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THE AUTOMORPHISMS OF NON-DEFECTIVE
ORTHOGONAL GROUPS IN CHARACTERISTIC 2*

L1 Foaxn (&)™

Abstract

Let V be a non-defective n-dimensional quadratic space over a field F' of characteristic
2. In this paper we prove that, when #>6 with #+8 and F+F;, any automorphism of
Q) or O'(V) has the standard type @,, sending o to gog™, where g is a semilinear
automorphism of ¥V which preserves the quadratic structure, Therefore the automorphism
groups Aut 2(V) and Aut O'(V) are isomorphic to PI'O(V). As a corollary, Aut O(V)
and Aut O*(V) are isomorphic to PI'O(V) as well.

Let ¥ be a non-defective n-dimensional quadratic space over a field F of
characteristio 2 with the guadratic form @, V—>F and associated symplectic form
« , ) VxV—»F; (w, v) =Q(a+y) +Q(z) +Q(¢). The dimension of V' is an even
integer since ¥ is non-defective. O(V'), O*(V"), O'(V') and Q(V') are, respectively,
the orthogonal group, the rotation group, the spinor subgroup and the commutator

‘siubgroup of the orthogonal group on V. E. A. Connors™ showed that all antomo-
rphisms of these groups are of standard type @, provided n=>10 and F+F,. In this
paper we shall prove the result is also true when n=6, and provide a uniform proof
for all n>>6 with n+#8 and F + F,. '

I. Preliminaries

Through-out this paper, F #F,. We use 4 to denote either Q(V") or O’ (V).

‘We agsume familiarity with the theory of quadratic forms and orthogonal
groups as treated in [1, 2, 3, 5, 8, 10]. We.also assume familiarity with the residual
space method as treated in 9.

Definition 1. Let v be a non—zero vector in V, and let U be @ non—zero subspace
of V. We call v a singular vector (non—singular vecior, resp.) if Q@(v)=0 (Q(v)#0,
resp.). We call U non—defective (defective, totally defective, resp.) ¢f UNU*=0{U NU*
#0, UCU*, resp.), where U*={wC€V | (v, U)=0}. U is degenerate if U is defect'imé
and there is a singular vector in UNU*. |
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Convention Let c€O(V). The letters P and R will always denote the fixed
and residual spaces of ¢, respectively. If 4 is an automorphism of 4 and o€ 4, ¢’
will be used for 4(c), and the fixed and residual spaces of ¢’ will be denoted by P’

and R’, respectively. Similarly, P, and R, refer to o;, P} and RB; to o}.

When R has some'geometrio property, we say that o has the same property (e. |

g., non-defective, defective, totally defective, degenerate, eto.).

Suppose X is a subset of 4. The centralizer of X in 4 will be denoted by C(X).

The following results (Lemma 1.1—Lemma 1.7) are well-known. we omit
the proof.

Lemma 1.1. Suppose n=2. Then o€ 0* (V) is an snvobution if and only if o=
1. Let c€0*(V) and €0~ (V). Then vor*=0c"1. In particular, O*(V') dis an
Abelian group. ' _ ; '

Lemma 1.2. Let c€O0(V) and o+1. Then o2=1 if and only if o is totally
defective. In particular, a plane rotation o is non—defective if and only if o2 #1,

Lemma 1.8. Let R be a non—defective plane. The set of plane rotations with
restdual space R is O (R)_| 1, (ewclude 1). The set of plane rotations in 4 with residual
space B is Q(R) 11, (exclude ). |

Lemma 1.4. Every plane rotation in 4 és either non-defective or degemerate. If
the Witt indews »=0, every plane rotation in 4 is non—defective. :

Lemma 1.6. Let R be o degenerate plane in V with R=Fi_| Fw, Q(4)=0. Then
the set of plane rotations with residual space- R is {H;,,,|0#\AE F}, where H,, is the
Eichler transformation, given by Fi,(0) =2+ (v, w)i+ (@, $)w+Q(w) (w, ¢) ¢. Each
B, s in Q(V). :

Lemma 1.6. If oy and o2 are in O(V) with oy non—defective, then

(a) 0102=0301903R1= Ry and o4 &, Permutes with a1lr,,

(b) (Bi, Bs) =0 =0102=0304,

(6) 0103=0403 and RiN Ba=0=>(Ry, Ry) =0.

