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THE UNIFORM CONVERGENCE RATE
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Abstract

~ In this paper, we study the uniform convergence rate of kernel density estimate f,
and get optimal uniform rate of convergence without the assurption of compact support
for kernel function. It is proved that if the density function f satisfies A-condition and
the kernel funetion K is A~good (see section 1), then we have

- lim su ( n >M(1+2M sup | fo(®@) —f (@) | <const a‘s
e P\ Togn e Wn = B

§1. Introduction

Let X, +-+, X, be a random sample drawn from a population with distribution

function F and probability density function f (p.d.f.).Denote the empirical distri—

bution function of X, X 2, ey, X by F,. The kernel estimate of f is difined by

Fal@)=—— Z‘K( ) ,} f;K( ey JAFu@),

[ v=1

where h,>0 is a constant dependmg on n and the kernel K is a p. d. f.

This method was proposed by Rosenblatt [1956] and has aroused the interest

of many authors. Since then statisticians have been concerned with the problem of

uniform convergence of f, to f. The best result was given by Devroye and Wagner

[1980]. In the recent years, the problem about uniform strong convergence rate

has attracted much attention of statisticians. Under certain conditions imposed on

the density f and kernel K, Schuster [1969] proved that
SUPlf @) —f@)|=0@ ™) as.

for sufficiently large n. Under the condition that the s—th order derivative of f is

uniform bounded on R1 Singh [1976] proved that, with a suitable choice of K and

ha, We have
sup| Fu(@) —f (@) | = O(n~"7@*2 /Toglog n) a..
e R .

for sufficiently large n. For an m-variate p. d. f. f, Susarla [1981] proved that if

Manuscript received July 12, 1983,
* Department of Mathematics, Beijing Polytechnic University, Beijing, China,



836 CHIN. ANN. OF MATH. Vol. 6 Ser. B

all the first order partial derivatives of f are uniformly bounded, then.
sup lf ,.(w) f () | —0(%'1/ (2m+2>10g logn)  a. 8.

for sufﬁclently large T
If we suppose that f satisfies d—order Lipschitz condition 0<d<1 (for d=1 is
the case above), the convergence rate can reach |
sup| fa(@) — (@) | =O(w*/m</logTogn)  a.s.
Lately, Chen Guijing and Zhao Lincheng have studied the same problem. They
improved the convergence rate to

"\ A/ E+22)
lim sup ( )

0 sup (o0 sup] Ful@) —f (@) | < const. "'a, s (2)
for sufficiently large n under the condition that f satisfies A-condition (refer to the
following definition) and kernel has compact support. In this paper, using a new
method, we get the same convergence rate as (2) under weaker condition. Precisely,
we omit the assumption that K possesses a compaoct support.

First, we give two definitions.

We say that p. d. f. f(x) satisfies A~condition if there exists a real number A,

0<A<2 such that _ g
sup’ J%a, F(@®dt—2af (v) | <Ra*

‘holds for all @>>0, where R is a constant,

It is not difficult to verify that if this satisfies 8“‘ L1psch1tz condition, then
S (@) satisfies the A-condition with A=39; if f'(w) satisfies 3" Lipschitz condition,
then f(«) satisfies' the A-condition with A=1+8. We say that the kernel functlon
K (@) is A-good if it satisfies the following conditions:

(i) K (=) is a symmetrie p. d. f. with

j |m]’“K(m)da><+oo

(i) K (w) is bounded and strictly decreasing on [0, o) or when K (w) possesses
eompact support S, it is strlotly decreasing on § N [0, o).

We state the theorems whose proofs are given in section 2 and 8, respectively.

