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CIOSED-LOOP SYNTH'ESES FOR QUADRAT!C
DSFFERENTIAL GAME OF DISTRIBUTED
SYSTEMS

You YUNCHENG (X, %42)*

Abstract

To differential game. problems of linear distributed parameter systems with quadratie
eriterion, closed-loop syntheses of optimal strategy are proved and solution of related

operator Riccati equation is investigated.

§ 1. Introduction

Differential games of distributed parameter systems are of interest to some
practical examples such as pollution control and competitive fishing in a water

region™, The latter problem, especially, can be formulated as a game of parabolic

system with respect to quadratio criterion. »

In [2] (Chap. 6) various results are given on the properties and the open-
loop nedessary conditions of quadratic optimal strategies of linear distributed
Pparameter systems. |

In this paper we explore the closed~loop syntheses of such a class of differential
games described as follows. - '

Let real Hilbert spaces X, U and V be the value spaces of state @(t), controls
(1) and v (%) respectively. #;>>0 fixed. Denote =17 (0, #;; X), #=L*(0, &; U)
and ¥'=L12(0, t5; V). Oonsider a linear evolution system

w(£) =T(t)wo+ﬁfl’(t——s) [Bu(s) +Cv(s)1ds, £=0, (1.1)
and a quadratic oriterion
J (u, v) ={Qu(tr), (1) +j: [KWa(t), o)) +<Bau(t), u()> +<Rev (1), v(¥) >]dt,

(1.2)
the game problem is to find a strategy (u,, v,) € #X ¥ such that
I (ty, 0) ST (U, 0,)<J (%, 0,), VUE %, Yo ET @)
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Such a strategy (u,, »,) is called optimal in the sense of saddle point. This problem
will be briefly denoted by (GP). _
Here we assume that T'(¢) (¢=0) isa Oq—seinigroup of operators on X,
Be¥%U; X),CceZ(V; X),
Q and W are self-adjoint in Z(X), R €L(U) and R, Z V) are coercively
positive and negative self-adjoint respectlvely.
Define some operators:

(Ku) (£) = [ " D (5—s5) Bu(s)ds, K= (Ku) (1), wE U;

(Lw) (%) =-I:T (t—s)Ov(s)ds, Liv=(Lw) (t1), vE 7 (1.4)

&=R;+K'WK +KiQK, ¥=Ry+L'WL+LiQL,.
Obviously, K€L (U; X'), Ks€ L (U; X), LEL(V; &), Ly E.S,”(V X). ¢
L(U) and W L(¥) are self-adjoint.

§ 2. Closed-loop Result

Hypothesis 1. &>0 (coercively positive) and W<0 (coercively negative).
Theorem 1. Under Hypothesis 1, for any given @y & X, there ewists a unique
optimal strateqy of (GP), (u,, v,), which satisfies the open-Tloop equations:
| w ()= = BOB T (—0)Qe, () + | T (e =) Wa,(0)do], .
| | . t€[0, 4. (2.1)
0.(6) = —BF'C" [T*(t—#) Qu,(t) + [ T (0= DWay(@)dol,
Proof J(u, v) can be written as follows '
J (u, v) =LQ(K yu+Lyw+T (1) 2), Kyu-+Lyw+T ($1)wodz
W (Ku+Lo+T(+)wo, Ku+Lo+T()ao)s
+L By, Upa+<{Rav, vDy
={Du, up+2(KiQL+K *WL)fu u>+<QFfv )
2K QT (1) w0 +E*WT () o, up +2{IAQT (£1) 0+ LW T (+) 20, v
+<QT (31) @0, T(tl)wo> +WT (Do, T(woy, V(u, 0) EUX Y.
2.2)
From (2.2) it can be seen that there ig a (u,, v,) which satisfies (1.3) if and only
if the following system of equations admits a solution,
[ /] K*WL+K iQLi] [u*] _ [K WT()+KiQT (1) }%' .3)
L*WK +LiQK 4 - v v, L'WT () +LiQT (41)
In view of the auxiliary lemma deseribed later, we know that the operator
[ D K*WL+K’{QL1]

- 2.4
L'WK+LiQK: . v @.4)
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has a bounded inverse operator H-*. Thus (2.3) admits a unique solution,
Taking note of
(K3h) (£) =BT* (ts— )b, (Lih) (1) =0"T*(ti—1)h, VREX;