‘Lemma 1.7. Let oy and o be plane rotations. Then o0, s @ plane rotation &f
and only if Bi1 Ry%0 and oy09%1.

Lemma 1.8. Suppose n=>6. Let o € 4 be a non—defective plane rotation. Then

(a) O(o)=(0*(R)_LO*(P))N4, '

(b) 00(c)=0K0(o)*>~2(R) 1. |

" Proof (a) Obviously (0*(R)_0*(P))N4=C(c¢)S(0(R)1LO(P))N4. For

any p€ 0(0), p|r permutes with o|z. But ¢|r€0*(R), 50 p|z€ 0*(R) by Lemma

1.1. Hence p|»€ 0*(P), and so O(c) = (0*(B) 1 0*(P)) N4.
(b) It follows from (a) that
0*(R) LO*(P)20(0)2<0(0)*>2<Q(R)*) LK (P)*.
Hence
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Q(R) L1=(0*(B)_L11) N420{0(c)*»>200(c)2(0*(R) LH N4=(R) 1,
since the centralizer of <Q(P)*> in O(P) is {l»}.
Lemma 1.9."0  Suppose n>>6. OC (B, ) = {H, 0| VE F}.
Lemma 1.10. Suppose n>6. Let oy and o be plane rotations in 4. Then
R;= R;e00(04) =00(03)«0(01) =0(03).

Proof From Lemmas 1.8 and 1.9 we easily see that Ry=R, if and only if
00(01) =00(03). Since OC0(X ) =0(X) for any subset X in 4, we immediately
seo that 00(oy) = 00(ay) if and only if O(ay) =0(aa).

Lemma 1.11. Suppose n=>6. Let oy and o5 be non—defective plane rotations in A.
Then (Ry, Ry)=0 if and only if 010a=0303 and O(04) #0(0y).

Proof  If (Ry, Ry)=0,then 0403=030y by Lemma 1.6, and O(cy) #0(0o3) by
Lemma 1.10. Jonversely, if 0309=030y and 0(oy) #0(03), then coRi=Ry, 02|z €
0% (Ry), and By# Ry by Lemmas 1.6, 1.8, and 1.10. We have (o2+1)R4CRiN R,
and dim R;N Ry<dim Ry, So there is a non-zero « in Ry such that (oa+1)s=0,
which implies oa|g,=1. Hence (RBy, R,) =0.

II. Action of 4 on the Non-Defective Plane Rotations

Definition 2. Suppose 4 is an automorphism of 4, and R is a plane in V. We
say R behaves under A if there is @ plane rotation o € 4 with the residual space R such
that ¢’ = A(o) is also a plane rotation.

The purpose of this section is to prove thab all non-defective planes in V.

behave under 4. The steps of proof are as follows. Suppose ¢ € 4 is any non-defective
plane rotation. First of all, we determine some restriction in res ¢’ and prove ¢’ is

‘non-defective. Then we show if one non-defective plane behaves under /4 then all '

non~defective planes behave under A. Finally, we prove at least one non-defective
plane behaves under 4. a

Proposition 2.1. Suppose n>6. Let R be a non-defective plane whick behafves
under A. Then A(Q(R) 11)=Q(R") 11, where R s as shown in the above conveniion.

Proof By definition there is a piane rotation o& 4 with the residual space R
-such_that o'=A(c) is also a plane rotation with the residual space R’. Since ¢ is
non-defective, g®51, and 80 0’?#1. Hence ¢’ is non-defective by Lemma 1.4. Using
Lemma 1.8, we obtain Q(R’) | 1=00(¢") =A(00(c))=A(Q(R) 1 D). '

Proposition 2.2. Suppose n=6. Let 0 € 4 be a non-defective plcme rotation. If

o' is non—defective, then res o' =2 or n. ,

- Proof 'We can prove res o’ =2, n—2 or n by an analogous procedure as in 2.14
of [9]. We now show res ¢’ %n—2. Otherwise suppose dim P’=

By Lemma 1.8, 00(c) =0{0(c)?. Applying 4, we have 00(c’) = 0{0(c").
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Now <0(c")>Q(R) L Q(P’") since O(¢’)SO(R’) 1 O(P"). So
00(0")=0<0(c")*>21 | Q(P")
since dim P’=2 and dim R’'>2,

Take I#p'€1 ] Q(P’) and put p=A472(o’). Then p EOO(o-’) and p€00(c)=
Q(R) |1 by Lemmal. 8. Therefore O (p)=0C(c), and so O(p)=0(c¢"). Thus ¢' €
00(o")=00(p') =11 Q(P’), which implies ¢’ =1. This is a contradiction.

