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Abstract

Let V  be a non-defective «-dimensional quadratic space over a field F  of characteristic 
2. In this paper we prove that, when n > 6  with пф8  and J&> any automorphism of 
13(F) or O'(V) has the standard type Фд, sending cr to gag-1, where g is a serhilinear 
automorphism of V which preserves the quadratic structure. Therefore the automorphism 
groups Aut fl(F ) and Aut O'(F) are isomorphic to РГО(У). As a corollary, Aut 0 (F )  
and Aut 0 +(F) are isomorphic to PPO (F) as well.

Let F  be a non-defective «.-dimensional quadratic space over a field F  of 
characteristic 2 with the quadratic form Q. V->F  and associated symplectic form 
( , ): V  x F -> ? ,  {x, y) = Q (x+y) +Q(x) +Q{y). The dimension of V  is an even 
integer since V  is non-defective. 0 (F ) ,  0 +(F ) ,  O '(F) and Q(V) are, respectively, 
the orthogonal group, the rotation group, the spinor subgroup and the commutator 
siubgroup of the orthogonal group on F . E. A. Connors1-4-1 showed that all automo
rphisms of these groups are of standard type Фд provided «>10 and F ^ F 2. In  this 
paper we shall prove the result is also true when «==6, and provide a uniform proof 
for all « > 6  with «¥=8 and F  фИ2.

L Preliminaries

Through-out this paper, F  Ф‘Т?2. We use A to denote either D (F) or O '(F ).
We assume familiarity with the theory of quadratic forms and orthogonal 

groups as treated in  [1 , 2, 8, 6, 8, 10]. We also assume familiarity with the residual 
space method as treated in  [9].

Definition 1. Let vbe a non-zero vector in V, and let V  be a non-zero subspace 
o f V. We call v a singular vector (non-singular vector, resp.) i f  Q(v) = 0 (Q(v) Ф0, 
resp.). TFe call U non-defective {defective, totally defective, resp.) i f U П U*=Q(U f]U* 

¥*0, TJczU*, resp.), where U*= {®£j F |  (®, 17) = 0}. U is degenerate i f  U is defective 
and there is a singular vector in Uf] U*.
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Convention Let <rG 0 (F ) .  The letters P  and R  will always denote the fixed 
and residual spaces of cr, respectively. If  A  is an automorphism of A and cr£zl, ar 
will be used for A (a), and the fixed and residual spaces of cr' will be denoted by P' 
and R!, respectively. Similarly, P\ and R t refer to <jh P[ and R[ to cr[.

W hen R  has some geometric property, we say that cr has the same property (e. 
g., non-defective, defective, totally defective, degenerate, etc.).

Suppose X  is a subset of A. The centralizer of X  in  A will be denoted by O (X ).
The following results (Lemma 1.1—Lemma 1.7) are well-known, we omit 

the proof.
Lemma l.i .  Suppose n —2. Then <x£ 0 +(F) is an involution i f  and only i f  a = 

1. Let c r£ 0 +(F )  and rG O ~(V). Then tcnr^—a -1. In  particular, 0 +(F ) is an 
Abelian group.

Lemma 1.2. Let c r£ 0 (F )  and аФ1. Then <r2= l  i f  and only i f  cr is totally 
defective. In  particular, a plane ro ta tio n  or is non-defective i f  and only i f  cr2=£l.

Lemma 1.3. Let R  be a non-defective plane. The set of plane rotations with 
residual space R  is 0+(R)J_lp (exclude V). The set of plane rotations in A with residual 
space R  is Q (R ) J_lP (exclude l).

Lemma 1.4. Every plane rotation in A is either non-defective or degenerate. I f  
the W itt index v  = 0, every plane rotation in A is non-defective.

Lemma 1.5. Let Rbe a degenerate plane in V  with R= FiJ_Fw, Q(i) =  0. Then 
the set o f plane rotations with residual space R  is {Eu%w 10=M£ F } , where E Uw is the 
Eichler transformation, given by F Uw(x) = x+  (x, w ) iJr (x, i)w+Q (w) (x, i) i. Each 
Ei,w is in Q (V ).