(&) (1) = [ BT (o —y(@)io, (L) @)= 0T @—Hy(e)de, ¥y e,
| _, (2.5}
we can verify that (2.8) is equivalent to (2.1). | Q E. D.
Auxiliary Lemma. Let Hy and Hy be Hilbert spaces, EEL (Hi) and Ge '
L (H,) be coercively positive and negatwe self—adgomt respectively, and 8 € .,7 (Hg; Hy)..
Then the operator

<E S) €F(Hix Hy)

st @
has @ bounded inverse operator given by
(E S )‘1 —( (H- SG":‘;S’*)'1 —(E—-SG?S*)*SG‘?) 2.6)
& ¢ “\-@-sEs) Bt (@G-SET ) '

Proof As E—SG™8">E>0and G—S8*BE18<G<0, the operator on the right

side of (2.6) can be verified to be the left inverse of (g* g) Similarly, its right
inverse algo exists. Thus (2.6) is valid. '

Theorem 2 (Oloseci—loop Theorem I). Under Hypothesis 1, (%,, v,) is the
optimal stmtegy of (GP) if and only if it is the linear state feedbwck gwen by

u, () = —RiB*P (1), (%),

v,(t) = —Bz'O"P (H)2,(1),

where @, ts the corresponding tragjectory, and P() (0<i<?) is @ strongly continuous:

t€[0, t, mEX, 2.7y

and, self-adjoint solution of the operator Riccatt equaition
P(t) =T (b~ 1) QT (b — ) + [ :‘T*'('a—t) [W —P(c) (BRT*B"
" +OR;'0")P(0)1T(o—t)do. (2.8)
And the following equality holds '
J(u*: 2 ) <P (0)4"0; m0> (2'9)

§ 3. Proof of Theorem 2

1. ‘Proof of the “only if” part of Theorem 2. v

We exploit the optimality principle of dynamic programmmg in proving this,
For any given v € [0, t,1, (GP)+ 18 reforred to the corresponding game problem for
which (1.1) and (1.2) are roplaced by

w(t) =T (¢t —7)%os+ j T(t—s) [Bu(s)—l—Ofv(s)]ds, =7, (3.1)
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T2, ) =<Qa(k), o>+ KWa(), a(®)>+<Ruu®), u(®)>

B (), v(6)>]de, (3.2
where 4 € U, =1?(v, ty; U) and v € ¥ =L*(z, ts; V).

o (GP), we attach the subscript = to the counterparts of those operators
shown in §1 and § 2. #>0 implies @,>0 and ¥'<0 implies ¥, <0 by null
extengion. | '

Lemma 1. For any given @y, € X, the unique opt@mal sirateqy (@,;, V,r) of
(GP), can be expressed by
‘ Uy (t) =M, (t)won Q)*'r(t) =N, (t)wo';, t€ [, 8], ' ' (3 .3)
where operators M, (t) and N,(2) are strongly continuous with respect to i and such
that

O<r<t<ty

- Proof Analogous to (2. 3) and (2. 4), we have _

sup | M.(%)|zxm <o, Jup, "N ®) | zcxsvy<oo. 3.9

- K W (s —7) + K QT (b —
() o KV 4 a w)) 65
Verw L WT(' ‘—‘"I}') +L17QT (ti—'b‘)
in view of (2.6), H;'is given by 4
It —II7Y (KWL, +K1.QLi,)¥5*
H -1 \ . ( . 1 Q 1 ) >, (3.6)
.—I‘“i(L WK +L QK1) D7 | st
Where o _ - o : o
O,=®,— (KWL, +K}%.QLi,)V;(LWK . +L,QK 1,), 3.7
I,=0,—(LWK ,+Li,QK 1,) 07;*(K;W L, +K ITQLi,) )
By (1.4) and (2. 5) it can be seen that .
Oi‘:g | EWT (s —7) +K1.QT (4—7) | #cxs ozt <00,
Sup |LWT (- —7) + LiQT (81— ) | 2z orm,tan vn <05
' 3.8
Jup | KW Ly + K 1:QLss| LT VHEOTHETN <00, 8.8)
Sup | LiW K 5+ LiQK 12| zocmtanmnom s vy <0

As Hypothesis 1 1mphes011:£h |97 2@y <0 and sup 1¥7 | 29y <oo, it turns out
from (8.7), II,>®, and I',<¥, that

SUP‘ I3 | #cary <o, Sup |77 20 <oo. (38.9)
Takmg note of (1.4) and (2.5), we have the exphclt expressions of @, aud 7y

(@.9) & =Rig®) +[. 71, @) g(0)do, g€, |
(3.10)
(@) @) = Rah () + [ Za(t, )h(0)do, hE P,

where
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Zy(t, 0)=DB" [ T*(ti——t)QT(ti--cr) +r x(m)T*(n—t)WT(n'—'a)dn ]B,