Proposition 2.3. Suppose n>6. Let o € 4 be a non-defective plane rotation Then.
o' =A(c) is a non—~defective rotation with residual indew 2 or . A

Proof It suffices to prove ¢’ is non-defective.

Suppose ¢’ is defective. Then. res ¢’<n, R’ P'#0, and we have a splitting R
=U | (R'NP) where U is a non-defective subspace. So (¢”?+1)V = (¢’ +1)U, and
res o’2<res ¢’. If ¢’ is also defective, then Tes o’*<ros ¢'2. Because dim ¥V is finite
and ¢/ #1 for all integers k=0, there is an integer § such that ¢'* is non~defective:
and res 0¥ <n. But ¢* is a non-defective plane rotation with the residual space R’,
and ¢'¥=4(c%). So res ¢'*=2 by Proposition 2.2, and B behaves under A..
Applying Proposition 2.1, both ¢'¥
Hence ¢’ must not be defective.

Proposition 2.4. Suppose n=>6. If there is @ non—defective plane B which behaves:
under A, then all non—defective planes behave under A.

and ¢’ are non-defective plane rotations.

Proof ‘Take a non-defective plane rotation ¢ in A with the residual space R.
Then ¢'=A(c) is also- a non-defective plane rotation with the residual space R'. -
Let o be any non-defective plane in V.

1). First suppose (R, @) =0. Write V=R | P= R_Lav_LU for some non-defective:
subspace U, and V=R’ | P’. Take 've Q(w) 1 1. Then € 0(o), and v'=A(w) €O0(¢")
= (0*(R)_LO*(P")) N 4. Denote v'=17}_| 5, where v} € 0*(R’) and 7,€ 0*(P').

Take a non-singular vector # in R'. Define @, pl>7,p7;" for all p in 4,where 7,
is the symmetry determined by @. Put ¥'=A"'®4. Clearly, both & and ¥ are.
automorphisms of 4. _

V() =APA(v) =AD(+') = A”i('vw('v"l_]_'vz)'v‘;l) A7 ] vh)
=AY 1 D) =A72(77 1 D).

Since 74" 1 1€ Q(R’) | 1=00(0"), weget A*(7," | 1) €00(o) = Q(R) _I_Z Denote:
A~ (7" L1) by 011, where € Q(R). So ¥ (v)=(0_LL) (7] Llex) =0 17|slly. We
see res W' (7) <4< n. Applying Proposition 2.8 to the automorphism ¥, we see V()
is a non-defective plane rotation, which implies =1, and s0 77"=1. Hence 7i=1
by Lemma 1.1. Thus v'=1_| v%, and so res »’<<n. Applying Proposition 2.3 again,
we prove that 7’ is a non-defective plane rotation. Therefore & behaves under A.

'2) Now suppose (R, w)+0. Write w=Fa+Fy. Without loss of generality we.
can assume (R, #) 0. It is easy to see that there is & non-defective quaternary
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subspace TDOR4Fa, Since n=>6, dim T*>9. So, applying the result of step 1)
twice, any non-defective plane in T behaves under A. In particular, we take :€ R
with (2, ©) #0, then my= Fz+Fg is a non—defective plane in T, behaving under 4.
Choose a non-defective quaternary subspace T4Dwy-+Fy. As above, any non-
defective plane in T behaves under A. In particular, & behaves under 4.
Proposition 2.5. Suppose n>5 with n+%8 and »>0. Then at least one non—
defective plane behaves under A. ' |
Proof Since »>0, we can take a splitting V= (Fi+Fj) | W, where Q(3)=
Q(4)=0and (¢, §)=1. So i-+j is a non-singular vector. Take w€ W with Q((w) #0.
Put o =74.; By, wviislic, € 4, where 7,44 is the symmetry determined by ¢-+j. Now we
have Hiu(¢+7)=1+Q(w))i+j+w and (i+j, Hi,,(i+§))=Q(w)#0. Hence o=
Ti+i8,, (4+7) is a non-defective plane rotation. _
B, is an involution, so is A(H,,,,). Write p= A(#,,,), and denote the residual

space of p by . Then wCwx* and dim m;<-%.

