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COMPLETE SUBMANIFOLDS IN E*** WITH
PARALLEL MEAN CURVATURE®
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Abstract

This paper gives a pinching condition by which complete submanifolds in a
Euclidean space can be classified completely. In particular, a characterization for a
complete submanifold in a Euclidean space to be totally umbilical is shown,

- § 1. Introduction

Let E**? denote a Euclidean (n-p)-space. Okumura, M."™ characterized under
certain conditions a totally umbilical submanifold of E"*? by an inequality between
the length of the second fundamental form and the mean ourvature of the
submanifold. Later, by Yau’s maximum principle, Goldberg, 8. I.* improved the
condition of [1]. Recently, Hasanis, Th. in [4] extended the results of [3].

 In this paper, by generalizing Theorem 2 of [4] to a submanifold of any
codimension, we improve the pinching condition of [2].' Our main results are as
follows. _

Theorem 1. Let M be an n(=>3)-dimensional complete connected submanifold in
Er? with parallel mean curvature. If the second fundamental form o of M satisfies

lo*<[trace o|?/(n—1), @
then M is an n—plane, an n—sphere, or a circular cylinder 8" x H*,

Theorem 2. Let M? be a complete surface in E**? with parallel mean curvature.
If the inegality (1) és satisfied, then M? is & plane, a sphere, a circular cylinder 8§* X
E* or a product of circles 8*(ry) x 8*(rs), where |trace o= (1/r1)?+ (1/rs)*.

From Theorem 1 and Theoaem 2 we have the following 4

- Corollaxry. Let M be an n(>>2)-dimensional complete connected submanifold in
Et? with parallel mean curvature. If the second fundamental form o of M satz‘sﬁeé
| JoJ2<[[tzace o3/ (n—1), @)
then M is a totally umbilical n—sphere.
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Remark. If p=1, Theorem 1 has been proved by Hasanis, Theorem™. The
corollary may be viewed as a generalization of the classical theorem of Liebmann,
H. and was obtained by Okumura, M."™ under the additional conditions that M is
compact and the connection of the normal bundle over M is flat, |

H

§ 2. Formulas and Lemmas

Let M be an n—-dimensional submanifold immersed in E"*?, We choose a local
field of orthonormal frames ey, +++, 6,4, in E™? guch that, restricted to M, the vectors
61, ***, @, aré tangent to M. Let {ws} and {wap} be the field of dual frames and the
connection 1-forms of E™?, respectively”. Restricting these forms to M, we have (of,

[61)

w3 K, =15, H = (i), ‘ @
o=~ oy oy, oy +u=0, |
deoyy= —% Du A oy +~%— ; Rigueor A e, @
Rcﬁkﬁ% (h‘& il —-hf‘,h;"k), : . ‘(5)
Gewas= "gwa‘r Neys +~21— jZk Baspew; N oy,
Bopp= $ (REhG— hghi) . ‘ ‘ @)
The second fundamental form o and the mean curvature §{ of M are
| o= o @, @re Lo
and '
&= (trace o) /n= —;L? 2“} (tr H%)e,, (8)
respectively. From (B), (7) and (8) the scalar curvature R of M can be written ag
R=n’H?—|c|? NG
where . ‘ ‘ - .
2= [trace o[*/n=[£]F, |o|=Sm(HD2. (10)

" If £+0, we can choose e, in guch a way that its direction coincides with that
of £. Then '

tr H™=nH, tr H=0 (B#n+1). @D
Putting ‘ 4 : |
W= 621 (Pt — Hdy) @@ Qens1, 7= g hoi®@w;®es, (12)
’ Bn+l

7 * We use the following convention on the range of indices: : )
14, B, vontp; 14, 4, £y o<ty 1<, B, o<k,
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we have
trace =0, trace =0, - (13)
ul?=tr (A=, [2]°= 3% o (B, (14)
: -t '
lo|2= 21+ u|*+nE?, 16)

from which it may be seen theat |7|? as well ag |u|? is independent of the choice of
the frame fields and is a function globally defined on M, | _
A submanifold M is said to be pseudo-umbilical if it is umbilical with respect
to the direction of the mean curvature &, i, e., hit=HJ,. From (11),(18) and (14)
one can easily soe that M is pseudo-umbilical iff |u|?=0 and M is totally umbilical
iff it is pseudo-umbilical and |#|2=0 :
Now assume that the mean curvature & = Hey,y of M is parallel, i. e.,

wg,n1=0, H= =constant. ‘ (16)
As has been calculated in [5], we have : '
~5-3—4("#'/" ) =] Du[?+ ‘% Z’%” (B Rugn+ 1™ Ry , an

and

—A("’” ) = | D= "2”‘,; Py (A RunH‘ Rmk)"‘ 2 FhRoysstey ~(18).

B#Fn+1 B,’Y*n+1
where D denotes the generalized covariant differentiation and 4 the La,plaman.

The following lemma can be found in [6].
Lemma 1. Let M be an n—dimensional submanifold in E**?. If
(=D lol*<|trace of*  (resp. <),
then the sectional curvatures of M are =0 (resp. >0).
The following generalized maximum principle is due to Yau, S. T.-Cheng, 8.
Y .~Motomiya, M.™
Lemma 2. Let M be a complete connected Riemannian manifold with Ricci
curvaiure bounded below, and f be & O*~funciion bounded above on M and haev no
mazimum. Then for any >0, there exists @ point P& M such that ai P
(i) sup f—s<f(P)<sup f—e/2, |
(11) |grad f| (P)<s,
(iii) 4f(P)<e.
‘We now establish our main lemma.