Zy(t, o) = a*[m*(ti—t)QT(t1~a)+jm o

@t, o) € [, t1% (3.11)
Similarly to the Lemma 3 of [8], @, and ’@, are leectlons on O([wv, ¢11; U) and
O([z, t.1; V) respectlvely, and

T (=) WT (N —0)dn ]a,

S‘U-P "@v "z’(oar,m <9, SUP ||QF7 “5‘(0([17 £; 7 < OO (8. 12)

Hence, (8.7) 1mp119s that II, and I, are leectlons on O([v, t41; U) and O([w, ti];
V) respectlvely, and

SuP |zt “z’(ocmm U»<°° S“P 1Lz "z(cur,t,] <. (8.18)

0<r<

In fact, fo_l" _example, if I,g=f€0([7, t:]; U), we have

lgl LN r)><tes[%g] | Ry II:Z 1@, o ).‘] (o)da|
=+ " Rf 1(K :WL@' +K i’ﬁ'QLi’F) w'; 1(L:WK T +L§7QK 17)9 H C([T,f;];U)
B f |l octe,tans v ‘
<oonst|g| o, +const| floqrnsno)
<const| 7 a [l +oonst] floqrny U)<00113t I fleamtnvs.
Combiring (8.5) and (8.6) with (8.8),(8.12) and (3.13), we obtain (3.4).
Lemma 2. For any given oy € X, the optimal trajectory of (GP) is -
v, (1) =@, &) 2,(&) =G, 0)zp, 0O<SESI<E, (8.14)

where G (3, £) (0<XE<I<ty) s @ family of mild evolution operators with uniformly
bounded norms. The optimal sirateqy (u,, v,) of (GP) is given by (2.7) where the:

feedback operator P(+) is characterized in Theorem 2.
Proof The optlmahty prineciple of dynamm programmmg indicates
(8 0, wo) =2,4(t; &, @, (§; 0, @)), 0<§<t<t1, a:oEX (8.15)%
Let G (%, fr) be gwen as follows

G, &) =T (1— q,-)+j T($—5) [BM(s) +ON(s)1ds, 0<v<t<<t;, (3.16)

where M,(+) and N,(+) are shown in (8.3). Hence (3.14) holds. (8.15) implieé=

that G'(¢, =) possesses the evolution property and it is strongly continuous with:
respect to ¢ € [7, #]. (8:4) implies that |G(Z, 7) ] are uniformly bounded for
0<7<Xt<\?1. These two facts in turn imply its strong continuity With'reSPect 1o
7€ [0, ¢]. ‘
Substituting (8.14) into (2.1), we obtain (2 7), where P(+) is given by

P(t) =T (ts—1)Q6 0, §) + | T 0~ DWG(o, o, 1€[0, 5], (3.17)

Similar to the proof of the Lemma B of [8], it can be proved that P(+) given by
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(8. 17) is a strongly continuous and self-adjoint solution of the Riccati equation
2.8). - Q. E. D.

Thus we have completed the proof of the “only if” part of Theorem 2 exceph
@. 9) which will be proved later in lemma 5.

2. Proof of the “if” part of Theorem 2,

Lemma 8. Lot F be amy self—wdgomt operator in F(X). For any two gwme
processes {ao, %, v, @} and {&,, U, v, 4}, the Jollowing identity holds: '

{FT(oc—t)(t), T(oc— t)w(t))

—(Fa(o), ‘£(a>'>“—[:<FT(a—s)w(s), T(o—s) [B 4(s) +00(s)]>ds

_ j "<Fr_n<a-s)é<s>, T(o—3) [Bu(s) +0u(s)]>ds, 0<t<o. (3.18)

It can be verified dn'ectly
Lemma 4. Let P(1) (O<t<t1) be a stfrongly continuous and sel f~wdyomt solution

A A

vof the Ricoati equation (2.8). For any two game processes {@,, w, v, w} and {Z, 4, 0,
@}, the Jollowing identity holds:

KP@) a(t), &(5)>
=@o(t), S0~ €@(e), PO [Bi(S) +05(s) ]
J & (s), P(s) [Bu(s) +O'v (8)]>ds
+[ X~ P(s) [BRT*B' +ORF0TP(9)0(s), 6(9)>ds, 1€ [0, 1. (3.19)
Proof Liet F=@ in (3.18), we obtain
QT (ts—1)a(8), T(—0)5(8)> | |
~@o(t), 5>~ QT (=)o (s), T(ts—9) [Bi(s) +05(s)1ds
— (4@ (-5, T(ti=9) [Bu() +0v(9)]>ds. (3.20)