1) If dim W<%J then o'=A4 (0') =4 (TiHEi:wT";l-le‘-n%) =4 (Ea'm(l)v 74+J(w)E£)w) i
A(B, 0 5050) 0> 20d T68 ' <n. Thus, res ¢’ =2 by proposition 2.8, and the residual
plane of o behaves under A.

2) We now assume dim az:=—g—-. Then w=x" and 5 is an even integer, and so

we can assume n>>12 Take any non—singular- vector » in V', and put y=s+ps€w.
If Q(y) +0, then (w, pw) #0. put p=7,p7;'p™* where 7, i8 the symmetry determined
by #. Then p=17,07,"p™* where 7, is the symmetry determined by #. Then p=1,7,
' n
. 2
<n. By prdrosition 2.8, A9 is a non-defective plane rotation, and the residual
plane of 4~ behaves under 4. _

If Q(y) =0, we can take v€ (Fy)* such that v-+pvdtFy. Put $=E,,pH;10,
Then ¢=H,,.H,,, ,,.,#—-E,,,,,Ey,‘p,,=E,,,,,+p,,, which is a degenerate plane rotation. We

is a non-defective plane rotation. But A-lp=A"(z,07;1) B e, and res A p<—+2

have res A‘igb<4<-g—. Repeating step 1), we get through.

In order toprove at least one non-defective plane behaves under A in the case
»=0, we need the concept of Cayley rotations. - ' :

Definition 8. o€ O(V)is called a Cayley rotation on V if its minimal polynomial
on V has the form A3*+4BA+1 with B+#0. We eall B8 the residual irace of the Cayley
rotation o, and denote B=res tr(c).

- 'We list some simple properties (Lemma 2.6—Lemma 2.9) of Cayley rotations.
(The proof can be proceeded as in. section 1B of [6] or 1D of [7].) -
Lemma 2.6. Suppose n=2. Then the set of Cayley rotations 4s O*(V) excluding
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1. If o is @ Cayley rotation on V and & is @ non—singular vestor, then {®, o} is a basis
of V. Given any non—zero B in F, there are at most fwo Cagjley rotations in O(V) with
residual trace B. If o is one of them, then o~ is the other.
Lemma 2.7. Let 0 €O(V) be a Cayley rotation on V. Suppose U is & g-invariant
non—~defective subspwce of V. Then o |y is @ Ouyley rotation on U, and
ros tr (o |p) =res tr (o).
Lemma 2.8. Suppose v=0. Then o € O(V) is @ Cayley rotation on V if and only

if Fo+ Fow is @ o—invariant non—defective plane for any non—zero vector & in V.

Lemma 2. 9 Suppose v=0. Then oEO(V) is & Cayley frotwtzon on V if and
only if

(a) res o=n,

(b) there is a splitting V= m:i_l_---_J_m:% into non-defeotive planes m,, each invariant

under o,

(©) & %8 a Cayley rotation on m; for each 3,

(d) restr (o|q)=res tr (0’|, for all 4, j.

In the case »=0, a plane need not be non-defective, but any plane rotation in
4 is non-defective by Lemma 1.4,

Proposition 2.10. Suppose n=>6 and »=0. Let o€ 4be a plane rotation. If o’
= A (o) 4s not & Cayley rotation on V, then the non—defective plane R behaves under A.

Proof By Proposition 2.3, res ¢’=2 or n. If res ¢'=2, then R behaves
under A. If res ¢’=mn, then for any non—zero vector # in V' Fu-Fo's is a plane
since »=0. We have O+#Q(z+0's) = (2, 0'z), which implies the plane Fa+Fo¢'s is
non~defective. Since ¢’ is not a Cayley rotation on V, by Lemma 2.8, there is a
non-zero vector y in V such that Fy-+Fo'y is not o’~invariant. Take a plane
rotation p in 4 with residual space Fy+Fo'y. Olearly po’ #o’p. The residual space
of po’p~t¢’~* lies in the ternary subspace Fy-+Fo'y+Fo'?y, and so po'p~o’"*
plane rotation. But 47*(pa"p %6"2) = ((A %) (A2p) )o?, being the product of
two plane rotations, has residual index at most 4. Thus, 4*(pc’p %¢’1) is also a

/—1/ is a

plane rotation by Proposition 2.8, and the residual Plane of 4~*(po’p™*¢’~*) behaves
under A. Therefore B behaves under 4 by proposition 2.4.
' Now using the technique in 6.4 oj [7], we prove

Prop051t10n 2.11. Suppose n=>6 with n#8 and y= 0. Then at least one non—
defective plane behaves under A.