Lemma 1.6. I f  cr* and <r2 are in  0 (F ) with o* non-defective, then
(a) a ia2=>o2Gi*&a2R i= R i and a21 Rl permutes with сга|Й1,
(b) (R i} Rf) = 0  =$cria2 = a2ai,
(c) Oicr2= g2Gi and R i П й2= 0  =$(Ri, R 2) — 0.

■ • ' ■ _ в

Lemma 1.7. Let cri and cr2 be plane rotations. Then ayx2 is a plane rotation i f  
avid only i f  R if]R 2¥=0 and cricr2 ̂  1.

Lemma 1.8. Suppose <re>6. Let cr £  zl be a non-defective plane rotation. Then
(a) O(cr) = (0 +(U)J_0 +(P ))  D-d, •
(b) оо(сг)=о<о(сг)2> = о ( д ) 1 .г.
Proof (a) Obviously (0 +( R ) ± 0 +(P )) П А < хС (а )^ (0 (Е )± 0 (Р ))  fid. For 

any p £ 0 (c r) , p |B permutes with cr|B. But сг|д€ 0 +(й ) , so р |л£ 0 +(E) by Lemma 
1.1. Hence p |P£ 0 +(P ), and so 0 (a )  =  (0+ (R) J_0+ (P ) ) П d.

(b) I t  follows from (a) that
0 +( Р ) Ю +(Р )Э О (а-)3< а(а-)2> 3 < 0 (Р )2> 1 < 0 (Р )2>.

Hence
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й (Б )_ 1 г = (о +( л ) 1 г )л ^ з а < о (с г )2> э ш ( с г ) з ( о +( й ) 1 г)л ^ = « 2( й ) 1 .г#
since the centralizer of (Q (P )2> in  O(P) is {Ip}.

Lemma 1.9.ш Suppose n>6. OG(EitW) = MEF }.
Lemma 1.10. Suppose «>=6. Let err and <r2 be plane rotations in A. Then 

Rx= jRi<&QO (erf) —0 0  (cr2) «=*0 (o"i) = C? (cr2) .
Proof From Lemmas 1.8 and 1.9 we easily see that В х=Ва if and only if 

CO(ci) = 0 0 (cr2) . Since 0 0 0 ( X )  = 0 (X )  for any subset X  in  d, we immediately 
see that 00(cr1) =  00(crf) if and only if  О (erf) = О (erf).

Lemma 1.11. Suppose n ^ 6 . Let o~x and <r2 be non-defective plane rotations in A. 
Then (Rx, R f) =  0 i f  and only i f  cricr2=o*2cri and О (or) i=0(af).

Proof If (Rx, Ba) =0, then crjcr2==cr2ori by Lemma 1.6, and О (ах) фО(<т2) by 
Lemma 1.10. Conversely, if (Ticr2=cr2cri and 0(<rx) ФС(о"а), then aaRx= Rx,
0 +(Rx), and ВхФВа by Lemmas 1.6, 1.8, and 1.10. We have (o-s+ l)R iQ :R i П R2 
^nd dim Rx П Ra< dim Rx. So there is a non-zero a> in Rx such that ((r2+l)®=Q, 
which implies craU,==l. Hence (Rx, jR2)= 0 .

II. Action of A on the Non-Defective Plane Rotations

Definition 2. Suppose A  is an automorphism o f A, and B is  a plane in  V. We 
m y R behaves under A  i f  there is a plane rotation <x£ A with the residual space В  such 
that a '= A(ar) is also a plane rotation.

The purpose of this section is to prove that all non-defective planes in  V  
behave under A. The steps of proof are as follows. Suppose g-£ A is any non-defective 
plane rotation. F irst of a ll, we determine some restriction in  res or' and prove a' is 
non-defective. Then we show if one non-defective plane behaves under A  then all 
non-defective planes behave under A. Finally, we prove at least one non-defective 
plane behaves under A.

Proposition 2.1. Suppose «>6. Let‘R  be a non-defective plane which behaves 
under A. Then A (Q (R ) J_l) = Q(R') J J ,  where R ' is as shown in the above convention.

