THE AUTOMORPHISMS OF NON-DEFECTIVE ORTHOGONAL GROUPS IN CHARACTERISTIC 2*

LI FUAN (李福安)**

Abstract

Let V be a non-defective *n*-dimensional quadratic space over a field F of characteristic 2. In this paper we prove that, when $n \ge 6$ with $n \ne 8$ and $F \ne \mathbf{F}_2$, any automorphism of $\Omega(V)$ or O'(V) has the standard type Φ_g , sending σ to $g\sigma g^{-1}$, where g is a semilinear automorphism of V which preserves the quadratic structure. Therefore the automorphism groups Aut $\Omega(V)$ and Aut O'(V) are isomorphic to $P\Gamma O(V)$. As a corollary, Aut O(V)and Aut $O^+(V)$ are isomorphic to $P\Gamma O(V)$ as well.

Let V be a non-defective *n*-dimensional quadratic space over a field F of characteristic 2 with the quadratic form $Q: V \to F$ and associated symplectic form $(\ , \): V \times V \to F$, (x, y) = Q(x+y) + Q(x) + Q(y). The dimension of V is an even integer since V is non-defective. O(V), $O^+(V)$, O'(V) and $\Omega(V)$ are, respectively, the orthogonal group, the rotation group, the spinor subgroup and the commutator siubgroup of the orthogonal group on V. E. A. Connors^[4] showed that all automorphisms of these groups are of standard type Φ_g provided $n \ge 10$ and $F \neq \mathbf{F}_2$. In this paper we shall prove the result is also true when n=6, and provide a uniform proof for all $n \ge 6$ with $n \neq 8$ and $F \neq \mathbf{F}_2$.

I. Preliminaries

Through-out this paper, $F \neq \mathbf{F}_2$. We use Δ to denote either $\Omega(V)$ or O'(V).

We assume familiarity with the theory of quadratic forms and orthogonal groups as treated in [1, 2, 3, 5, 8, 10]. We also assume familiarity with the residual space method as treated in [9].

Definition 1. Let v be a non-zero vector in V, and let U be a non-zero subspace of V. We call v a singular vector (non-singular vector, resp.) if Q(v) = 0 ($Q(v) \neq 0$, resp.). We call U non-defective (defective, totally defective, resp.) if $U \cap U^* = 0$ ($U \cap U^* \neq 0$, $U \subseteq U^*$, resp.), where $U^* = \{x \in V \mid (x, U) = 0\}$. U is degenerate if U is defective and there is a singular vector in $U \cap U^*$.

** Institute of Mathematics, Academia Sinica, Beijing, China

Manuscript received April 20,1982.

^{*} The author is now a Visiting Research Associate in Michigan State University, USA.

Convention Let $\sigma \in O(V)$. The letters P and R will always denote the fixed and residual spaces of σ , respectively. If Λ is an automorphism of Λ and $\sigma \in \Lambda$, σ' will be used for $\Lambda(\sigma)$, and the fixed and residual spaces of σ' will be denoted by P'and R', respectively. Similarly, P_i and R_i refer to σ_i , P'_i and R'_i to σ'_i .

When R has some geometric property, we say that σ has the same property (e. g., non-defective, defective, totally defective, degenerate, etc.).

Suppose X is a subset of Δ . The centralizer of X in Δ will be denoted by O(X). The following results (Lemma 1.1—Lemma 1.7) are well-known. we omit the proof.

Lemma 1.1. Suppose n=2. Then $\sigma \in O^+(V)$ is an involution if and only if $\sigma = 1$. Let $\sigma \in O^+(V)$ and $\tau \in O^-(V)$. Then $\tau \sigma \tau^{-1} = \sigma^{-1}$. In particular, $O^+(V)$ is an Abelian group.

Lemma 1.2. Let $\sigma \in O(V)$ and $\sigma \neq 1$. Then $\sigma^2 = 1$ if and only if σ is totally defective. In particular, a plane rotation σ is non-defective if and only if $\sigma^2 \neq 1$.

