ON COHOMOLOGY OF INFINITESIMAL NEIGHBOURHOODS OF COMPLEX MANIFOLDS

XIAO ERJIAN(肖尔健)*

Abstract

In this paper, we introduce the concept of the (k, l)-th C^{∞} infinitesimal neighbourhoods of complex manifold M and diffine defferential modules $\mathscr{A}_{M,k-p,l-q}^{p_l}$ and $\mathscr{A}_{M,k,l}^{r}$ for the (k,l)-th C^{∞} infinitesimal neighbourhoods. We prove some isomorphism theorems of cohomology and hyper cohomology concerning $\widetilde{\Omega}_{M,k-p}^{p}$ and $\Omega_{M,k-p}^{q}$, as follows

$$H^{p}(M, \widetilde{\Omega}_{M,k-r}^{r}) \approx H_{\widetilde{o}}^{p}(M, \widetilde{\mathcal{J}}_{M,k-r,l-*}^{r}),$$
 $H^{p}(M, \widetilde{\mathcal{J}}_{M,k,l}^{*}) \approx H_{DR}^{p}(M, \mathbb{C})$

and for hyper cohomology

$$\mathbf{H}^{p}(M, \widetilde{\Omega}_{M,k-*}^{*}) \approx H^{p}(M, \mathbf{C}),$$
 $\mathbf{H}^{p}(M, \Omega_{M,k-*}^{*}) \approx H^{p}(M, \mathcal{O}_{M}).$

The concept of the k-th infinitesimal neighbourhoods was introduced by A. Grothendieck^[2], B. Malgrange^[3] used the k-th infinitesimal neighbourhoods of O^{∞} manifolds to Lie equation theory. In [4] we introduced two kinds of differential modules $\widetilde{\Omega}_{M,k-p}^p$ and $\Omega_{M,k-p}^p$ for the k-th infinitesimal neighbourhood. In this paper we prove some isomorphism theorems of cohomology and hypercohomology concerning $\widetilde{\Omega}_{M,k-p}^p$ and $\Omega_{M,k-p}^p$ for complex manifold M. We introduce the concept of the ((k, l)-th O^{∞} infinitesimal neighbourhood of complex manifold M and define the differential module of (p, q)-type $\widetilde{\mathcal{A}}_{M,k-p,l-q}^p$ for the (k, l)-th O^{∞} infinitesimal neighbourhood. The main results are as follows

$$H^p(M, \widetilde{\Omega}^r_{M,k-r}) \approx H^p_{\widetilde{\partial}}(M, \widetilde{\mathscr{A}}^{r,*}_{M,k-r,1-*}).$$

This is similar to Dolbeault isomorphism theorem.

If
$$\widetilde{\mathscr{A}}_{M,k,l}^r = \bigoplus_{p+q=r} \widetilde{\mathscr{A}}_{M,k-p,l-q}^{p,q}$$
, the cohomology groups of the complex $\widetilde{\mathscr{A}}_{M,k,l}^*$ are

$$H^p(M, \widetilde{\mathscr{A}}_{M,k,l}^*) \approx H^p_{DR}(M, \mathbb{C}),$$

where $H_{DR}^{p}(M, \mathbb{C})$ is the p-th complex valued C^{∞} DeRham cohomology group of M.

On hypercohomology, there are isomorphisms

Manuscript received August 26, 1983.

^{*} Institute of Mathematics, Fudan University, Shanghai, China.

$$\mathbf{H}^{p}(M, \widetilde{\Omega}_{M,k-*}^{*}) \approx H^{p}(M, \mathbf{C}),$$
 $\mathbf{H}^{p}(M, \Omega_{M,k-*}^{*}) \approx H^{p}(M, \mathcal{O}_{M}).$

All symbols and concepts concerning complex manifolds we use here follow those in [1].

Suppose M is an m-dimensional complex manifold. C_M^{∞} is the sheaf of germs of complex-valued C^{∞} functions on M. $\alpha_M^{p,q}$ is the sheaf of germs of C^{∞} forms of type (p,q) on M. \mathcal{O}_M is the sheaf of germs of holomorphic functions on M. $\overline{\mathcal{O}}_M$ is the sheaf of germs of antiholomorphic functions on M. Ω_M^p is the sheaf of germs of usual holomorphic p-forms on M (it is denoted by $\tilde{\Omega}_M^p$ in [4]). $M^{(k)}$ is the holomorphic k-th infinitesimal neighbourhood of M. $\mathcal{O}_{M^{(k)}}$ is the structure sheaf of $M^{(k)}$. $\widetilde{\Omega}_{M,k-p}^p$ and $\Omega_{M,k-p}^p$ are sheaves of germs of holomorphic p-forms defined in (4) for $M^{(k)}$.