Proof By definition there is a plane rotation cr£A  with the residual space R 
such that cr, = A(cr) is also a plane rotation with the residual space R'. Since cr is 
non-defective, ааф1, and so сг'2Ф1. Hence cr' is non-defective by Lemma 1.4. Using 
Lemma 1.8, we obtain i2(R ')_fl= 00(cr') = A(00(<r)) = A(£}(R) J J ) .

Proposition 2.2. Suppose w>6. Let a ^ A b e  a non-defective plane rotation. I f  
<r' is non-defective, then res cr'= 2  or n.

Proof We can prove res or'=2 , n —2 or n by an analogous procedure as in  2.14 
of [9]. We now show res а 'Ф п—2. Otherwise suppose dim P '= 2.

By Lemma 1.8, OO(u) =  0<0(cr)2>. Applying A, we have OO(a') =-0<0(cr')3)..
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Now <0(> ')2> c £ ( P ')  J_ £ (P ')  since 0(u')cO (P ')_LO C£>/)* So
OG(cr') =  G<a(u')2> 3 U _ £ (P ')  

since dim P ' = 2 and dim P '> 2 .
Take ?#p'G lJ_Q(Pf) and put p = A -1 (p/) . Then p'€00(<r') and p £ 0 0 ( cr)=* 

f2(P)J_i by Lemmal. 8. Therefore 0(p) = C (a), and so O(p') = 0 (V ). Thus cr' £  
C 0(a ') = 00(p ') = IJ_Q(P'), which implies cr' =  1. This is a contradiction.

Proposition 2.3. Suppose n>6. Let cr £ Abe a non-defective plane rotation Then 
</ =  At(cr) is a non-defective rotation with residual index 2 or №.

Prco/ I t  suffices to prove cr' is non-defective.
Suppose a' is defective. Then res c r 'O , P ' П Р '# 0 , and we have a splitting R r 

=  t7 J_ (P 'ПРО where 17 is a non-defective subspace. So (cr'2+ l ) F =  (cr'+1)U , and 
res cr'2< res cr'. If a '2 is also defective, then res cr'4< res cr'2. Because dim V  is finite- 
and cr'2*# 1 for all integers jfc>0, there is an integer j  such that cr'2' is non-defective- 
and res cr'2i< n . But cr2' is a non-defective plane rotation with the residual space P ',  
and сг'2'=А(сг2') . So res cr'2'= 2  by Proposition 2 .2, and R  behaves under A, 
Applying Proposition 2.1, both cr'2' and cr' are non-defective plane rotations. 
Hence cr' must not be defective.

Proposition 2 A. Suppose n> 6. I f  there is a non-defective plane R which behaves 
under A, then all non-defective planes behave under A .

Proof Take a non-defective plane rotation cr in  A with the residual space P . 
Then cr'=A(cr) is also a non-defective plane rotation with the residual space jB\. 
Let яг be any non-defective plane in  V.

1) Hirst suppose (P , яг) =  0. W rite F=PJ_P=PJ_?rJ_17 for some non-defective-
subspace U, and F = P 'J _ P '.  Take Then v £  О (or), andT?'=A(ir) £0(cr')
-  (0 +(Л ')1 0 +(Р'))-П 4. Denote tW ^ ,  where ^ б О +(Р') and t'2£ 0 +(P ') . .

Take a non-singular vector a? in  R ’. Define Ф. p\-*nap T j  for all p in  A, where 
is the symmetry determined by x. Put W = А'*ФА. Clearly, both Ф and W are- 
automorphisms of A. -

^ ( r )  =  A -W (r)= = A - 1®(r')==A-1 (^ W ± 'P 2) r J 1)= ^ '- 1W"1l ^ )

Since Ti’’ £  £? (P ')  J J = 0 0 (cr'), we get €  OO(c) = D(P) J J .  Denote'
А"1 (т/Г Ц ) by в±1, where 0 £ D (P ) . So 1P(v) =  (0 J J P) (т |Л А * ) = 0 ± т |Л Л г . We 
see res <n. Applying Proposition 2.3 to the automorphism W, we see W(v)
is a non-defective plane rotation, which implies 0=1 , and so 4/1"*=1. Hence г'г—1 

, by Lemma 1.1. Thus r '  =  ?J_V2, and so res v'<n. Applying Proposition 2.3 again, 
we prove that r' is a non-defective plane rotation. Therefore яг behaves under A.