Lemma 1.3. Let R be a non-defective plane. The set of plane rotations with residual space R is $O^+(R) \perp l_p$ (exclude l). The set of plane rotations in Δ with residual space R is $\Omega(R) \perp l_p$ (exclude l).

Lemma 1.4. Every plane rotation in Δ is either non-defective or degenerate. If the Witt index $\nu = 0$, every plane rotation in Δ is non-defective.

Lemma 1.5. Let R be a degenerate plane in V with $R = Fi \perp Fw$, Q(i) = 0. Then the set of plane rotations with residual space R is $\{E_{i,\lambda w} | 0 \neq \lambda \in F\}$, where $E_{i,w}$ is the Eichler transformation, given by $F_{i,w}(x) = x + (x, w)i + (x, i)w + Q(w)(x, i)i$. Each $E_{i,w}$ is in $\Omega(V)$.

Lemma 1.6. If σ_1 and σ_2 are in O(V) with σ_1 non-defective, then

(a) $\sigma_1 \sigma_2 = \sigma_2 \sigma_1 \Leftrightarrow \sigma_2 R_1 = R_1$ and $\sigma_2 |_{R_1}$ permutes with $\sigma_1 |_{R_1}$

(b) $(R_1, R_2) = 0 \Rightarrow \sigma_1 \sigma_2 = \sigma_2 \sigma_1$,

(c) $\sigma_1\sigma_2 = \sigma_2\sigma_1$ and $R_1 \cap R_2 = 0 \Longrightarrow (R_1, R_2) = 0$.

Lemma 1.7. Let σ_1 and σ_2 be plane rotations. Then $\sigma_1\sigma_2$ is a plane rotation if and only if $R_1 \cap R_2 \neq 0$ and $\sigma_1\sigma_2 \neq 1$.

Lemma 1.8. Suppose $n \ge 6$. Let $\sigma \in \Delta$ be a non-defective plane rotation. Then

(a) $C(\sigma) = (O^+(R) \perp O^+(P)) \cap \Delta$,

(b) $CC(\sigma) = C\langle C(\sigma)^2 \rangle = \Omega(R) \perp l.$

Proof (a) Obviously $(O^+(R) \perp O^+(P)) \cap \Delta \subseteq O(\sigma) \subseteq (O(R) \perp O(P)) \cap \Delta$. For any $\rho \in O(\sigma)$, $\rho|_R$ permutes with $\sigma|_R$. But $\sigma|_R \in O^+(R)$, so $\rho|_R \in O^+(R)$ by Lemma 1.1. Hence $\rho|_P \in O^+(P)$, and so $O(\sigma) = (O^+(R) \perp O^+(P)) \cap \Delta$.

(b) It follows from (a) that

$$O^+(R) \perp O^+(P) \supseteq O(\sigma) \supseteq \langle O(\sigma)^2 \rangle \supseteq \langle \Omega(R)^2 \rangle \perp \langle \Omega(P)^2 \rangle.$$

Hence

 $\Omega(R) \perp l = (O^+(R) \perp l) \cap \Delta \supseteq O\langle O(\sigma)^2 \rangle \supseteq OO(\sigma) \supseteq (O^+(R) \perp l) \cap \Delta = \Omega(R) \perp l,$ since the centralizer of $\langle \Omega(P)^2 \rangle$ in O(P) is $\{l_P\}$.

Lemma 1.9.^[4] Suppose $n \ge 6$. $CO(E_{i,w}) = \{E_{i,\lambda w} | \lambda \in F\}$.