At first we describe the holomorphic differential modules $\tilde{\Omega}_{M,k-p}^{r}$ and $\Omega_{M,k-p}^{r}$ by somewhat different way so as to match the content of this paper. Let $\Delta \colon M \to M \times M$ be the diagonal map and π_1 (or π_2): $M \times M \to M$ be the projection to the first (or second) factor of $M \times M$. π_1^* (or π_2^*): $\mathcal{O}_M \to \mathcal{O}_{M \times M}$ is the pullback by π_1 (or π_2). Let x's denote the points of the first factor of $M \times M$ and y's denote the points of the second factor of $M \times M$. If $y_i - x_i$, $i = 1, \dots, m$, in $M \times M$ correspond to the formal coordinates ξ_i , $i = 1, \dots, m$ of $J_{M,k}$ (see [4]), dx_i and $d(y_i - x_i)$, $i = 1, \dots, m$, in $M \times M$ correspond to $\tilde{d}x_i$ and $\tilde{d}\xi_i$, $i = 1, \dots, m$, in $\tilde{\Omega}_{M,k-1}$ respectively, the projection $p: \mathcal{O}_{M \times M} \to \mathcal{O}_{M^{(k)}}$ induces the following commutative diagram

$$\begin{array}{ccc}
\mathcal{O}_{M\times M} & \xrightarrow{p} \mathcal{O}_{M^{(k)}} \\
\downarrow d & & \downarrow d \\
\Omega_{M\times M} & \longrightarrow \widetilde{\Omega}_{M,k-1}.
\end{array}$$

Therefore $\widetilde{\Omega}_{M,k-1} = \Omega_{M \times M} \bigotimes_{\mathcal{O}_{M \times M}} \mathcal{O}_{M^{(k-1)}}|_{\mathcal{A}(M)}$. Similarly $\widetilde{\Omega}_{M,k-p}^p = \Omega_{M \times M}^p \bigotimes_{\mathcal{O}_{M \times M}} \mathcal{O}_{M^{(k-p)}}|_{\mathcal{A}(M)}$. We can consider that \widetilde{d} is induced by d. Similarly, let $_{II}d$ be the partial differential with respect to y on $M \times M$ and $_{II}\Omega_{M \times M}$ be the module of partial differentials with respect to y on M, i.e. $_{II}\Omega_{M \times M} = \sum_{i=1}^m \mathcal{O}_{M \times M} dy_i$. Then, we have the following commutative diagram

$$\begin{array}{ccc}
\mathcal{O}_{M\times M} & \xrightarrow{p} \mathcal{O}_{M^{(k)}} \\
\downarrow d & \downarrow D \\
\Omega_{M\times M} & \longrightarrow \Omega_{M,k-1},
\end{array}$$

 $Q_{M,k-p}^p = {}_{11}Q_{M\times M}^p \bigotimes_{\mathscr{O}_{M\times M}} \mathscr{O}_{M^{(k-p)}}|_{\mathscr{A}(M)}$ and D is induced by d.

Let \mathscr{I}' be the idea sheaf of $C_{M\times M}^{\infty}$ generated dy $\pi_1^*f - \pi_2^*f$, $f \in \mathscr{O}_M$ and \mathscr{I}'' be the idea sheaf of $C_{M\times M}^{\infty}$ generated by $\pi_1^*g - \pi_2^*g$, $g \in \overline{\mathscr{O}}_M$. We define

$$\mathcal{I}^{k+1,l+1} = (\mathcal{I}')^{k+1} + (\mathcal{I}'')^{l+1}$$

to be the idea sheaf of $C_{M\times M}^{\infty}$.