2) Now suppose (JR, яг) # 0 .’ W rite F x+ F y. W ithout loss of generality we 
can assume (P , x) # 0 . I f  is easy to see that there is a non-defective quaternary
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subspace T zdR + F x, Since w>6, dim T*>2. So, applying the result of step 1) 
twice, any non-defective plane in  T  behaves under A . In  particular, we take z £ R  
with (%, x) Ф0, then avi= F z+ F x  is a non-defective plane in  T , behaving under A* 
Choose a non-defective quaternary subspace T+oati+Fy. As above, any  non
defective plane in  T t behaves under A. In  particular, at behaves under A.

P roposition  2.5. Suppose n > 3 with пФ8 and v > 0. Then at least one non
defective plane behaves under A.

Proof Since y>0 , we can take a splitting V = (F i+ F j) J_W> where Q(i) =  
Q(j) = 0  and (i, j )  — 1. So i+ j  is a non-singular vector. Take w £ W  with Q((w) ф0. 
Put or=ri+j E u GЛ, where r i+i is the symmetry determined by i+ j.  Now we 
have E i)W(i+ j)  =  (± + Q (w ))i+ j+ w  and (i+ j, E i>w(i+D)=Q,(w) Ф0. Hence cr= 

( i+ j)  is a non-defective plane rotation.
E i>w is an involution, so is A (E hw). Write p = A (E itW) , and denote the residual

space of p by at. Then atClut* and dim
A , -

1) If  dim at< -j, then cr'=-A(o-)^A(ri+jE {,wTr+jE;,1w) = A(E„in(i), ^ m E i,w) -

an(l  res Thus, res or'=2 by proposition 2.3, and the residual
plane of cr behaves under A.

2) We now assume dim at = ̂ ~. Then ac=ot* and ~  is an even integer, and so

we can assume to> 12 Take any non-singular vector со in  V , and put y= x+ px£at. 
If Q(y) ^ 0 , then (со, pco) Ф0. put р=тгяргрр~х where гя is the symmetry determined 
by <o. Then ср=тгяргя1р~х where r* is the symmetry determined by со. Then р = гяп

is a non-defective plane rotation. But A~x<p=* А~х(гярт;ях)Е (,и, and res
A

<n. By prorosition 2.3, A~x<p is a non-defective plane rotation, and the residual 
plane of A~x<p behaves under A.

If  Q (y)==:0, we can take v £ (F y )*  such that v+ p v ^F y . Put tfj=Ey,vpEyXvp"x. 
Then ф =  E y tv E p y ^ ^ E y ^ E f ,^ E y,v+pv, which is a degenerate plane rotation. We

have res A  1ip ^ 4 < ~ .  Repeating step 1), we get through.
A

In  order toprove at least one non-defective plane behaves under A  in  the case 
v = 0, we need the concept of Cayley rotations.

Definition 3. a  (E 0 (V )is  called a Oayley rotation on V i f  its minimal polynomial 
on V has the form  Л2+уЗЛ+1 with (ЗфО. We eall /3 the residual trace of the Oayley 
rotation or, and denote /3= res tr(cr).

We list some simple properties (Lemma 2.6—Lemma 2.9) of Oayley rotations. 
(The proof can be proceeded as in  section IB of [6] or ID of [7].)

Lemma 2.6. Suppose » = 2. Then the set o f Oayley rotations is 0 +(V ) excluding*
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*• J/  <r is a Cayley rotation on V  and a> is a non-singular vector, then {x, ax} is a basis 
of V. Given any non-zero /3 in F, there are at most two Cayley rotations in O (V) with 
residual trace /3. I f  a is one of them, then cr-1 is the other.

