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THE UNIFORM CONVERGENCE RATE 
OF KERNEL DENSITY ESTIMATE

Y a n g  Z h e n h a i  ( Щ  j ^ )  * * *

Abstract

In this paper, we study the uniform convergence rate of kernel density estimate 
and get optimal uniform rate of convergence without the assumption of compact support 
for kernel function. It is proved that if  the density function f  satisfies Л-condition and 
the kernel function К  is Л-good (see section 1), then we have

( n \  A/<l+2«
------) sup f„(x )  I < const, a .s .
LOglZ / *

§1. Introduction

Let X %, •••, X n be a random sample drawn from a population with distribution 
function F  and probability density function f (p. d. f .) . Denote the empirical distri
bution function of X i, X 2, •••, X„ by Fn. The kernel estimate of /  is difined by

where hn> 0 is a constant depending on n and the kernel К  is a p. d. f.
This method was proposed by Kosenblatt [1966] and has aroused the interest 

of many authors. Since then statisticians have been concerned with the problem of 
uniform convergence of/„  to / .  The best result was given by Devroye and Wagner 
[1980]. In the recent years, the problem about uniform strong convergence rate 
has attracted much attention of statisticians. Under certain conditions imposed on 
the density f  and kernel К , Schuster [1969] proved that

sup |/„(a0 - f ( x )  j =0(«"7+e) a. s.
сед1

for sufficiently large n. Under the condition that the r-th order derivative of /  is 
uniform bounded on It1, Singh [1976] proved that, with a suitable choice of К  and.
hn, we have

sup| /» (» )—/(« )  | =  0(n  r/(2+2r) Vlog log тс) a.s.

for sufficiently large n. For an m-variate p. d. f. / ,  Susarla [1981] proved that if

Manuscript received July 12,1983.
* Department of Mathematics, Beijing Polytechnic University, Beijing, China.



3 3 6 CHIN. ANN. OP MATH. Yol. 6 Ser. В

all the first order partial derivatives of /  are uniformly hounded, then 
sup|/„(aj) —/0») | = 0 (n -1/(2m+2)loglogTi) a. s.
m£ltm

for sufficiently large n.
If we suppose that /  satisfies 8-order Lipsohitz condition 0 < S < 1  (for 8 =  1 is 

the case above), the convergence rate can reach
sup|/„(a;) —/(a?) | =0(w _a/(2m+sa)'s/loglogn) a. s.

Lately, Ohen Guijing and Zhao Linoheng have studied the same problem. They 
improved the convergence rate to

lim sup (-г----- ) sup |/„(ж) —/(ж) I <eonst. a. s. (2)n->o° \  lOg 71 /  a?€lt
for sufficiently large n under the condition that /  satisfies Я-condition (refer to the 
following definition) and kernel has compact support. In this paper, using a new 
method, we get the same convergence rate as (2) under weaker condition. Precisely, 
we omit the assumption that К  possesses a compact support.

First, we give two definitions.
We say that p. d. f. /(ж) satisfies Я-condition if there exists a real number Я, 

;0< Я < 2 such that

sup
00

rx+a
f ( t)d t-2 a f(x )

J  x-a
< R aM

holds for all a> 0 , where R is a constant. ..
It is not difficult to verify that if this satisfies 8th Lipsohitz condition, then 

J ( ж) satisfies the Я-condition with Я=8; if /'(ж) satisfies 8th Lipsohitz condition, 
th en /(ж ) satisfies the Я-condition with Я= 1 + 8 . We say that the kernel function 
.К  (ж) is Я-good if it satisfies the following conditions:

(i) К  (ж) is a symmetric p. d. f. with

|  \x\*‘K(a>)da}< +  oo0

(ii) К  (ж) is bounded and strictly decreasing on [0, oo) or when К  (ж) possesses 
■compact support S, it is strictly decreasing on $ fl [0, °o).