Lemma 3. Let M be an n(>38)—dimensional complete connected sdbmwnifold in

E* with nonzero parallel mean curvature. Lf the second fundamental form o of M

satisfies (1), then either M s pseudo—umbilical or |w|?=nH?/(n—1) on M
everywhere. |

Proof From the assumption and (16), it is easy to see that :

| HvLHA = HAHML (19)
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Substituting (5) into (17) and making use of (11) and (19), we have
5 A1 = | Dul?— e (B + (B e (B3 — 3) [tr(HPH™9].  (20)
By Schwarz ineqality, from (11) and (14) it follows that
3 (= S [SM - HapP<[pllel @)
we repeat the same caleculations ag in [1] and from (20), (21), (156) and (1) we
get -

A1) > 10wl + (v~ SO A ] = i~ fel?)

> (n—2) VAETT =T |ul*{ JnHﬂ/ D)~ |l (22)

Since condition (1) implies :

ul*<|o|?—nH*<nH*/(n—1) (28)

and, by Lemma, 1, the sectional curvatures of M are bounded below from O, we can

apply Omori-Yau’s maximum principle (cf. [3]), and from (22) and (28) conclude
that either |u|?=0, i. e., M is pseudo—umbilical, or _

| sup |u]*=nH?/(n—1). | (24)

- If |]? attains its maximum on M, then by using Hopf’s well-known theorem

we see from (22) and (28) that . |w|?=constant and thus |u|?=nH2/(n~1) on M

everywhere.

Now assume that |u|? has no maximum on M. We prove that it is impossible.
In fact, by Lemma 2, we have that, for any natural number », there exists a point
P,E€ M such that, by (24) and (22),

nH?
n—1

___1 e WJH2 . 1
PR | ]2(P.) <oo1 %

and ,
(n=2) VAT =1y || (P {VRETG=D) —|ul (P} <o,
from which together with (24) we can find (cf. the proof of Theorem 1 in [4])

nH?<2(n—1)/(n—2). (2b)
Consider a homothetic transformation 7 in E"? which is defined by
COA P4, . . (26)

where p ig a posmve real number, Then, by the structure equations of E"*?, if
follows from (26) that ' '
Wap=W4p.
Thus, 1’0 is easy to see that the image M=/ (M) satisfies the same conditions as M
and nH?=nH?/,?, where H is the corresponding quentity for M. Then we must
have, as (25) above, _
o H2=pnH?<2p*(n—1)/ (n—2),
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which is impossible for p<{n(n—2)H?2/2(n—1)}2, This completes the proof of
Lemma 3. :

§ 3. Proofs of Theorems

The proof of Theorem 1 First of all, from (10) and (16) we see that
' |trace o|®=n?|¢|?=constant.
Thus, if £€=0, then the inequality (1) implies |¢|*=0 on M, i. e., M is a
totally geodesic n—plane in H"*?, So the theorem holds. '
Now assume {0 on M. By Lemma 3 we separate two cases.
Case I. |u|?=0 everywhere, i. e, M is pseudo—umbllmal Substltutang (5) and
(6) into (18) and noting that h”“—H dy, we have

3 A1e?) = DelP+ 33 fox(HPH?— HVE) ~ [t (HAH") 1%} 0o
>(2- o2 Iole (=5 v o), @7)

where the last inequality is from the following estimation (cf. [8])
S (@ - BV~ (@ EN Ty (2- 11 el

By Y+n-+1l

Oondition (1) implies that |v]2(<|o|?) is bounded above and the sectional

curvatures of M are bounded below (Lemma 1). Applying Omori-Yau’s maximum

principle™®, (27) gives rise to either |#|2=0 or |
sup|v|*> (p—1)nH?/ (2p—8). (28)

On the other hand, by virtue of (15) and the fact that |u|2=0, it follows from (1)

that |7|*<nH?/(n—1), which coutradicts (28) for n>>3. Hence, |#|?=0 and M is a

~ totally umbilical n—sphere in E**?,

Qase II. |u|2=nH?/(n—1) everywhere. In this case, from (15) and (1) we get
|+ +nH?/ (n—1) = o [P~ nHA<nH*/ (n—1),

which implies |7|2=0 on M everywhere. Hence, M is totally geodesic with respect

to the subbundle €,.3®-*®e,1p 0f the normal bundle of M. Since, from the

assumption of the theorem, the subbundle e,.3&)-*®es, is parallel in the normal

bundle, then, by Theorem 1 of [6], we conclude that M lies in a totally geodesio

(n+1)~plane E* of E™?, i.e., Mc>E* <> E™?, and ey is just the normal vector

to M in E"*, Thus, our theorem can be obtained from Theorem 2 of [4].

Therefore, Theorem 1 is proved completely.

The proof of Theorem 2 By Lemma 1, the ineqality (1) guarantees that the
Gauss curvature of M? is nonnegative,so that it does not change sign. Thus, for p=1, -
our theorem is the direct consequence of the result of Klotz, T. and Osserman, R.™

We now assume p>1. As has been pointed out in the proof of Theorem 4 of [5),
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M? lies in a totally geodesic 4-plane H* of H?*?, Moreover, M? immersed in ¢
satisfies the same properties as in H2*?, If M? is minimal, then condition (1) implies

M? is totally geodesic. Hence, Theorem 2 can be shown immediately from Theorem
2 of [10].

Finally, the corollary is evident if once we note "ohat, by Lemma 1, the
ineqality (2) implies the sectional curvatures of M are positive.
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