Lemma 2.7. Let a  GO (V) be a Cayley rotation on V. Suppose V  is a a-invariant 
non-defective subspace of V. Then a \v is a Cuyley rotation on U, and

' res t r  (cr 1 cr) =  res t r  (cr).
Lemma 2.8. Suppose v=Q. Then <rG 0 (F )  is a Cayley rotation on V i f  and only 

i f  F x+ F ox is a a-invariant non-defective plane for any non-zero vector x in V.
Lemma 2.9. Suppose j/=0. Then a G O (y )  is a Cayley rotation on V  i f  and 

only i f
(a) r esa = n ,
(b) there is a splitting F=w iX "'_L wn into non-defeotive planes щ, each invariant

' v
under a,

(o) a \„i is a Cayley rotation on tv{ for each i,
(d) res t r  (cr | Wi) =  res tr  (cr | x.) for all i, j .
In  the ease v = 0, a plane need not be non-defeotive, but any plane rotation in  

Л is non-defeetive by Lemma 1.4.
Proposition 2.10. Suppose 6 and *>=0. Let aGAbe a plane rotation. I f  a f 

=  A  (cr) is not a Cayley rotation on V, then the non-defective plane R behaves under A.
Proof By Proposition 2.3, res cr' =  2 or n. If res cr'=2, then R  behaves 

under A. If  res a '= n, then for any non-zero vector x in F  F x+ F a 'x  is a plane 
since v = 0. We have 0=£Q(%+a'x) =  (x, a ’x), which implies the plane F x+ F a 'x  is 
non-defective. Since cr' is not a Cayley rotation on V , by Lemma 2.8, there is a 
non-zero vector у in  V  such that F y + F a ’y is not cr'-invariant. Take a plane 
rotation p in  A with residual space F y+ F a 'y . Clearly pa'фа'p. The residual space 
of pa'р~ха'~г lies in  the ternary subspaoe F y+ F a 'y+ F a 'ay, and so ра'р^а'"1 is a 
plane rotation. But А~1(ра'р~1а '-1) = ((А~1р)а(А~1р)~1)а~1, being the product of 
two plane rotations, has residual index at most 4. Thus, А~1(ра'р~1а'~1) is also a 
plane rotation by Proposition 2.3, and the residual Plane of A ^ ip a 'p ^ a '-1) behaves 

under A. Therefore R  behaves under A  by proposition 2.4.

Now using the technique in  6 .4  oj [7], we prove
Proposition 2.11. Suppose «>=6 with пФ8 and p=0. Then at least one non

defective plane behaves under A.
Proof Suppose, if possible, any non-defective plane does not behave under A. 

Then any non-defective plane does not behave unber A"1 either. •
Take a plane rotation cr in  Л  By Proposition 2.10, a' is a Cayley rotation on 

У. Using Lemma 2.9, we get a splitting F “ ЯъЛ.'-’.Х л  and where
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each stj is a сг'- in  variant non-defective plane, 27= cr' | and

For each i, take a symmetry in  0(щ) J_l. Define for a ll p in  Zl„
P ut Р7= а1._1Ф4 /1. Then the Ф4 and P7 are automorphisms of A. ‘

now Ф4(о -о = т ,а 1 x - ± 2 i j . - ± a i K i - S i ± - i s r ii . - ± 2 i i i - ( 2 r 2i*)cr/. 
Denote yl"1( 2 r 2_L0 by P<- Then P {, T? and Pf are Cayley rotations on F" by the 
Hypothesis and Proposition 2.10. permutes with <r since 2 r 2_U permutes with, 
cr'. So Ti B = B  for each i

Consider Wi( a ) = A ~ ^ lA ( a ) = A ~ ^ l(o->)= A ~ i (('2,T2AJ')or' ) = T icr. By Lemma. 
2.7, 271p is a Cayley rotation on P , and res (2Ti |P)==w—2. Applying Proposition 
2 .10 to the automorphism Wi} we see P t<r is a Cayley rotation. By Lemma 2 .7, res tr  
(Pi) = res tr  (P4|P) = res tr  ( ( 2 »  |P) =  res tr(2 ,icr). Using Lemma 2.7 again, res tr  
(271в) =  res t r  (P4) =  res tr  (P4o-)=res tr  ( (Р 4сг)|в), By Lemma 2.6, (Р 4о-)(л= 
(P41 л)*1. Since cr|я =£1, we obtain (P4<r) |B= (P4|b) -1, and Pf |в=о‘~:1'|д for each i.. 
Hence the Pf have the same residual trace.