Let F (o) =W —P(c)(BR;'B*+OR;'0")P (o‘) in (3 18). ‘Then mtegra,te it
with respect to o € [t, 4], we obtain '

<f T* (o —t) (W--P(cr)(BRHB*—f—OR OV (= ioa(®), w(t)>
j ((W—P(s) (BE; 1B*+OR“1O*]P(s)m(s), 5(5)>ds
~["a, {j 1" (o —s) (W — P(c) [BRI*B'+-OR;™ O*jP(o‘))T(o—s)da}
- {Bu(s) +00(s)}>ds _
__j(a;(s), {j I*(o=5) (W =P (o) [BRllB*—I-ORle*]P(o-))T(a s)da}
{Bu(s)+0'v(s)}>ds SV o L (8.21)
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Summing up the two sides of (3.20) and (8.21) respectively leads immediately to
(8.19).

Lemma §. Let P(t) (0<<¢<<ty) be a strongly continuous and self-adjoint solution
of the Riccati equation (2.8). For any given o€ X, if a strategy (v, v) and its
corresponding trajectory & satisfy

u($) =—Ry"B"P(1)z(3),
v(t) = —R3*O"P($)%(s),
then J (u, v) ={P(0) oo, wo>
" Proof Let {20, 4, v, &} = {mo, w, v, @} and {= 0 in (8.19), we obtain

t€ [0, #], (3.22)

PO, a9=T (@, 0~ B0 + BIBEDa(®), u(h +RIBP Do)t

— J "(Ra(0(8) + B O"P (§)8(2)), v(t) +R*C"P (o (t)>dt.  (3.23)

, Hence if (u, v, =) satisfies (8.22), then J (u, 1) =<{P(0)wo, o

Lemma 6. If $30 and U'<0, and P (%) (0<t<<t) is a strongly continuous and
self-adgjoint solution of the Riccati equation (2.8); then for any given woE€ X, the
feedback strategy. (u, v) given by (8.22) must be the optimal sirategy bf (GP).

Proof For any given @, & X, the game process {m, %, v, &} is given by(8.22),
and for any v € %, we have another game prooess{w,, %, U, x}. Denote Ue=U—1U,
PR Obviously, @, is the trajectory corresponding to the initial state zero and
the strategy (u., 0).

' J (%, 0) |z0y=ae= (%, D) |z0y=aet+ (%, 0) | ssy=0+J1, YU E %, (3.24)
where |

Ti=2{(Q@B (@), e+, [VE®), )+, u(®)>1di}.

According to Lemma 4, now for the two game processes {@y, u, v, @} and {0,
e, 0, @}, taking =0 in (3.19), we obtain

0=CPO)m, 0= (@5t 2,(t)>~ "G, P)Bun()>ds
— [ <eu®), P() [Bu(s) +05()1>ds+ [ W5 (s), au(s)>ds

~ [[<P(s) (BRI B +ORF O P(E(), a(s)>ds =5 T

‘Hence, J;=0. According to (2.2), we have
_ J (e, 0) | zs0y=0 =D, Uep=>0.
Thus J (%, V) |s0y=e=d (%, ) |s0y=0,- Similarly we can prove that J (U, V) |z0y=e>
J (%, V) |z0y=s, for any vE€ 7", Q. E. D,
Thus we have proved the “if’” part of Theorem 2. The proof of this theorem is
completed.
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§ 4. Solution of Riccati Equation (2.8)

Hypothesis 2. U and V- are finite dimensional spaces.
By introducing new equivalent norms of U and ¥V, we can assume

N Ri"-—“IU and 'R2= '—'Iv
for brevity. .

The open-loop equation (2.3) can be written coneretely as follows:

AL e ) R i R

2,(?)
where I = (IU 7 ) , and

+(0) Oy (#; @)

- E(t; &);(g* [T*(tl—t)QT(ti—aHj oo T*(n—t)WT('n—a)dn](B, 0).
. | | (4.2).
y(t; @0) =T (b1 —1) QT (1) @0+ j :l’I’*(aft) WT(e)do.

For 0<7<{y, define an operator B, €L (%, x V") by

[E;(“)](tj ~[i6, o “<")>da, 1€, 1], (“) CUxV, *3)
v 7 , v

v(0)

where H (¢, o) is shown by (4.2). As H(t, o) is a matrix—valued function ‘which is.
continuous with respect to (3, ¢) €[0, #,12, H, is a self-adjoint Hilbert-Schmidt.

operator on' %, X ¥ ..
Define an open—loop resolvent operators F, €L (U X V. T) by

Fo=T,— (I 4B, (4.4).

where

)
=Ly,

Lo, and Iy, are the identity operators on %, and ¥'; respectwely As f " .-!—E7.= H -

is invertible, (4 4) is well-defined.