Proof Suppose, if possible, any non—defectlve plane does not behave under 4.
Then any non-defective plane does not behave unber A1 either.

Take a plane rotation ¢ in 4. By Proposition 2.10, ¢’ is a Cayley rotation on
V. Using Lemma 2.9, we got a splitting V=, | -+ | @y and ¢'=311 ++ | 3, where
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each w; is a o'~invariant non-defective plane, ¥,=0"|,, and b=—

For each 4, take a symmetry =, in. O(m;) | I. Define @,, pt>v,p7;* for all p in 4,
Put U= A1, A. Then the &, and W; are automorphisms of 4. |

Now &;(0") =7 (Zy L -1 Sl - L Sp)ort=2u - L 37 Lo L = (X7 LD "
Denote A™(Z;211) by Ts. Then T, T? and Ti are Oayley rotations on ¥ by the
Hypothesis and Proposition 2.10. T, permutes with ¢ since ;2| I permutes with.
¢’. So T, R= R for each ¢

Oonsider ¥;(0) = A"1B,A(c) = A-1®,(0") = A (21 D) o’)=Tio. By Lemma.
2.7, Ty| p is a Cayley rotation on P, and res (T;|p)=n—2. Applying Proposition
2.10 to the automorphism ¥';, we see T'o is a Cayley rotation. By Lemma 2.7, res tr
(T',) =res tr (T;|p) =res tr ((Ty0) |p) =res tr(T,0). Using Lemma 2.7 again, res tr
(T;|g) =res tr (T,)=r1es tr (To) =res tr ((T')|zr), By Lemma 2.6, (T0)|r=
(T';|r)*". Since o |r#1, we obtain (T'0) |r= (Ti|r)™", and T}|z=0"*|p for each 4.
Hence the T? have the same residual trace.

Now consider the automorphism ¥, ¥'; for 1<i<j<k.

V(o) =A70D;(o"®) = = A~ LD (S5 LD 0”) =TiTe®. But (T3T0™) |n
=1, and so T;Tj0? is a plane rotation by proposition 2.3. Let Ri, be the residual.

space of U W;(c*%).

Take Ri=R and Wrﬂ:e V=R; |U;. Since R ig 1nvarlant under each T2 and.
T?|z=0""|r, wo can write

: =Ty, 1 T?|y, fori=1, - k.

Consider 7%y (0®) = T2T2 2, Tts residual plane R, CR*=U,. Put Ry= Ry and
write V' =Ry | Ry | Us. T? permutes with T3T'302 since 3,;* | | permutes with X7* | 1,
5% |1 and 0’2, So R, is invariant under each T2, With respect to the splitting V=
Ri | R | Uy, write T¢=T43 | Tis 1 T3 |v,, where T'u="T73|z,, for each 4.

Since res tr (Ti) =Tres tr (T?) =res tr (T}) =res tr (Tha), wo get Ti=T1*' by
Lemma 2.6. In particular, since T97'30® has the residual space R,, we must have
" =T and TE|y,=T1%|v,. For i=8, we can prove T'u="T1i. Now we write

Ti=Tul T | Ty, |
Ti=Tu 1 T1 | T7?| 0,
, =Ty T3 1 T?y, for ¢=38.

We now consider the plane rotation TiT%0® and repeat the above process.
Clearly, (T2T%02) | goir, =1, and 80 RisC U, Put Rg=Rys and write V=R | Bo | R,
1 Us As above, R is invariant under each 1. With respect to this splitting of V,

we have
T3=T41| T1a 1 T1s L T% 0,
T3=Ty [Tl T 1772 |0,
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T3=Tu T3 1 Tss 1 T v,
Ti=Tyu 1TE 1T | T? IU; for ¢>4.
As above, we can prove Ts3="T43 and T3|y,=T7%| v,
If n=6, we have
T3=Ty | Tie | TH,
T3 = Tii_LTIZ _LT13, '
with respect to the sphttmg V=R, | R, ] R;. Then T3T30?=1. This contradiocts the
. fact that T3T'30? is a plane rotation.
If n>10, then dim Us>4. We have
T3=Ty | T4 1 TH 17730,
T3 Ty | T | Tss LT7| 1,
with respect to the splitting V==Ry | By | B3 | Us. Then TiT%62=1p,, p, le_Ll’l | 7o
Bince T'7* is a Oayley rotation on ¥V, T'7*|y, is a Cayley rotation on U, and so
res(TiT36%) =res (T'1%|y,) =4. This is a contradiction.
Theréfore, at least one ﬁon—defective plane behaves under 4.
Theorem 2.12. Suppose n=>6 with n+8. All non—defeciive planes behave under
A. o ‘
Proof Apply propositions 2.4, 2.5 and 2.11.