Now consider the automorphism for l < i < j < k .

^ K ^ ) = ^ " 1̂ X O = ^ ' 1( ( 2 r 4J_ 0 (2 7 4_LOo-'2)==27№ -  But (PfPfa2) | b - 

= ?, and so PfPfcr2 is a plane rotation by proposition 2.3. Let Вц be the residual, 
space of WiWiic2). .

Take B t= B  and write F= iS iJJU i. Since В  is invariant under each Tf and.. 
Pf | в= cr"11 r, we can write

P f“  P и J_P2117» f o r i = l ,
Consider P ,12/'2(o-2) = P 2P|o'2. Its residual plane P 12c IT==?7i . Pot B2= B 12 and1, 

write P = P i  |_Да | ,17a. P« permutes with P 2Pl<r2 since 2 r 4_U permutes with 2 i 4_U,. 
2 24J J  and cr'2. So B 2 is invariant under each Pf. W ith respect to the splitting V = 
B i.±B 2± U 2, write P f= PiiJ_Pi2± P 21 v„ where P 42 = Pf |b„ for each i.

Since res t r  (P42)==res t r  (Pf) = res tr  (P2) = res t r  (Pi2), we get Т ^ Т 12±г by 
Lemma 2.6. In  particular, since P 2P|cr2 has the residual space B2, we must have 
P 22= P 12 and РЦ Ра =  Р г2|Р>. For i> 3 , we can prove P i2= P r21.Now we write

P? =  P i i l P i2± P l |v s,
2,i= P n J_ P i2 ± P r2| I7„

. Р ?= Р п ± Р Г 2\ 1 Р ? к  for *>3.
We now consider the plane rotation Р 2Р 2сг2 and repeat the above process. 

Clearly, (PfPfa2) | b,xb2 =  h and so Bia^ U 2. Put Ba = Bla and write V = B 1± B 2± B 3 
±TJ3 As above, Ba is invariant under each Pf. W ith respect to this splitting of V, 
we have

P i - r u X T a l f f t t l r S k ,
T ! = T n l T n l T l i ± T l 2\Ut,
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П - Т а ± т £ ± т ю± я и
T f= Т ц ± Т £ ± Т м ± Т !  I Пш io x i> L

As above, we can prove T 33 =  T 13 and T 31 p, = T i 21 Ut.
If  и= 6, we have

■ T l - T ^ l T n L T T h
. Т 23= Т П± Т ^ ± Т 13)

with respect to the splitting F = I?i_LI22 J_i?3. Then T iT 2<s2=l. This contradicts the 
fact that T \T 3a2 is a plane rotation.

If те>10, then dim f/3> 4 . We have

Tl=Tn_LTial T r 31l T r 2| J;3,
T I= T 11l T r 21J_ r13l ! r r 2| I7s,

with respect to the splitting V = jB1J_J22J_JR3JLU'3. Then T lT 2a2= Ir m ^ I - T I 41 Пг. 
Since T i4 is a Gay ley rotation on F , T i41 Pa is a Cayley rotation on U3) and so 
res(T lT la2) = res (T l4 \ Ua) > 4 . This is a contradiction.

Therefore, at least one non-defective plane behaves under A.
Theorem 2.12. Suppose те>6 with пФ 8. Jli! non-defective planes behave wider 

A .
Proof Apply propositions 2.4, 2.6 and 2.11.

III. The Automorphisms

In  this section we prove any automorphism A  of A has the standard type Фд 
provided те>6 with пф 8, The steps of proof are as follow. First of all, we prove that 
A  induces in  a natural way a one-one correspondence of the set of the non-defective 
planes in  F  onto itself. Then A  naturally induces a one-one correspondence of the 
set of lines in  F  onto itself. We show that the mapping preserves incidence between 
a line and a plane, and preserves the quadratic structure. Finally, using the 
Fundam ental Theorem of Projective Geometry, we obtain the main theorem of this 
paper. As a corollary, we easily prove that any automorphism of 0 (F )  or 0 +(F ) 
has the same type.