We state the theorems whose proofs are given in section 2 and 3, respectively. 
Theorem 1. Suppose that К  (ж) is Я-good and f(cd) satisfies Я-сondition and

h„/ (wr1 log n) 1+2л
,has a finite positive limit as n-*oo. Then we have

sup j/„ (ж) - / (ж )  I < A  (M 2L )1+2A a. s.

for sufficiently large n, where A is a constant independent of ж and n.
Corollary 1. I f  К  (ж) is %-good with Я=8 and f(os) satisfies 8th order Lipsohitz 

•condition, then, with a suitable choice of hn, we have ,
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$ир|/й(а>) — /(аз) | <J.(gi“1logift)1+2a a. S. (4)

for sufficiently large n.
Corollary 2. I f  К  (x) is X-good with X = 8 + l and/(os), the derivative of / ( * ) ,  

satisfies 8th order Lipschitz condition, then, with a suitable choice of hn, we have
л 1

sup |/„(&) ” / (p) | <  А (та'1 logn) *+28 a. s. (6)&£Ri
for sufficiently large n.

In order to prove those corollaries, it is enough to verify that f  satisfies X— 
condition with X=8, X= 8 + 1  respectively. Especially, if f (x )  possesses bounded 
second order derivative, then /'(a?) satisfies Lipschitz condition. From Corollary 2„ 
it follows that

sup]/n(a?) — f (x )  | <JL(wr1log«)2/5 a.s.(d€R\
for sufficiently large n.

But even if /(a?) is й-times (k > 2) differentiable, we could not improve the rate- 
of convergence of supj/n(#) —/(a?) | , where /«(a?) is kernel estimate with nonnegative*

kernel. In other words 2/6 is the highest convergence rate for kernel estimate with* 
nonnegative kernel.

Theorem 2. For any fixed sequence {й„} and {c„} such that
ИтЛ„=0, limc„=oo
R->°o n-i 8

and

UmJffi i-O7i->oo 4fbfln
there exists uniform continuous density function f  such that

sv-p\?t)( x ) - f ( x ) \> ^ -  a.s. (6)ff€Ri Ofi
holds for sufficiently large n, where /„(a?) is a kernel estimate with a suitable choice of 
kernel.

This theorem means that it is impossible to establish any convergence rate of 
suv\jn (x) ~ f ( x) I without some further conditions imposed on /  besides of being

uniformly continuous.
In the definition of kernel estimate, hn does not depend on random sample. It is: 

natural to use a function S n{ X lf •••, J„ ) of the sample instead of hn. Therefore (1) 
can be replaced by

*  1 "  1 
/ . ( • > - £  s . 4 - (7)

Form Theorem 1, it is easy to get the following theorem.
Theorem 3. I f  К  (x) is X-good and p. d, f .  f(x ) satisfies X-condition and
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| H„ — (n 1 log n) л/а+2л> | (nr1 log n) й;,а+ал) a. s.
holds for sufficiently large n, then we have, with probability one,

I/„(a?) —/(as) | <  vl (n~1 log п)г+2̂  for large n, 
where ft is a positive number, 0 < /3 < l.

In this paper we shall not discuss the estimator defined by (7) in detail.

§ 2. The Proof of Theorem 1.

In this section, A, A.±, Aa ••• are all constants. We shall use Devroye's 
probability inequality in proving theorem and state it in a form that is suitable for 
our use. .

Lemma 1. Suppose that X lt X 2, •••, X n is a random sample drawn from a 
one-dimensional population with probability distribution F. Denote the empirical 
distribution of X lt •••, X nby F„. Suppose TczB1, «+?']: x £ T , l'<Ji},
J&2i={l<» — 2l, x+2l] : x £  R1}, and

sup F  (A) 1/4.

Then for s> 0  and n > m a x (l/5 ,8 S /e2) , we have 
. P{8uV\Fn( A ) - F ( A ) \> s }

<16ra2exp{ —«s2/(64.B+4g)} +8raexp{—nJB/lO}.
Proof See [2].
Lemma 2. Let {h„} be decreating sequence with

lim hn=0П-+00 .
and

lim lo* ” - 071 fln (8)

I f
sup F (A )< M ()hn, (9)Aej*iin

then we have
■ l

lim sup ( h j )  sup | Fn(A) -  F (A) | < 0  a. s.Я-К» \ 10 / jfin (10)

where M0 is any fixed constant and G is a constant.
Proof Choose О such that O2>8M 0, and take B = M 0hn and 8= A \fh nlogn/n in 

Lemma 1. Then for large n,

р ( ( ж ) 1\ р|^ ) - ^ и ) | > 0 )
<16n2exp{ — n(A2h„logn/n) /  (M0hn + A \/hn \ogn/n) } 

+8w exp { — nA 's/hn log n/n/10} .