Theorem 1. Suppose that K () is A—good and f () swt%sﬁes A—condition and

ho/ (W™ 110gn)1+2*
has a findte positive limit as n—»oo. Then we have

g )“2" . 9.

sup| fu(@) f(w)l<A<

for sufficiently large n, where A i a constant independent of © and .
Corollary 1. I f K () is A—good with A=20 and f () satisfies O™ order Lipschitz
wondition, then, with a suitable choice of hy, we have ..
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sup|fa(@) —£(@) |<A(n-11ogn)riz“a a. 8. (@)

. for sufficiently large n.
Corollary 2. If K () is A-good with A=38-1 and f'(), the demmtwe of f (a;),
satisfies O order mescl_wtz condition, then, with-a suitable choice of hy, we have

sup | @) —f (@) | <4 (n? logm:)%%é'§ a. 8. , (6)

for su fliciently large n.

In order to prove those corollaries, it is enough to verify that f sabisfies A~
condition with A=3, A=3-+1 respeotively. Especially, if f (%) possesses bounded
second order derivative, then f’(w) satisfies Lipschitz condition. From Corollary 2,
it follows that

sup] Fole) —f (o) | <A(n 10gn)2/° a. 8.

for sufﬁclently large n.
But even if fo) is h~bimes (k>2) differentiable, we could not improve the rate:
of convergence of sup|fs(@) —f(@) |, where f,() is kernel estimate with nonnegative.
PER;s

kernel. In other words 2/5 is the highest convergence rate for kernel estimate with.
nonnegative kernel,
Theorem 2. For any fiwed sequence {h,} and {c.} such that
lim f,=0, lim ¢,=

[ - -3
and
lim logn =0
n-ro0 ')'bh”

there ewists uniform continuous density funciion f such that
' ' 1
52%’[]6 (@) —f (@) | oo ws (6)

holds for sufficiently large n, where F,(w) is a kernel estimate with & switable choice of

kernel.
This theorem means that it iy impossible to establish any convergence rate of'
sup|fa(@) —f(@)| without some further conditions imposed on f besides of being:

uniformly continuous.

In the definition of kernel estimate, h, does not depend on random sample, It ig:
natural to use a function H,(X}y, ---, X,) of the sample instead of ,. Therefore (1)
can be replaced by

2 1 o—X ] | .
f"(m> \"9?¢=1 H, K( H, ) M
Form Theorem 1, it is eésy o get the following theorem.
Theorem 8. If K (x) is A~good and p. d. f. f(x) satisfies A-condition and
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l H” —_ (n-—i ].Og n) a/U1-+22) I ga (')‘0_1 ].Og ‘)’b) BA(L+22) a.s.

holds for sufficiently large m, then we have, with probability one,

|4(0) ~f (@) | S A(w~*1og )75 for large =,
where B is a positive number, 0<B<1.
In this paper we shall not discuss the estimator defined by (7) in detail.

§ 2. The Proof of Theorem 1.

In this section, A, A4i, Ay -+ are all constants. We shall use Devroye's
probability ihequality in proving theorem and state it in a form that is suitable for
our use. :

Lemma 1. Supposs that X, X,, -+, X, is @ random sample drawn from a
one—dimensional population with probability distribution F. Denote the empirical
distribution of Xy, -+, X, by F,. Suppose T R?, M={[m-l’, z+1]: €T, VI},
Ay={[e—2l, x+21]: 2E€ R}, and .
| sup F(4)<B<1/4.

Acsyy

Then for >0 and n>max(1/B,8B/s%), we have
P{sup|F.(4) —F(4)|>s}
A€
<16n® exp{ —mns?/(64B+4s)} +8nexp{—nB/10}.
Proof See [2]. -
Lemma 2. Let {h,} be decreatolng sequence with

limA,=0
and
qin, logn _
,1;3}3 nhy, 0 ®)
If
sup F (-A)<M0hm (9)
A€y,
then we have | '
lim gup (Ti&g‘ﬁ) sup| Fo(4) ~F(4) | <Oa.s. (10)

where My is any fiwed constamt and C is & constant.
Proof Choose O such that 0°>8M,, and take B=Mh, and s=A~/h,logn/n in
Lemma 1. Then for large n, '

1/2 ;
P((otoge) sspl Py =F )] >0)
<16n* exp{ —n(A%hylogm/n) / (Mohy + A~y Togn]m)}

+8n exp{ —nd~lh,log n/n/10}
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a A® 2
<16n exp( oI = log n>+8n oxp{ — 8 log n}<<24n?,

Hence

3P (soies )1 ’sup[F (A)~F(A)1>a)<oo

n=1

and (10) follows from the Borel—Oantelh s lemma.