Suppose те>6 with пФ8. Let В  be a non-defective plane in  F , and let a  in  A be 
chosen with residual space B. Then B ' is a non-defective plane by Theorem 2.12 
and Proposition 2.3. Let В  correspond to B'. Denote B '= A B . This map does not 
depend on the choice of <x by Lemma 1.10. I t  is injective by Lemma 1.10 again. I t is 
surjective since A~% is also an automorphism of A. So A  is a bijeotion of the set of 
the non-defective planes in  F  onto itself. .

Proposition 3.1. Suppose те>6 with пФ8. Let B± and B2 be two non-defective 
planes in V. Then (B lf B 2)= 0 ^ (B '1, B'f) = 0.



Proof A p p ly L e m m a l.il . ■ ‘
P roposition  3.2. Suppose n > 6  with пф 8. Let ап<% H2 be two non-defective 

planes in V  • Then
dim(J2j, П H2) =l«=»dim(Hi f) H i)= l.

Proof See 6.7 of [4]
P roposition  3.3. Suppose n>6 with пф8. Let { H J ^ j  be a fam ily  of non

defective planes in  V. Then
dim (П  B f)  == l**dim (U  B'f) = 1.t t

Proof I t  suffices to show that dim (f"| S^(=l=>dim  (f~] H i) =1 .

W ithout loss of generality we can assume card /= 3 .  Let Bx f| B2 П H3*= Fas with 
Bi, B 2 and B 3 distinct.

1) F irst suppose B x+ B 2+ B 3=U  is quaternary. If  we can find a non-defective 
plane ягС ^Д + Д )* , яг££ (B x+ B 2+ H3) *, for some i, j, K * < j< 3 ,  then (яг, H{) =  
(яг, Bf) = 0 and (яг, Въ)Ф0, where h is the remaining index. Hence (%', B{) = 
(яг', И)) =  0 and (яг', B'k) Ф0 Py proposition 3.1. P u t Д з Д  = Д- and H) f) Д  =  Lh 
which are lines by Proposition 3.2. Then Li=Ly, otherwise (Hi, яг') =  (L4+!/,-, я;') 
=0. Hence H iflH in H i is a line. Now we attempt to find such а яг. Notice 
dim Uf)U*=*2 or 0.

Suppose dim U f)U*=2. We can write the ternary subspace Bx+B2=RxJ_Fy 
for some y £ T J fid*. Since dim (H i+ H 2)*> 3 and (Д Н -Д ) П (Д + -Д )* = Д /, there 
is a non-defective plane in  (Д + Д )* . I t is easily seen that ( Д + Д ) *  is spanned by 
non-defective planes. Since (Д + Д ^ ^ Х Д + Д + Д )*, we can choose a non-defective 
plane яг in  ( Д  T-Д )*  which is not in  ( Д + Д + Д )*. Hence in  this case we are 
done.

Suppose now dim U f]TJ*=0, i. e., U is non-defective. Take a non-zero vector 
U in  £7*. W rite Rx=Fas-\-Fz. Then (as, я)ф0  since Hi is non-defective. P u t R 4=Fas 
+ F (z+ u )  which is a non-defective plane containing Fas. Now both Д + Д + Д  
and Д + Д + Д  are quaternary and defective. Hence by the previous case, B[ ft Д  
П Д  =  L'3 and B'x П B'3 П H'4= L 2 are lines. Therefore Hi П Д = L 3 =  В!г П H'4= L2= Hi П 
Hi, and so Hi П Hi П H3 is a line.

2) F inally  suppose U is ternary. We can choose a non-defective plane Д  with 
F asczB ^U . Then £ 7 + Д  = Д + Д + Д = Д + Д + Д  is quaternary. By step 1), 
Hi П Hi П Hi and Hi f| H'3 f| Hi are lines. Therefore Д  f) H i= Д  f| Hi = Д  f) H3, and so 
Hi fl Hi П Hi is a line.

P ro p o sitio n  3.4. Suppose n> 6 with пф8. Let Д  a>nd B 2 be two non-defective 
planes. Then Д  П B 2 is a singular line i f  and only i f  Hi П Hi is a singular line.