Lemma 1.10. Suppose $n \ge 6$. Let σ_1 and σ_2 be plane rotations in Δ . Then $R_1 = R_2 \Leftrightarrow CC(\sigma_1) = CC(\sigma_2) \Leftrightarrow C(\sigma_1) = C(\sigma_2).$

Proof From Lemmas 1.8 and 1.9 we easily see that $R_1 = R_2$ if and only if $CC(\sigma_1) = CC(\sigma_2)$. Since CCO(X) = C(X) for any subset X in Δ , we immediately see that $CC(\sigma_1) = CC(\sigma_2)$ if and only if $C(\sigma_1) = C(\sigma_2)$.

Lemma 1.11. Suppose $n \ge 6$. Let σ_1 and σ_2 be non-defective plane rotations in Δ . Then $(R_1, R_2) = 0$ if and only if $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$ and $O(\sigma_1) \neq O(\sigma_2)$.

Proof If $(R_1, R_2) = 0$, then $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$ by Lemma 1.6, and $O(\sigma_1) \neq O(\sigma_2)$ by Lemma 1.10. Conversely, if $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$ and $O(\sigma_1) \neq O(\sigma_2)$, then $\sigma_2 R_1 = R_1$, $\sigma_2|_{R_1} \in O^+(R_1)$, and $R_1 \neq R_2$ by Lemmas 1.6, 1.8, and 1.10. We have $(\sigma_2 + 1)R_1 \subseteq R_1 \cap R_2$ and dim $R_1 \cap R_2 < \dim R_1$. So there is a non-zero x in R_1 such that $(\sigma_2 + 1)x = 0$, which implies $\sigma_2|_{R_1} = 1$. Hence $(R_1, R_2) = 0$.

II. Action of Λ on the Non–Defective Plane Rotations

Definition 2. Suppose Λ is an automorphism of Δ , and R is a plane in V. We say R behaves under Λ if there is a plane rotation $\sigma \in \Delta$ with the residual space R such that $\sigma' = \Lambda(\sigma)$ is also a plane rotation.

The purpose of this section is to prove that all non-defective planes in V behave under Λ . The steps of proof are as follows. Suppose $\sigma \in \Delta$ is any non-defective plane rotation. First of all, we determine some restriction in res σ' and prove σ' is non-defective. Then we show if one non-defective plane behaves under Λ then all non-defective planes behave under Λ . Finally, we prove at least one non-defective plane behaves under Λ .

Proposition 2.1. Suppose $n \ge 6$. Let R be a non-defective plane which behaves under Λ . Then $\Lambda(\Omega(R) \perp l) = \Omega(R') \perp l$, where R' is as shown in the above convention.

Proof By definition there is a plane rotation $\sigma \in \Delta$ with the residual space R such that $\sigma' = \Lambda(\sigma)$ is also a plane rotation with the residual space R'. Since σ is non-defective, $\sigma^2 \neq 1$, and so $\sigma'^2 \neq 1$. Hence σ' is non-defective by Lemma 1.4. Using Lemma 1.8, we obtain $\Omega(R') \perp l = CC(\sigma') = \Lambda(CO(\sigma)) = \Lambda(\Omega(R) \perp l)$.

Proposition 2.2. Suppose $n \ge 6$. Let $\sigma \in \Delta$ be a non-defective plane rotation. If σ' is non-defective, then res $\sigma'=2$ or n.

Proof We can prove res $\sigma'=2$, n-2 or n by an analogous procedure as in 2.14 of [9]. We now show res $\sigma' \neq n-2$. Otherwise suppose dim P'=2.

By Lemma 1.8, $OO(\sigma) = O\langle O(\sigma)^2 \rangle$. Applying Λ , we have $OO(\sigma') = O\langle O(\sigma')^2 \rangle$.

Now $\langle \mathcal{O}(\sigma')^2 \rangle \subseteq \Omega(R') \perp \Omega(P')$ since $\mathcal{O}(\sigma') \subseteq \mathcal{O}(R') \perp \mathcal{O}(P')$. So $\mathcal{OO}(\sigma') = \mathcal{O}\langle \mathcal{O}(\sigma')^2 \rangle \supseteq l \perp \Omega(P')$

since dim P'=2 and dim R'>2.