Definition 1. The (k, l)-th C^{∞} infinitesimal neighbourhood of the complex manifold M is the ringed space $M^{(k,l)} = (M, C_{M^{(k,l)}}^{\infty})$, whose underlying space is M and structure sheaf is

$$C_{M^{(k,l)}}^{\infty} = C_{M\times M}^{\infty}/\mathscr{I}^{k+1,\,l+1}\big|_{A(M)}.$$

If U is an open coordinate neighbourhood on M, $f(x, \bar{x}, y, \bar{y}) \in C^{\infty}_{M \times M}(U \times U)$,

$$f(x, \bar{x}, y, \bar{y}) \equiv \sum_{|\alpha| < k \ |\beta| < 1} \frac{1}{\alpha ! \beta !} \frac{\partial^{|\alpha+\beta|} f(x, \bar{x}, y, \bar{y})}{\partial y^{\alpha} \partial \bar{y}^{\beta}} (y-x)^{\alpha} (\bar{y}-\bar{x})^{\beta} \bmod \mathscr{I}^{k+1, l+1}.$$

Hence

$$C^{\infty}_{\underline{M}(k,l)}(\overline{U}) = \{ \sum_{|\alpha| \leq k, |\beta| \leq 1} f_{\alpha\beta}(x, \overline{x}) (y-x)^{\alpha} (\overline{y}-\overline{x})^{\beta} \bmod \mathcal{I}^{k+1, l+1} \}_{\bullet}$$

Definition 2. Let

$$\widetilde{\mathscr{A}}_{M,k,l}^{p,q} = a_{M \times M}^{p,q} \bigotimes_{\theta_{M \times M}} C_{M^{(k,l)}}^{\infty} |_{A(M)}.$$

 $\widetilde{\mathscr{A}}^{p,q}_{M,k,l}$ is a $C^{\infty}_{M^{(k,k)}}$ -module and

$$\widetilde{\mathscr{A}}_{M,k,l}^{p,q}(U) = \sum_{|I+J|=p,|K+L|=q} C_{M^{Ck,D}}^{\infty}(U) dx^{\wedge I} \wedge dy^{\wedge J} \wedge d\overline{x}^{\wedge K} \wedge d\overline{y}^{\wedge L}.$$

By $\partial: a_{M \times M}^{p,q} \to a_{M \times M}^{p+1,q}$ and $\bar{\partial}: a_{M \times M}^{p,q} \to a_{M \times M}^{p,q+1}$, it is clear that

$$\partial(\mathscr{I}^{k+1,\,l+1}a_{M\times M}^{p,q})\!\subset\!\mathscr{I}^{k,\,l+1}a_{M\times M}^{p+1,q}$$

and

$$\overline{\partial}(\mathscr{I}^{k+1,l+1}a_{M\times M}^{p,q})\!\subset\!\mathscr{I}^{k+1,l}a_{M\times M}^{p,q+1}.$$

Hence $\partial: \alpha_{M \times M}^{p,q} \rightarrow \alpha_{M \times M}^{p+1,q}$ and $\overline{\partial}: \alpha_{M \times M}^{p,q} \rightarrow \alpha_{M \times M}^{p,q+1}$ induce $\partial: \widetilde{\mathscr{A}}_{M,k,l}^{p,q} \rightarrow \widetilde{\mathscr{A}}_{M,k-1,l}^{p+1,q}$ and $\overline{\partial}: \widetilde{\mathscr{A}}_{M,k,l}^{p,q} \rightarrow \widetilde{\mathscr{A}}_{M \times M}^{p,q+1}$ induces $\widetilde{\mathscr{A}}_{M,k,l-1}^{p,q+1}$ respectively. $d = \partial + \overline{\partial}: \alpha_{M \times M}^{p,q} \rightarrow \alpha_{M \times M}^{p+1,q} \oplus \alpha_{M \times M}^{p,q+1}$ induces

$$d = \overline{\partial} + \partial : \widetilde{\mathscr{A}}_{M,k,l}^{p,q} \longrightarrow \widetilde{\mathscr{A}}_{M,k-1,l}^{p+1,q} \oplus \widetilde{\mathscr{A}}_{M,k,l+1}^{p,q+1}$$

