeomorphism of R into a Riemann surface \tilde{R} , then $\tilde{R} \setminus \varphi(R)$ is AD-removable.

(iii) Any two maximal prolongations of R are conformally homeomorphic to each other.

Proof To prove (i) we suppose that \tilde{R} is a prolongation of R and φ is a conformal homeomorphism of R into \tilde{R} . It suffices to show that $\tilde{R} \setminus \varphi(R)$ is totally disconnected. If, on the contrary $\tilde{R} \setminus \varphi(R)$, the complement of $\varphi(R)$ relative to \tilde{R} , contained a continuum, then the boundary of $\varphi(R)$ relative to \tilde{R} would contain a continuum O. Take $w_0 \in O$ and a coordinate neighbourhood G of w_0 . We may imagine G as a closed circular disk on the complex plane with center w_0 . $\varphi(R) \cap G$ would have at least a component Φ which would be an one-sheeted pennisula of $\varphi(R)$ over G, and $G \setminus \Phi$ contained a non-AD-removable set. This contradicts Lemma 2. Therefore (i) is true.

We now prove (ii). From the above we have already observed that $E = \widetilde{R} \setminus \varphi(R)$ is the boundary of $\varphi(R)$ relative to \widetilde{R} . By similar arguments it follows that every point $w_0 \in E$ should possess a neighbourhood G with $G \cap E$ AD-removable. (ii) is proved.

To prove (iii) we suppose that \tilde{R}_1 and \tilde{R}_2 are two maximal prolongations of a Riemann surface R of O_{AD}^0 and φ_1 and φ_2 are the corresponding conformal homeomorphism of R into \tilde{R}_1 and \tilde{R}_2 respectively. Take $w_1 \in \tilde{R}_1 \setminus \varphi_1(R)$ and a sufficiently small neighbourhood G_1 of w_1 whose boundary is an analytic Jordan curve lying entirely in $\varphi_1(R)^{[5]}$. As usual we may imagine G_1 as subregion lying within a circular disk. Then $\varphi_2 \circ \varphi_1^{-1}$ maps $\varphi_1(R) \cap G_1$ onto a subregion G_2 on $\varphi_2(R)$. Since $\tilde{R}_2 \setminus \varphi_2(R)$ is AD-removable, the inverse schlicht mapping $\varphi \circ \varphi_1^{-1}$ can be extended to be a conformal homeomorphism of the closure \tilde{G}_2 of G_2 relative to \tilde{R}_2 into G_1 . This must be an onto mapping since otherwise \tilde{R}_2 would be prolongable. Therefore $\varphi_2 \circ \varphi_1^{-1}$ can be extended to a conformal homeomorphism of G_1 into \tilde{R}_2 . Letting w_1 range over the whole $\tilde{R}_1 \setminus \varphi_1(R)$, we assert that $\varphi_2 \circ \varphi_1^{-1}$ can be extended to be a conformal homeomorphism of \tilde{R}_1 is maximal, this is an onto conformal homeomorphism. (iii) is proved.

Corollary 2. If $R \in O_{AB}^{0}$, then the following statements are true:

(i) R is essentially maximal.

(ii) If φ is a conformal homeomorphism of R. into a Riemann surface \tilde{R} , then $\tilde{R} \setminus \varphi(R)$ is AB-removable.

(iii) Any two maximal prolongations of R are conformally homeomorphic to each other.

Proof (i) follows immediately from the fact that $O_{AB}^0 \subset O_{AD}^0$. (ii) and (iii) may

be proved in a similar way as for Theorem 3.

We note that there exists a maximal Riemann surface $F \in O_{AD}^{[6]}$, Let E be an AD-removable set on F, then $F' = F \setminus E \in O_{AD}$. So $F' \in O_{AD}^0$. Therefore, (i) and (ii) of Theorem 3 are not sufficient conditions for a Riemann surface to be of O_{AD}^0 .

It is known that a Riemann surface R of finite genus belonging to O_{AD} is essentially maximal and all closed extensions of R are conformally equivalent^[1]. However Myrberg's example ^[1] shows that there is a Riemann surface of infinite genus belonging to O_{AD} but not essentially maximal.

References

- [1] Sario, L., Nakai, M., Classification Theory of Riemann Surfaces, Springer, 1970.
- [2] Sakai, M., Analytic functions with finite Dirichlet integral on Riemann surfaces. Acta Math., 142 (1979), 3-4, 199-220.
- [3] Kuroda, M., Analytic functions on some Riemann surfaces, Nagoya Math. J., 10 (1956), 27-50.
- [4] Qiu Shuxi (邱曙熙), Supplements to the classification theory of Riemann surfaces. Acta Sci. Nat. Univ. Amoiensis, 20: 4 (1981), 416~425 (Chinese with English abstract).
- [5] Qiu Shuxi(邱曙熙), On function-theoretic null-sets on a Riemann surface. Acta Sci. Nat. Univ. Amoiensis, 21: 2 (1982), 138—145 (Chinese with English abstract).
- [6] Jurchescu, M., A maximal Riemann surface, Nagoya Math. J., 20 (1962), 91-93.

ž • . . .