Lemma 3. Let B(x) be a strictly decfrewsmg contmuous Junction defined on [0

o) and r(x) s its inverse function, then we have
w0 "R
jo R(w)ozw=jo r(8)dé

where Bo=R(0).
Now we prove Theorem 1.

Let g(@) be the inverse function of K (#) on [0, oo) It is easy to verify that

g***(y) is the inverse funoction of K (#1+* 1+A) Sinoce

LK@ﬁﬁm=LKwM%H%Mw#;G+MWWﬂw@<+w,

we have

f: g (y)dy = (1+?~)I "K(y)dy<+oo Ko=K (0)

In particular, for A=0, we have _
Ko had
[ g =[x @)ay.

From (12), for any n, we can choose an integer N, such that

o 2
> A Ko—1‘<h::,

where

Gui=4g (q'g:), ’5;'—1, 2, «+N,

From (11), we also have

lm 2 Ko [Cb,,g]iﬂ' =J:[g(w)]“"dw< '.+00‘

200 ¢=a1
Hence
sup%‘. Ko [ay]t< Ay,
: a  d=il N” i
Let
2K oy,
K (m) 2 I[-*Gm am](‘v) 2} %ai KM( ):

where

K u(®) = 55— Ii-amani(9)

and I3 (a:)" denotes the indicator function of B. It is obvious that

(11)

(12)

13)

(14)

(15)

(16)
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- | K (&) — K (2) | <Ko/N, @
. o
Falo) = nh,, § K, <(w;”wi) ) (18)
From (18), (17) and (1), we have "
| Fa (@) = Fu(@) | <K o/ N ol o 9)

Certainly, we can choose N, such that it satisfies the further condition Ko/N ,,h,,<
B, - |
We can write (18) as

;.” (@) — nj};" ﬁ”z" 2K oy; Ko ( (— ah)) % 2.?\70%: Foi(@),

&&= N, = n
where

}ni/ = 1 = Ky <________(m——w¢)>.
Hence

lf,.<w> -f@ =325 fy(a) - (@) |
<3 2Lt 2K°“M o)1 @)+ 5 2ot 1] pay.

From (18), the second term on the right side is less than 4,4}, Now we estimate the.
first term. For any j, 1<j<N,, we have '

(@) =1 (@) | = | oot ) 1)

2’71;@”5}&”
1 ‘ 'hm @ +(ln:;h”> .
< '2w”jh n Puy(2)
2a/ jh |P nj (@) = 280500 f (#) l ALy (e) +J (), (20)

where
Poy(@) = j T 8= F (0t tuhe) ~ F (a =)
and N,(a, b) denotes the number of X/s among Xy,:--, X,, which lie in the interval
[a, b]. .
It follows from A—condition that _
|  J (@) <Ralh, Vo, §, n. ‘ (21)
From Lemma 2, we have '

ha\E
. n hoy,
hlil_)swup (10 T > . fﬁ%,,i%? I (@)<0 a.s. (22)

From (15) and (19)—(22), we have

lim sup mm 1 bt supl Ful@) —f(o)]

I Canaad

<lim sup K° 2(

+ lim sup A [2 2“%150 R(a,.,)"h"-i—Agh] <4y = as,  (29)

f1—ro0 - J=1
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where both 4, and A; are constants.
'We choose /4, such that
N (T logn) kT =2,

that is h,= (n"tlog n)ﬁﬁ, then (28) becomes (3). This completes the proof of Theorem

Remarks.