Proof See 6.12 of [4]
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P roposition  3.0. Suppose 4. Let Lx and L2 be two distinct lines in  F . Then 
there are non-defective planes Rx and R 2 in V  such that Lxd-Ri, L2d R 2 and Rx П R% 
=  0. Moreover, i f  (Lx, L 2) =  0, we can choose Rx and R 2 with (Rx, R 2) =0.

Proof See 7.2 of [4].
We now define a correspondence of the set of lines in  V  onto itself. Let L  be a 

line in F . Then L=[~\ R^, where is the set of all non-defective planes

containing L. By Proposition 3.3, (~\R^ = L' is a line. Let L  correspond to L'.i
Denote L '= A L . Using Propositions 3,6 and 3.2 and the fact that A"1 is also an 
automorphism of A, we easily see the correspondence is a bijeotion.

P roposition  3.6. Suppose n> 6  with пФ8. Let Rx and R2 be non-defective planes 
in V, and let L, Lx and L 2 be lines in V  with Lxi*L2. Then

(a) (Lx, L2)=Q**(L'x, Д )= 0 . '
(b) L = R xr\R 2**L' = R!xC\R!2. ;
(c) LdLx-^rL2<&L'ciZ4+.I4«
Proof See 7.4 of [4],
D efin ition  4. Let g be a semilinear automorphism of V with field automorphism 

fi. We say that g preserves Q (or g preserves the quadratic structure) i f  there is a 
поп-шо a in F  such that Q(gai)=a(Q,(x))li fo r all x in V. We say that g preserves 
orthogonality i f  (x, y) = 0 implies (ga>, gy) =0 . ' .

Proposition 3.7. Lei g be a semilinear automorphism of V . Then g preserves Q. 
i f  and only i f  g preserves orthogonality and Q(gx) =  0 whenever Q(x) = 0.

Proof See 7.6 of [4].
Now consider the may Фд: G L (V )—>GfL(V), sending a  to gag-1. This is an 

automorphism of G L (V ).
P roposition  3.8. Suppose n > 4 and g is a semilinear automorphism o fV . I f  g 

preserves Q, then Фд indmces an automorphism of О(F ) , Ob(F ), O '(F ), and £2(V).
Proof See 6.3 of [4].
P roposition  3.9 Suppose ra>6 with пФ 8. Lei A  be an autvmorphism of A. I f  

R '= R  for all non-defective planes R, then A = 1.
Proof Proceed as in  4.6 of [9].
Using Proposition 3.6 and the Fundamental Theorem of Projective Geometry,., 

we see that there exists a semilinear automorphism g of F  such that L' = gL. By 
Propositions 3.6 and 3.4, g preserves orthogonality and sends singular lines to* 
singular lines, and so g preserves Q by Proposition 3.7. Then Фд induces an auto
morphism of A. Consider the automorphism. АФд1 of A. Under this autorphism, R r 

— R  for all non-defective planes R  in  V  • Therefore we obtain the main theorem of 

this paper.
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Theorem 3.10. Let V  be a non-defective n-dimensional quadratic space over a 
field F  of characteristic 2. Suppose n > 6  with пФ 8 and F^3?2- Let A  be any automo
rphism of £2(V) or 0 '(V ) . Then A  has the standard type А=Фд, where g is a semilinear 
automorphism of V  which preserves Q. Hence

Aut Q(V)<^Aut 0 '(Г )^ Ф Г 0 (Г ) ,
■where P rO (V ) is the projective group of the semilinear automorphisms o f V  which 
preserve Q.

Finally, if A  is an automorphism of 0 (F )  or 0+(F ), then A  induces an 
automorphism of Q (V ), and A | a(F) induces a bijection of the non-defebtive planes 
in  V  as above. We easily-see that A  = 1 if and only if the associated correspondence 
of the non-defective planes is the identity. Thus, we have

Corollary 3.11. Let V be a non-defective n-dimensional quadratic space over a 
field F  of characteristic 2. Suppose n>=6 with пФ8 and F 'f  3?2. Then all automorphisms 
o f 0 (V ) and 0 +(V ) are o f standard type Фд, and

Aut 0 (F )  ̂ A u t 0 * ( y ) ^ P r 0 ( V ) .
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