III. The Automorphisms

In this section we prove any automorphism A of 4 has the standard type D,
provided n>6 with n+#8, The stéps of proof are as follow. First of all, we prove that
A induces in a natural way a one-one correspondence of the set of the non-defective
planes in ¥V onto itself. Then A naturally induces a one—one correspondence of the
set of lines in ¥ onto itself. We show that the mapping preserves incidence between
a lline and a plane, and preserves the quadratic structure. Finally, using the
Fundamental Theorem of Projective Geometry, we obtain the main theorem of this
paper. As a corollary, we easily prove that any automorphism of O(FV) or O*(V) -
has the same type. |

Suppose n>6 with n+8. Let R be a non-defective plane in ¥, and let o in 4 be
chosen with residual space B. Then R’ is a non-defective plane by Theorem 2.12
and Proposition 2.3, Let R correspond to R'. Denote R'=AR. This map does not
depend on the choice of by Lemma 1.10. It is injective by Lemma 1.10 again. It is
surjective since A is also an automorphism of 4. So 4 is a bijeotion of the set of
the non-defective planes in V' onto itself.

Proposition 8.1. Suppose n=>6 with n+8, Let R1 and R, be two non—defectwe
planes in V. Then (Ry, Ry)=0&(Ry, R:)=0.
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Proof Apply Lemma 1.11, S : .
Proposition 3.2. Suppose n=>6 with n%8. Let Ry and R, be two non—defective
planes in V. Then » o
dim(R; N Ry) =ledim (RN RY)=1.
~ Proof Seo 5.7 of [4] |
Proposition 3.3. Suppose n=>6 with n+8. Let {R,},cz be a family of non—
defective planes in V. Then ‘
dim (D R,)=l1ledim (L[J R)=1.

Proof It suffices to show that dim ([} B,(=1=dim (O R)=1.
I

‘Without loss of generality we can assume card I =3. Let Ry N B3N Ry= Fo with
Ry, R, and R; distinot. :

1) First suppose Ri+ Ry+Ry=U is quaternary. If we can find a non-defective
plane wC (B,+R;)*, wt(Ry+Ry+Ry)*, for some 4, j, 1<i<j<<8, then (z, B,)~
(w, R;))=0 and (w, R;)+0, where % is the remaining index. Hence (', R;)=
(=', B;)=0 and (#’, R}) 0 Py proposition 3.1. Put R;DR,=L; and R R,=1L,,
which are lines by Proposition 8.2. Then I,=L; otherwise (R, o')= (Li+L;, «')
- =0, Hence RN R;NR, is a line. Now we attempt to find such a w. Notice
dimUNT*=2o0r 0.

Suppose dim UNU*=2. We can write the ternary subspace Ry+Ry=R; | Fy
for some y €U NU*. Since dim (By+Ry)*>8 and (By+Ry) N (Ry+Ry)*=Fy, there
is a non-defective plane in (Ry-+R,)* It is easily scen that (By+R,)* is spanned by
. non-defective planes. Since (Ry+ Ry)*F(Ry+ Ry~ Rs)", we can choose a non-defective
plane # in (R;+R,)* which is not in (R;+R;+R;)". Hence in this case we are
done. ' '

Suppose now dim UNU*=0, i. e., U is non-defective. Take a non-zero vector -
U in U*. Write Ry=Fs+Fz Then (, 2) 40 since R, is non-defective. Put R,= Fu
-+ F (z+w) which is a non-defective plane containing Fz. Now both R+ R+ R,
and Ry+ Rs+ R, are quaternary and defective. Henoe by the previous case, RN R}

N R,=TL} and R, N RsN R.= L} are lines. Therefore RiN Rh=Li= RN Ry=ILs=RiN
5, and so Ry N R, N R is a line.
. 2) Finally suppose U is ternary. We can choose a non-defective plane B, with
FocREU. Then U-+Ry=Ry+Ry+Ri=Ry+Rs+ Ry is quaternary. By step 1),
'\ Ry N R, and B\ N RN R, are lines. Therefore B} | Ry— BN By= BN Ry, and so
YN RN RS is a line.