1. In the process of this proof, we can see that Theorem 1 still holds when
K (@) is uniform distribution on [—a, ], where @ is a positive constant. Therefore,
it iy enough to suppose that kernel function K is decreasing on [0, o) for Theorem
1. |

2, About A-condition and A-good. We suppose that the kernel function K (z) is
zéymmetric only because it makes the proof simple and the idea clear. In fact, we can
change them as follows, ,

The p. d. . f(x) is called satisfying A-condition if

U:: f@)di~ (“"‘b)f(m) <R(b+a)**

holds for all 4>>0, >0 and #€ R;. ‘
The kernel function K () is called A-good if

J:lwl"K(m)dm< +oo

and K (x) decreases on [0, co) and increases on (—oo, 0] or when K (x) possesses a
compact support S, K (z) decreases on [0, o) NS and increases on (—oo, 0] NS.

8. It is not difficult to see that the sequence {f,} defined by (1) is
agymptotically optimal in Q. J. Stone’s sense'™ ,

4. We can replace A-condition by

_Lr*“ F@di—f(@) | =0(a?) as a0+, (25)

2a }g—~a
At the same time, we have o suppose that ;

K (2)a**—0 as a—>00 ' ’ (26)
in order to ensure that (21) holds. In fact, we choose N, so large that (18) and
Ko/ N ha<<h: hold, that is

sup
®ER,

N,.>h_§%.
For any 1<j<N,,, we have |
‘ | @pihn < @p1fons
3Se’t | | .
My=g(Bn*). | (27

Hence I ' : R
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=LK (M,)] 77, (28)
It follows from (27), (28) and (14) that

.
= g(-0 Vru g () by < M, LK (BT

<[K(M,) ML+ ]'11W0 4.8, n—>00,

§ 3. The Proof of Theorem 2.

Since Theorem 2 can be proved in a way similar to [6], we only give an
outline.

For fixed constants >0, b>0 and d with 0<d<<2ab, we choose a function g¢(a,
b, d; #) defined on |@|<b satisfying the following conditions: |
1) g(a, b, & 0)=a, g(a, b, d: £b) =0;

2) 0<g(a, b, d; 2)<a for |o| <b;

8) g(a, b, d; z) is continuous on [—b, b];

)Ig(abdw)dwd

It is obvious that there exists such function. Let {¢,} is any sequnce such that ¢,—
co, First, we suppose that {C,} satisﬁes

1y,

o .
On<0 Slogn’ (29)
Let
: 8 1
a,= 0. bp=Chy, d_'éﬁ n>1
and
n—1
.61—"—‘017?;1, 6,,=2 ZLOJZ:;—I—O,J&”, n=2.
Let
F) {g'(a,,; bs, du; m—e,) for |o—e,| <b,, n=1, 2, .
w= 0 for #<0.
It is not difficult to see that f is uniformly continuous on R; and is a p. d. £.
Let
_ fn::Nn(en—bm 6n+bn)-
It follows from Lemma 1 or Theorem 3 of [7] that
P(|&,/n—d,| =ha/0,) <2 exp{——nh2/02/(2d +ha/Os) }
<2 exp < 422 ><2rn.‘2 (for sufficiently large n). (30}

Let .
To={w: w=(Xy:-Xpe+) such that |£,/n—d,|=ha/Cp}.
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It bfollows from (80) and Borel-Cantelli Lemma that

P(lim sup T',) =0,

"We choose the uniform distribution on [—1, 1] or a symmetric p. d. £.

possessing compact support as the kernel function, then fox any

w= (X3, Xy-) Elimsup T,

n—roo

we have, for large =,

€4 <2h0/0, and Fu(6,) <2/0h. (31)
It follows from (81) and the definition of f that
2 1
| Fo T (32)

It is obvmus that (82) holds for O, not Satlsfymg (29). This completes the proof.
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