Take $l \neq \rho' \in l \perp \Omega(P')$ and put $\rho = \Lambda^{-1}(\rho')$. Then $\rho' \in OO(\sigma')$ and $\rho \in OO(\sigma) = \Omega(R) \perp l$ by Lemmal. 8. Therefore $O(\rho) = C(\sigma)$, and so $O(\rho') = O(\sigma')$. Thus $\sigma' \in OO(\sigma') = OO(\rho') = l \perp \Omega(P')$, which implies $\sigma' = 1$. This is a contradiction.

Proposition 2.3. Suppose $n \ge 6$. Let $\sigma \in \Delta$ be a non-defective plane rotation Then $\sigma' = \Lambda(\sigma)$ is a non-defective rotation with residual index 2 or n.

Proof It suffices to prove σ' is non-defective.

Suppose σ' is defective. Then res $\sigma' < n$, $R' \cap P' \neq 0$, and we have a splitting $R' = U \perp (R' \cap P')$ where U is a non-defective subspace. So $(\sigma'^2+1)V = (\sigma'+1)U$, and res $\sigma'^2 < \operatorname{res} \sigma'$. If σ'^2 is also defective, then res $\sigma'^4 < \operatorname{res} \sigma'^2$. Because dim V is finite and $\sigma'^{2^*} \neq 1$ for all integers $k \ge 0$, there is an integer j such that σ'^{2^j} is non-defective and res $\sigma'^{2^j} < n$. But σ^{2^j} is a non-defective plane rotation with the residual space R'_p and $\sigma'^{2^j} = \Lambda(\sigma^{2^j})$. So res $\sigma'^{2^j} = 2$ by Proposition 2.2, and R behaves under Λ . Applying Proposition 2.1, both σ'^{2^j} and σ' are non-defective plane rotations. Hence σ' must not be defective.

Proposition 2.4. Suppose $n \ge 6$. If there is a non-defective plane R which behaves under Λ , then all non-defective planes behave under Λ .

Proof Take a non-defective plane rotation σ in Δ with the residual space R. Then $\sigma' = \Lambda(\sigma)$ is also a non-defective plane rotation with the residual space R'. Let π be any non-defective plane in V.

1) First suppose $(R, \pi) = 0$. Write $V = R \perp P = R \perp \pi \perp U$ for some non-defective subspace U, and $V = R' \perp P'$. Take $\tau \in \Omega(\pi) \perp l$. Then $\tau \in O(\sigma)$, and $\tau' = \Lambda(\tau) \in O(\sigma')$ = $(O^+(R') \perp O^+(P')) \cap \Delta$. Denote $\tau' = \tau'_1 \perp \tau'_2$, where $\tau'_1 \in O^+(R')$ and $\tau'_2 \in O^+(P')$.

Take a non-singular vector x in \mathbb{R}' . Define $\Phi: \rho \mapsto \tau_x \rho \tau_x^{-1}$ for all ρ in Δ , where τ_x is the symmetry determined by x. Put $\Psi = \Lambda^{-1} \Phi \Lambda$. Clearly, both Φ and Ψ are automorphisms of Δ .

$$\begin{aligned} \Psi(\tau) &= \Lambda^{-1} \Phi \Lambda(\tau) = \Lambda^{-1} \Phi(\tau') = \Lambda^{-1} (\tau_x(\tau'_1 \perp \tau'_2) \tau_x^{-1}) = \Lambda^{-1} (\tau'_1^{-1} \perp \tau'_2) \\ &= \Lambda^{-1} ((\tau'_1^{-1} \perp l) \tau') = \Lambda^{-1} (\tau'_1^{-1} \perp l) \tau. \end{aligned}$$