<16«2exp^ — exp{ —3 logfi}<24raa„

Hence

s p  - а д  i > «  ) < ~ .

and (10) follows from the Borel-Oantelli’s lemma.
Lemma 3. Let B(oo) be a strictly decreasing continuous function defined on [0,

©o) and r(x) is its inverse function, then we have
/•“ гв«
I B(j»)dx= I r(t)d t

where i?o=i?(0).
Now we prove Theorem 1,
Let g(p) he the inverse function of К  (ж) on [0, oo). It is easy to verify that

1
01+л(2/) is the inverse function of К  (ж1+А). Since

£ ^ (a jT*:r)daj=|o^ '(2/)2/A(l+X )d2/< J  (1+Я.) \y \>iK(y)dy<+<x>t

we have

gu K y ) d y = (1+Л) | oV ^ (?/)%<+co, K q= k (0)„ (11)

In particular, for A=0, we have

\K° g ( t)d t= \~ K (y )d y . (12)
Jo Jo

From (12), for any n, we can choose an integer N n such that
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Ъ  2Kni ^ o - l  <AJ,4=1 IV n (13)

where

4 - i ,  2, -г г .. (14)

From (11), we also have

Um S; f 1> [ a j 1"  -  (“ [sO )]1"  <<®< +oo.n-»eo 4=1 iVn JO 1
Hence

» 4=1 IV n ' №

Let

- I ;  4 s- Щ р * -  я-м(«),4=1 iVB 4=1 IV „ (16)

where

ILni(j&) 2ani "̂t-onoOnf] (®)

and J [B] (ж) denotes the indicator function of В . It is obvious that
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Let
\ K M - K ( x ) \ < K 0/N n. (17)

A W - a b S ' - t ^ ) -  (18>
From (18), (17) and (1), we have

!/«(®) - Л ( ж) I < K o /N nhn* (19)
Certainly, we can choose Nn such that it satisfies the further condition K 0/N nhn--̂  
hi .

We oan write (18) as

A w  - 4 -  i  %  Щ р * -  ( ^ ~ ^ ) - %  Щ р * -  A* t o ,m n i=i j=i Jy„ \  hn /  j=i iv „
where 

Hence

l A ( « ) - / ( ® ) t o - / t o/=i . iv„

/(» )■j=i X„ ' 1/4/1 Я
From (13), the second term on the right side is less than A Jil Now we estimate the. 
first term. For any j ,  1 we have

I/* ( » ) - / ( » )  1= - / ( g ). Z7b(lnjfln

1 Nп(з} anjh„, ic~\~(injhl)
2anjhn n

2anjhn IРад- (») -  2an}hnf(a>) \Ы»з (») + 4 ад («), (20>

where
Р»; (®) =  /0 0  <fo ■= P  (« + a„jh№) —F(as—anjhn)

J x—a»jh„

and Nn(a>, 5) denotes the number of X /s  among Xi,---, X„ which lie in the interval

[М ] .
It follows from Я-condition that

J ni(x) < R a lh l  Vi», j ,  ». (21)

(22)

From Lemma 2, we have
A ~

snp (=£73 ) sup sup l nj(x )< 0  a. s.

From (16) and (19)— (22), we have

’ (V *̂)8"рIAw -/to  1

. + lim  sup А,7я P s  2q>»/P"o, Д (ani) ЯА* + Л ^  1 < 4 3 a. s .,  (23).
»->co J  ̂ ’
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where both A2 and A3 are constants.
We choose h„ such that

\ /(» _1log
l

that is Л„= (n_1 log n) 1+2я, then (23) becomes (3). This completes the proof of Theorem
1 .

Remarks.
1. In the process of this proof, we can see that Theorem 1 still holds when 

К  (sc) is uniform distribution on \_—a, a], where a is a positive constant. Therefore, 
i t  is enough to suppose that kernel function К  is decreasing on [0, oo) for Theorem
1.

2. About ^-condition and А-good. We suppose that the kernel function К  (аз) is 
symmetric only because it makes the proof simple and the idea clear. In fact, we can 
change them as follows;

The p. d. f. /(аз) is called satisfying ^-condition if
'«+b

f ( t)d t- (a + b )f ( ic ) < R (b + a Y +1

holds for all a > 0 , 6> 0 and аз£
The kernel function К  (аз) is called А-good if

I |аз|А1Г(аз)с?аз< -foo

and К  (sc) decreases on [0, oo) and increases on ( — oo, 0] or when К  (аз) possesses a 
■compact support 8 , К  (аз) decreases on [0, oo) (~) 8  and increases on ( —oo, 0] f]$°

3. It is not difficult to see that the sequence {/„} defined by (1) is 
•asymptotically optimal in O. J. Stone's sense183 .