The following diagrams are commutative

$$a_{M imes M}^{p,q} \xrightarrow{\overline{\partial}} a_{M imes M}^{p+1,q}$$
 $projection \downarrow \qquad \qquad projection$
 $\widetilde{\mathscr{A}}_{M,k,l}^{p,q} \xrightarrow{\overline{\partial}} \widetilde{\mathscr{A}}_{M,k-1,l}^{p+1,q},$
 $a_{M imes M}^{p,q} \xrightarrow{\overline{\partial}} a_{M imes M}^{p+q,1}$
 $projection \downarrow \qquad \qquad projection$
 $\widetilde{\mathscr{A}}_{M,k,l}^{p,q} \xrightarrow{\overline{\partial}} \widetilde{\mathscr{A}}_{M,k,l-1}^{p,q+1}$

and

and the composition

$$\widetilde{\mathscr{A}}_{\underline{M},k,l}^{p,q} \xrightarrow{d} \widetilde{\mathscr{A}}_{\underline{M},k-1,l}^{p+1,q} \oplus \widetilde{\mathscr{A}}_{\underline{M},k,l-1}^{p,q+1} \xrightarrow{d} \widetilde{\mathscr{A}}_{\underline{M},k-2,l}^{p+2,q} \oplus \widetilde{\mathscr{A}}_{\underline{M},k-1,l-1}^{p+1,q+1} \oplus \widetilde{\mathscr{A}}_{\underline{M},k,l-2}^{p,q+2,q}$$

is zero.

We have a sheaf complex

$$\widetilde{\mathscr{A}}_{M,k-r,l-*}^{r,*}:\widetilde{\mathscr{A}}_{M,k-r,l}^{r,o} \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} \widetilde{\mathscr{A}}_{M,k-r,l-p}^{r,p} \xrightarrow{\overline{\partial}} \widetilde{\mathscr{A}}_{M,k-r,l-p-1}^{r,p+1} \xrightarrow{\overline{\partial}} \cdots$$

Theorem 1. There are isomorphisms of cohomology groups

$$H^{\mathfrak{g}}(M, \widetilde{\Omega}^{r}_{M,k-r}) \approx H^{\mathfrak{g}}(M, \widetilde{\mathscr{A}}^{r,*}_{M,k-r,l-*}), p=0, 1, \cdots$$

In order to prove the theorem we introduce the following sheaves and concepts.

Let $T'_{(x,y)}(M \times M) = \mathbb{C}\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial y_j}\right)_{i,j=1,\dots,m}$ be the holomorphic tangent space to $M \times M$ at (x, y) (see [1]) and

$$T''_{(x,y)}(M \times M) = C\left(\frac{\partial}{\partial \bar{x}_i}, \frac{\partial}{\partial \bar{y}_j}\right)_{i,j=1,\dots,m}$$

be the antiholomorphic tangent space to $M \times M$ at (x, y). $T'(M \times M)$ is the holomorphic tangent bundle on $M \times M$ and $T''(M \times M)$ is the antiholomorphic tangent bundle on $M \times M$. We consider the vector bundle $\Lambda^p T'(M \times M) \otimes \Lambda^q T''(M \times M)$ on $M \times M$. Let $\operatorname{Der}_{C}^{p,q}(M \times M)$ be the sheaf of germs of C^{∞} cross sections of $\Lambda^p T'(M \times M) \otimes \Lambda^q T''(M \times M)$. If U is an open coordinate neighbourhood on M,

$$\mathrm{Der}_{\mathcal{O}}^{p,q}(M\times M)\left(U\times U\right) = \sum_{\substack{|I+J|=p\\K+L|=q}} C_{M\times M}^{\infty}(U) \left(\frac{\partial}{\partial x}\right)^{\wedge I} \wedge \left(\frac{\partial}{\partial y}\right)^{\wedge J} \wedge \left(\frac{\partial}{\partial x}\right)^{\wedge K} \wedge \left(\frac{\partial}{\partial y}\right)^{\wedge L}.$$

Definition 3. Let

$$\mathrm{Der}_{\mathcal{C},k,l}^{p,q}(M) = \mathrm{Der}_{\mathcal{C}}^{p,q}(M \times M) \bigotimes_{\theta_{M \times M}} C_{M^{(k,l)}}^{\infty} \big|_{A(M)}.$$

If $\langle , \rangle : \operatorname{Der}_{\mathcal{C}}^{p,q}(M \times M) \times \alpha_{M \times M}^{p,q} \to C_{M \times M}^{\infty}$ is the natural pairing,

$$\langle \operatorname{Der}_{\mathcal{O}}^{p,q}(M \times M), \mathscr{I}^{k+1,l+1} \alpha_{M \times M}^{p,q} \rangle \subset \mathscr{I}^{k+1,l+1}$$

and

$$\langle \mathscr{I}^{k+1,l+1} \mathrm{Der}_{\mathcal{O}}^{p,q}(M \times M), \ \alpha_{M \times M}^{p,q} \rangle \subset \mathscr{I}^{k+1,l+1}.$$