Proposition 8.4. Suppose n=>6 with n+#8. Let Ry and Ry be two non—defective
planes. Then Ry Ry is a singular line if and only if RN\ R és @ singular line.

Proof See 5.12 of [4]
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Proposition 8.5. Suppose n=>4. Let L; and L, be two distinct lines in V. Then
there are non—defective planes Ry and Ry in V such that LiCR;, LyC Ry and Ry Ry
=0. Moreover, if (Ly, Ly)=0, we can choose Ry and Ry with (Ry, Ry)=0.

Proof See 7.2 of [4].

We now define a correspondence of the set of lines in V onto itself. Let -L be a
line in V. Then L——O R,, where {R,}.c: is the set of all non-defective planes

containing L. By Proposition 3.3, (;] R, =1L is a line. Let I correspond to IL'.

Denote L' = AL. Using Propositions 3.5 and 8.2 and the fact that A~! is also an
automorphism of 4, we easily see the correspondence is a bijection.

Proposition 8.6. Suppose n>6 with n+8. Let Ry and Ry be non—defective planes
in V, and let L, Ly and Ly be lines in V with Ly+ La. Then

(a) (L, Lg)=0e(Li, Ly)=0. -

(b) L=R;NRyeL'=RiNR,.

(¢) L+ Lye L' cLi+L,

Proof See 7.4 of [4]. ,

Definition 4. Let g be a semilinear automorphism of V with ﬁelol automorphism.
w. We say that g preserves @ (or g preserves the quadratic structure) if there is &
non—2ero o o F such that Q(gz) =a(Q(w))* for all © in V. We say that g preserves
orthogonality if (», y)=0 implies (9w, gy) =0. |

Proposition 8.7. Let g be a semilinear automorphism of V. Then g preserves @
if and only if g preserves orthogonality and Q(gw) =0 whenever @ () =0.

Proof See 7.5 of [4].

Now consider the may @, GL(V)—->GL(V), sendlng o t0 gog™*. This is an
automorphism of GL(V).

Proposition 3.8. Suppose n>4 and g is a semilinear automorphism of V.. If g
preserves Q, then @, induces an automorphism of O(V'), O(V), O'(V), and Q(V).

Proof See 6.3 of [4]. ’

Proposition 8.9 Suppose n>6 qu,th n+8. Let A be an autvmorphism of 4. If

= R for all non—defective planes R, then A= 1.

Proof Proceed as in 4.5 of [9].

Using Proposition 3.6 and the Fundamental Theorem of Projective Geometry,
we see that there exists a semilinear automorphism g of V' such that I'=gL. By
Propositions 3.6 and 3.4, ¢ preséi"ves orthogonality and sends singular lines to
gingular lines, and so g preserves @ by Proposition. 8.7. Then @, induces an auto—
morphism of 4. Consider the automorphism A®;* of 4. Under this autorphlsm R
= R for all non-defective planes R in. V. Therefore we obtain the main theorem of

‘this paper.
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Theorem 8.10. Let V be a non—-defeciive n—dimensional quadratic space over @
field F of characteristic 2. Suppose n=>6 with n+8 and F+F,. Let A be any automo-
rphism of Q(V) or O'(V'). Then A has the standard type A=D,, where g is a semilinear

automorphism of V' which preserves Q. Hence

Aut Q(V)=Aut O (V)=dI'0(T),
where PI'O(V) is the projective group of the semilinear automorphzsms of V' which
preserve Q.

Finally, if A is an automorphism of O(V) or 0*(V), then A induces an
automorphism of Q(V'), and 4| gy, induces a bijection of the non-defebtive planes
in ¥ as above. We easily. see that A—1 if and only if the associated correspondence
of the non~defeotive planes is the identity. Thus, we have

Corollary 8.11. Let V be a non—defective n—dimensional Wadmtric space over a
field F of characteristic 2. Suppose n=>6 with n+8 and F+Fy. Then all automorphisms
of O(V') and O* (V') are of standard type D,, and

Aut O(V)~Aut O*(V)=PIOJ).
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