By a similar approach shown in [4], § 2, we can prove the following result. Its:

3

proof is-omitted here.
Lemma 7. Under Hgypotheses 1. and 2, F, admits the following expression

[F7<u)](t)=rﬁ’.,(t, o)( E;)da (“)eozzrxn//; (45

where the kernel F. (i, o) is @ unique solutfwn of linear matris integral equation

F.(, 0)=IE@, o)I— J TE(t n)F,(n, o)dn

_TEGe) T - ['r.q, DB, ) Idn, ¢, )€ r, b5, (46)
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A

and, F (3, 0) =F(c, t) is continuous with respect to (v, t, ) on
A={(z, t, 0) |0<T<<ty, T<t<ty, v<O<ts}.
The following result indicates that the unique solution of the Riccati equation
(2.8) can be expressed by means of the resolvent kernel ¥.(¢, o). |
Theorem 8.  Under Hypotheses 1 and 2, the unique strongly continuous and
self-adjoint solution of the Riceats equation (2.8) is given by

P(t) =Tty — t)QT(ti-t)Jrj T (6 =) W' (o —£)do-

jT*m —8)QT (8 —&) (BB — 00" " (t, — QT ()i

([ (e =) WT (6 — &) (BB —00") T (1, — £) QT (t:—1)d¢ do

JiJt

- ‘:T*(ti—t)QT(h—g) (BB*.—OO*)’_/-’*(O‘ —-EWT (o ;t)déda-

+[ [ -ner -6 (8, 0) R, m ( o =@ =tyands

[ e - WE(o—8) (BB 00T (1-E)WT (1-t)d1dE do

f T"(c—)WT (c—£) (B, 0>F,(§, 1)

tJtJ¢

X ( B:>T*(t1—n)QT(t1 —$)d¢ dndo

Q

tJtJe

+ [ e-ner@-n 3, 0 5., &
X ( g: )T*(a—f}WT(o‘—t)dfdndo‘

+f‘L f‘j"m* =)W (o 6)(3 0) Ft (£,0)

14

><< )T*(n p)WT (n— t)dpd”ldfdo t€ [0, t11, ~ 4.7

awhere F,(t, o) s the unique continuous soluiion of the equatwn (4.6).
Proof From (3.8), (8.5), (4.1), (4.4) and (4.5) we obtain

(3 o)== g ) =@ =) [ T =D WP =)

1 B :
+j’ F.(, o) ( o )(T*(ti—0'>QT(t1"7)
+[ i -)WT (e, Y
Substituting (4.8) into (3.16) we have |

G, ) =T (t—7) +[:T(t—s) (B, 0) ( if’((:;)ds
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=1 (1) - j:_'n(t—s) (B, a)< _ﬁ:)(T*(ti—s)QT(tr-r)

+("T* (6 =) WT (6 —)do)ds

by

+;t T (t—s) (B, 0)}"1% G, ) ( B > (T* (41— ) QT (4 — )

+ T*(?? O‘)WT(?? —7)dn)do ds. _ (4.9)

Then substituting (4. 9) into (3. 17), after rearrangement, we obtain finally (4.7).-

Theorem 4. (Closed-loop Theorem II) Under Hypotheses 1 and 2, (u,, v,) ds
the optimal strategy of (G.P) if and only if it is the linear stute feedback given by

(,ffé?) [- A, H+1 [ Fut, 4, 0 &€ o), t€10, 51, (4.10)

I
where T=( v ), and
. —Iy

B* o %
A, o) ==( 0,,)[T*<t1—z>QT<t1—a> [0 rE-nwrE-oi],

o) €0, 812 (4.11)
Proof According to Theorems 2 and 8, it remains only to show that the result

B*
of left multiplication of (4.7) by—(o*) i¢ no other than the feedback operator

shown in (4.10). In fact, such a result containg ten terms where
i) the sum of terms 1 and 2 is equal fo —A4(Z, ?);
if) the sum of terms 8, 4, 6 and 8 is equal to

‘TJ’:‘ F.(t, &) (g* )T*Gi”‘@QT(ti*t)d&

and iii) the sum of ferms 5,7, 9 and 10 is equal to

1, 5)( )j I* (o )W (o~ 8)dp dt.

Thus we have proved the conclusion of this Theorem.
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