The pairing \langle , \rangle :Der $_{\mathcal{C}}^{p,q}(M \times M) \times \alpha_{M \times M}^{p,q} \rightarrow C_{M \times M}^{\infty}$ induces the pairing

$$\langle , \rangle : \operatorname{Der}_{\mathcal{C},k,l}^{p,q}(M) \times \widetilde{\mathscr{A}}_{M,k,l}^{p,q} \longrightarrow C_{M^{(k,l)}}^{\infty}.$$

By the pairing $\widetilde{\mathscr{A}}_{M,k,l}^{p,q}$ is locally free $G_{M^{(k,k)}}^{\infty}$ -module with locally free basis $dx^{\wedge I} \wedge dy^{\wedge J} \wedge d\bar{x}^{\wedge K} \wedge d\bar{y}^{\wedge L}$, |I+J|=p, |K+L|=q.

We consider the linear subspace $\prod_{i=1, \dots, m} \tilde{T}'_{(x,y)}(M \times M) = \mathbb{C}\{dy_i\}_{i=1, \dots, m}$ of the holomorphic cotangent space to $M \times M$ at (x, y),

$$\mathring{T}'_{(x,y)}(M\times M)=C\{dx_i,\ dy_j\}_{i,j=1,\cdots,m}$$

and the linear subspace

$$_{II}\mathring{T}''_{(x,y)}(M\times M) = O\{d\tilde{y}_i\}_{i=1,\dots,m}$$

of the antiholomorphic cotangent space to $M \times M$ at (x, y)

$$\tilde{T}''_{(x,y)}(M \times M) = O\{d\bar{x}_i, d\bar{y}_j\}_{i,j=1,\dots,m}.$$

They are invariant under locally holomorphic coordinate transformations on M. We get vector bundles

$${}_{\operatorname{II}}\mathring{T}'(M\times M)=\bigcup_{(x,y)\in M\times M}{}_{\operatorname{II}}\mathring{T}'_{(x,y)}(M\times M)$$

and

$$_{\operatorname{II}}\mathring{T}^{\prime\prime}(M\times M)=\bigcup_{(x,y)\in(M\times M)}{_{\operatorname{II}}\mathring{T}^{\prime\prime}_{(x,y)}(M\times M)_{ullet}}$$

Let $\mathscr{B}_{M \times M}^{p_q}$ be the sheaf of germs of C^{∞} cross sections of $\Lambda^{p_{\Pi}}\mathring{T}''(M \times M) \otimes \Lambda^{q_{\Pi}}\mathring{T}'''(M \times M)$. Locally

$$\mathscr{B}_{M\times M}^{p,q}(U\times U)=\sum_{|I|=p,\ |J|=q}C_{M\times M}^{\infty}dy^{\wedge I}\wedge d\bar{y}^{\wedge J}.$$

The partial differential $_{\rm II}d$ with respect to y can be decomposed into $_{\rm II}d=_{\rm II}\partial+_{\rm II}\overline{\partial}_{\rho}$ where

$$_{\text{II}}\partial f(x, \, \bar{x}, \, y, \, \bar{y}) = \sum_{i=1}^{m} \frac{\partial f}{\partial y_i} \, dy_i$$

and

$$_{\Pi}\bar{\partial}f(x, \bar{x}, y, \bar{y}) = \sum_{i=1}^{m} \frac{\partial f}{\partial \bar{y}_{i}} d\bar{y}_{i},$$

where $f(x, \bar{x}, y, \bar{y}) \in C_{M \times M}^{\infty}$. They are independent of holomorphic coordinate transformations on M.