4. We can replace А-condition by
I -1 лг+a

sup k -  f ( t ) d t - f ( a з)
me Hi \ && J  в-й

= 0(aA) as a-»0-K (26)

A t the same time, we have to suppose that
К  (аз)аг1+А—>0 as аз->оо (26)

in order to ensure that (21) holds. In fact, we choose Nn so large that (13) and 
K 0/NJin^hn hold, that is

N n> К о

For any 1< )< A „, we have
^ +A*

П9

(27)
.Hence
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К - 1 К ( М Л) 1 ^ .  (28)
It follows from (27), (28) and (14) that

anlK ^ g ( ^ -  )hn< g(h l^ )hn< M n [К  (Ж„)] ̂

(Mn)Ml** ] '1+л0 a.s. №->oo.

§ 3. The Proof of Theorem 2.

Since Theorem 2 can he proved in a way similar to [6] , we only give an 
outline.

For fixed constants a> 0, 6 > 0  and d with 0<d<2a&, we choose a function д(а^ 
Ъ, d; so) defined on \oo\ < 6  satisfying the following conditions:

1) g ( a , Ъ, d ; 0)= « , ^(a, &, d: ±&)=0;
2) 0< #(« , 6, d; a5)< a  for
3) <7(0, 6, d; so) is continuous on [ —6, 6]; .

4) j* d(aj b, d; so)dx=d.

It is obvious that there exists such function. Let {c„} is any sequnce such that cn—* 
oo. First, we suppose that {On} satisfies

0 ' < o i s <*>
Let

®n= > bn=OJi„} d„= -g—, •

and

6„= 2 S c'A + °fA ,  « > 2.
{sal

Let
/ /  n ГЗ'С6'"; » - e .)  for |в -в я| < 6л, n - 1 , 2,

I 0 for гс<0.
It is not difficult to see that /  is uniformly continuous on R% and is a p. d. f.

Let
п ( в п ЪП) en+&n).

It follows from Lemma 1 or Theorem 3 of [7] that
P  ( I £„/» -  4  I > K / O n) < 2  exp{ -  nhl/Ol/ (2dn +hn/On) }

< 2  exp (for sufficiently large n). (30)

Let
Tn={w: w = (X 1---X„---) such that \£n/n ~ dn\> h n/On}.
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It follows from (30) and Borel-Oantelli Lemma that
P (lim su p r„)= 0 .

We choose the uniform distribution on [ —1, 1] or a symmetric p. d. f. 
possessing compact support as the kernel function, then foJ any s

ги= ( Х 1г X 2” *) glim  sup P„,
n —» oo

we have, for large n,
gn<2h„/On.and?n(en)< 2 /O n. (31)

It follows from (31) and the definition of /  that

IA (O  - / ( « , )  k -  (82>

It is obvious that (32) holds for G„ not satisfying (29). This completes the proof.

References
[ 1 3  Parzen, E ., On the estimation of a probability density function and the mode, Ann. Math. Statist., 33 

(1962), 1065—1076. ' ‘
[  2 ] Devroye, L. P ., and Wagner, T. J ., The Strong Uniform Consistency of Kernel Density Estimation, 

Multivariate Analysis V., (1980), 55—77.
[ 3 3  Schuster, E. F ., Ann. Math. Statist., 40 (1969), 1187.
[ 4 3  Singh, B. S., Ann. Statist., (1976), 431.
[5 3  Chen Ziru, Uniform convergence rate of kernel density estimate of a probability density function. 

Scientia Sinica, to appear.
[6 3  Chen Xiru, Convergence rate of the nearest Neibor density estimate, Scientia Sinica, (1981), 12.
[7 3  Hoeflbing, W. J ., Amer. Statist. Assoc., 58 (1963), 13.
C83 Stone, C. J., Optimal uniform rate of convergence for nonparametric estimates of a density function or 

its derivatives,Becet Advances in Statistics: Papers Presented in Honor of Herman Chernoff’s Sixtieth 
Birthday,Bizvi, Bustagi, & Siegmund (eds.), Academic Press, New York.