Definition 4. Let

$$\mathscr{A}_{M,k,l}^{p,q} = \mathscr{B}_{M\times M}^{p,q} \otimes_{\mathbf{M}\times \mathbf{M}} \mathcal{O}_{M^{(k,l)}}^{\infty} \Big|_{\Delta(M)}.$$

Locally

$$\mathscr{A}_{M,k,l}^{p,q}(\overline{U}) = \sum_{|I|=p,|J|=q} C_{M^{(k,l)}}^{\infty}(\overline{U}) Dy^{\wedge I} / D\overline{y}^{\wedge J},$$

where $Dy = dy \otimes 1 \in \mathscr{A}_{M,k,l}^{1,0}(U)$ and $D\bar{y} = d\bar{y} \otimes 1 \in \mathscr{A}_{M,k,l}^{0,1}(U)$. By the following inclusion relations

$$_{\text{II}}\partial(\mathscr{I}^{k+1,l+1}\mathscr{B}^{p,q}_{M\times M})\subset\mathscr{I}^{k,l+1}\mathscr{B}^{p+1,q}_{M\times M}$$

and

$$_{\text{II}}\overline{\partial}(\mathcal{J}^{k+1,l+1}\mathcal{B}^{p,q}_{M\times M})\subset\mathcal{J}^{k+1,l+1}\mathcal{B}^{p,q+1}_{M\times M},$$

the partial differential $_{II}d$: $\mathscr{B}_{M\times M}^{p_iq} \to \mathscr{B}_{M\times M}^{r+1,q} \oplus \mathscr{B}_{M\times M}^{p_iq+1}$ induces differential D: $\mathscr{A}_{M,k,l}^{p_iq} \to \mathscr{A}_{M,k-1,l}^{p_iq+1} \oplus \mathscr{A}_{M,k,l-1}^{p_iq+1}$ and we have the following commutative diagram

It is clear that DD = 0.

Now we consider the linear subspace

$$_{\text{II}}T'_{(x,y)}(M\times M)=\mathbf{C}\left\{\frac{\partial}{\partial y_{i}}\right\}_{i=1,\dots,m}$$

of the holomorphic tangent space to $M \times M$ at (x, y) $T'_{(x,y)}(M \times M)$ and the linear subspace

$$_{\text{II}}T''_{(x,y)}(M\times M) = \mathbb{C}\left\{\frac{\partial}{\partial y_i}\right\}_{i=1,\dots,m}$$

of the antiholomorphic tangent space to $M \times M$ at $(x, y)T''_{(x,y)}(M \times M)$. They are invariant under the local holomorphic coordinate transformations on M. We have vector bundles

$$_{\mathrm{II}}T'(M\times M)=\bigcup_{(x,y)\in M\times M}{_{\mathrm{II}}T'_{(x,y)}(M\times M)}$$

and

$$_{\mathrm{II}}T^{\prime\prime}(M\times M)=\bigcup_{(x,y)}{_{\mathrm{II}}}T^{\prime\prime}_{(x,y)}(M\times M).$$

Let $\operatorname{Der}_{C_{\mathbb{M}}^{n,q}}^{n,q}(M\times M)$ be the sheaf of germs of C^{∞} cross sections of $A^{p}_{II}T'(M\times M)\otimes A^{q}_{II}T''(M\times M)$. It is a $C^{\infty}_{M\times M}$ -module and locally

$$\operatorname{Der}_{C_{\widetilde{M}}^{p,q}}^{p,q}\left(M\times M\right)\left(U\times U\right) = \sum_{|I|=p,|J|=q} C_{M\times M}^{\infty}\left(U\times U\right) \left(\frac{\partial}{\partial y}\right)^{\wedge I} \wedge \left(\frac{\partial}{\partial \overline{y}}\right)^{\wedge J}.$$

Definition 5. Let

$$\mathrm{Der}_{\mathcal{O}_{M}^{n},k,l}^{p,q}\left(M\right)=\mathrm{Der}_{\mathcal{O}_{M}^{n}}^{p,q}\left(M\times M\right)\bigotimes_{\mathcal{O}_{M\times N}}C_{M}^{\infty}(k,l)\left|_{\mathcal{A}(M)}\right.$$

There is a natural pairing $\langle \ , \ \rangle$: $\operatorname{Der}_{\mathcal{C}_{\mathbb{T}}}^{p,q}\left(M\times M\right)\times\mathscr{B}_{M\times M}^{p,q}{\to} C_{M\times M}^{\infty}$ and

$$\langle \operatorname{Der}^{\scriptscriptstyle p,q}_{\scriptscriptstyle \mathcal{O}_{\mathtt{M}}}(M\times M)\,,\,\,\mathscr{I}^{\scriptscriptstyle k+1,\,l+1}\mathscr{B}^{\scriptscriptstyle p,q}_{\scriptscriptstyle M\times M}\rangle {\subset} \mathscr{I}^{\scriptscriptstyle k+1,\,l+1},$$

$$\langle \mathscr{I}^{k+1,\,l+1} \, \operatorname{Der}^{p,q}_{\mathcal{C}^{y}_{M}}(M \times M), \, \mathscr{B}^{p,q}_{M \times M} \rangle \subset \mathscr{I}^{k+1,\,l+1}.$$

Therefore the pairing \langle , \rangle : $\operatorname{Der}_{\mathcal{O}_{\mathcal{U}}^{p,o}}^{p,o}(M \times M) \times \mathscr{B}_{M \times M}^{p,p} \to C_{M \times M}^{\infty}$ induces the pairing

and $\mathscr{A}_{M,k,l}^{p,q}$ is a locally free $C_{M^{G,p}}^{\infty}$ —module with locally free basis $Dy^{\wedge I} \wedge D\overline{y}^{\wedge J}$, |I| = p, |J| = q.

Now we define the following filtration for the complex $(\widetilde{\mathscr{A}}_{M,k-r,l-*}^{r,*}, \overline{\partial})$.

$$F_{p}(\widetilde{\mathscr{A}}_{M,k-r,l-q}^{r,q}) = \operatorname{Ann}((\operatorname{Der}_{\mathcal{O}_{M}^{s},k-r,l-q}^{0,q-p+1}(M) \otimes \operatorname{Der}_{\mathcal{O},k-r,l-q}^{0,p-1}(M)),$$

where Ann means annihilator sheaf. Locally

$$F_{\mathfrak{p}}(\widetilde{\mathscr{A}}_{\underline{M},k-q,l-\mathfrak{p}}^{r,q}(U)) = \sum_{|K+L|=q,\,|r|>\mathfrak{p}} \widetilde{\mathscr{A}}_{\underline{M},k-r,l-q}^{r,0}(U) d\bar{x}^{\wedge k} \wedge d\bar{y}^{\wedge L}.$$

By the filtration we can compute the spectral sequence

$$E_0^{p,q} = F_p \widetilde{\mathscr{A}}_{M,k-r,l-p-q}^{r,p+q} / F_{p+1} \widetilde{\mathscr{A}}_{M,k-r,l-p-p}^{r,p+q}$$

Locally

$$E_0^{p,q}(U) = \sum_{|I|=p,|J|=q} \widetilde{\mathscr{A}}_{M,k-r,l-p-q}^{r,0}(U) dar{y}^{\wedge I} \wedge dar{x}^{\wedge J}$$

and $d_0^{p,q} \colon E_0^{p,q} \to E_0^{p,q+1}$ is equal to \overline{D} . We have

$$E_1^{p,q}(U) = \begin{cases} \sum_{|I|=p} \widetilde{\mathscr{A}}_{M,k-r,0}^{r,0}(U) d\overline{x}^{\wedge 1}, q=0, \\ 0 \quad q \geqslant 1, \end{cases}$$

and $d_1^{p,q} \colon E_1^{p,q} \to E_1^{p+1,q}$ is equal to ${}_{\mathbf{I}}\overline{\partial}$, where

$$_{\mathbf{I}}\overline{\partial}f(x,\,\bar{x},\,y,\,\bar{y}) = \sum_{i=1}^{m} \frac{\partial f}{\partial \bar{x}_{i}}\,d\bar{x}_{i}.$$

We get sheaf exact sequence

$$0 \rightarrow \widetilde{\Omega}^r_{M,k-r} \rightarrow E_1^{0,0} \xrightarrow{d_1^{0,0}} E_1^{1,0} \rightarrow \cdots$$

Hence globally we get

$$H^{p}(M, \widetilde{\Omega}_{M,k-r}^{r}) = E_{2}^{p,0}(M) = E_{\infty}^{p,0}(M) = H_{2}^{p}(M, \widetilde{\mathcal{A}}_{M,k-r,l-*}^{r,*}).$$

Theorem 1 has been proved.

We define sheaves

$$\widetilde{\mathscr{A}}_{M,k,l}^{r} = \bigoplus_{p+q=r} \widetilde{\mathscr{A}}_{M,k-p,q-l}^{p,q}.$$

We get a complex

$$\widetilde{\mathscr{A}}_{M,k,l}^{k}:\widetilde{\mathscr{A}}_{M,k,l}^{0}\longrightarrow \widetilde{\mathscr{A}}_{M,k,l}^{r+1}\longrightarrow \widetilde{\mathscr{A}}_{M,k,l}^{r+1}\longrightarrow \cdots$$

Theorem 2. There are isomorphisms of cohomology groups

$$H^{p}(M, \widetilde{\mathscr{A}}_{M,k,l}^{*}) = H_{DR}^{p}(M, \mathbf{C}), p = 0, 1, \dots,$$

where $H_{DR}^{p}(M, \mathbb{C})$ is the p-th complex-valued DeRham cohomology group of M.

We define a filtration for the complex $(\widetilde{\mathscr{A}}_{M,k,l}^*, d)$

$$F_p(\widetilde{\mathscr{A}}_{M,k,l}^r) = \operatorname{Ann}(\bigoplus_{\substack{a+c=i\b+d=j\a+b=r-q+1\columnber d=k-l=j\columnber d=k-l=i}} \operatorname{Der}_{C_M^a,k-i,l-j}^{a,b}(M) \operatorname{Der}_{C,k-i,l-j}^{c,d}(M)).$$

Locally

$$E_0^{p,q} = \{ \sum_{\substack{I+J+K+L=p+q\I+K=p}} \eta_{IJKL}(x, \, ar{x}, \, y, \, ar{y}) \, dx^{\wedge I} \wedge dy^{\wedge J} \wedge dar{x}^{\wedge K} \wedge dar{y}^{\wedge L} \},$$

where $\eta_{IJKL}(x, \bar{x}, y, \bar{y}) \in C^{\infty}_{\underline{M}^{(K-|X+J|,J-|K+Z|)}}$. The differential $d_0^{p,q}: E_0^{p,q} \to E_0^{p,q+1}$ is equal to $11d = 11\bar{\partial} + 11\bar{\partial}$.

We have

$$E_1^{p,q} = \begin{cases} \sum_{a+b=p} a_M^{a,b}, \ q=0, \\ 0, \ q \geqslant 1, \end{cases}$$

and $d_1^{p,q}: E_1^{p,q} \to E_1^{p+1,q}$ is equal to $d: \sum_{a+b=p} \alpha_M^{a,b} \to \sum_{c+d=p+1} \alpha_M^{c,d}$. Globally we have

$$H^{p}(M, \widetilde{\mathscr{A}}_{M,k,l}^{k}) = E_{2}^{p,q}(M) = E_{\infty}^{p,q}(M) = H_{DR}^{p}(M, \mathbb{C}).$$

Theorem 2 has been proved.

Corollary. Poincare lemma holds for the complex $\widetilde{\mathscr{A}}_{M,k,l}^*$.

Theorem 3. The hypercohomology groups of the complex $\widetilde{\Omega}_{M,k-*}^*$ and $\widetilde{\Omega}_{M,k-*}^*$ are as follows:

$$\mathbf{H}^{*}(M, \widetilde{\Omega}_{M,k-*}^{*}) = \mathbf{H}^{*}(M, \Omega_{M}^{*}) = H^{*}(M, \mathbf{C}),$$

where $H^*(M, \mathbb{C})$ are cohomology groups with complex coefficients.

$$\mathbf{H}^*(M, \Omega_{M,k-*}^*) = H^*(M, \mathcal{O}_M).$$

Let i be the composition $\Omega_M^p \xrightarrow{\pi_1^*} \Omega_{M \times M}^p \xrightarrow{\text{projection}} \Omega_{M,k-*}^p$. By (4) i's induce quasi-isomorphisms of complexes

Hence $\mathbf{H}^*(M, \Omega_{M,k-*}^*) = \mathbf{H}^*(M, \Omega_M^*) = H^*(M, \mathbf{C}).$

 $i: \mathcal{O}_M \rightarrow \mathcal{O}_{M^{(k)}}$ induces quasi-isomorphism of complexes

Hence $\mathbf{H}^*(M, \Omega_{M,k-*}^*) = H^*(M, \mathcal{O}_M)$.

References

- [1] Griffiths P. and Harris, J., Principles of Algebraic Geometry, 1978.
- [2] Grothendieck, A., Techniques de construction en géométrie algebrique Séminaire H. Cartan Paris 1960/61 Exposés 7—17.
- [3] Malgrange, B., Equations de Lie I, II., J. Diff. Geom., 6 (1972), 503-522, 7 (1972), 117-141.
- [4] Xiao, E. J., On Cohomology of Singularities of C^{*} Mapping, Math. Ann., 262 (1983), 255—272.