Since $\tau_1'^{-1} \perp l \in \Omega(R') \perp l = CO(\sigma')$, we get $\Lambda^{-1}(\tau_1'^{-1} \perp l) \in CO(\sigma) = \Omega(R) \perp l$. Denote $\Lambda^{-1}(\tau_1'^{-1} \perp l)$ by $\theta \perp l$, where $\theta \in \Omega(R)$. So $\Psi(\tau) = (\theta \perp l_p)(\tau \mid_{\pi} \perp l_{\pi^*}) = \theta \perp \tau \mid_{\pi} \perp l_U$. We see res $\Psi(\tau) \leq 4 < n$. Applying Proposition 2.3 to the automorphism Ψ , we see $\Psi(\tau)$ is a non-defective plane rotation, which implies $\theta = 1$, and so $\tau_1'^{-1} = 1$. Hence $\tau_1' = 1$ by Lemma 1.1. Thus $\tau' = l \perp \tau_2'$, and so res $\tau' < n$. Applying Proposition 2.3 again, we prove that τ' is a non-defective plane rotation. Therefore π behaves under Λ .

2) Now suppose $(R, \pi) \neq 0$. Write $\pi = Fx + Fy$. Without loss of generality we can assume $(R, x) \neq 0$. It is easy to see that there is a non-defective quaternary

subspace $T \supset R + Fx$, Since $n \ge 6$, dim $T^* \ge 2$. So, applying the result of step 1) twice, any non-defective plane in T behaves under Λ . In particular, we take $z \in R$ with $(z, x) \ne 0$, then $\pi_1 = Fz + Fx$ is a non-defective plane in T, behaving under Λ . Choose a non-defective quaternary subspace $T_1 \supset \pi_1 + Fy$. As above, any nondefective plane in T_1 behaves under Λ . In particular, π behaves under Λ .

Proposition 2.5. Suppose $n \ge 3$ with $n \ne 8$ and $\nu > 0$. Then at least one nondefective plane behaves under A.

Proof Since $\nu > 0$, we can take a splitting $V = (Fi+Fj) \perp W$, where Q(i) = Q(j) = 0 and (i, j) = 1. So i+j is a non-singular vector. Take $w \in W$ with $Q((w) \neq 0$. Put $\sigma = \tau_{i+j} E_{i,w} \tau_{i+j}^{-1} E_{i,w}^{-1} \in \Delta$, where τ_{i+i} is the symmetry determined by i+j. Now we have $E_{i,w}(i+j) = (1+Q(w))i+j+w$ and $(i+j, E_{i,w}(i+j)) = Q(w) \neq 0$. Hence $\sigma = \tau_{i+j} \tau_{E_{i,w}}(i+j)$ is a non-defective plane rotation.

 $E_{i,w}$ is an involution, so is $\Lambda(E_{i,w})$. Write $\rho = \Lambda(E_{i,w})$, and denote the residual space of ρ by π . Then $\pi \subseteq \pi^*$ and dim $\pi \leq \frac{n}{2}$.

1) If dim $\pi < \frac{n}{2}$, then $\sigma' = \Lambda(\sigma) = \Lambda(\tau_{i+j}E_{i,w}\tau_{i+j}^{-1}E_{i,w}^{-1}) = \Lambda(E_{\sigma_{i+j}(i),\tau_{i+j}(w)}E_{i,w}) = \Lambda(E_{\sigma_{i+j}(i),\tau_{i+j}(w)})$, and res $\sigma' < n$. Thus, res $\sigma' = 2$ by proposition 2.3, and the residual plane of σ behaves under Λ .

2) We now assume dim $\pi = \frac{n}{2}$. Then $\pi = \pi^*$ and $\frac{n}{2}$ is an even integer, and so we can assume $n \ge 12$ Take any non-singular vector x in V, and put $y = x + \rho x \in \pi$. If $Q(y) \ne 0$, then $(x, \rho x) \ne 0$. put $\varphi = \tau_x \rho \tau_x^{-1} \rho^{-1}$ where τ_x is the symmetry determined by x. Then $\varphi = \tau_x \rho \tau_x^{-1} \rho^{-1}$ where τ_x is the symmetry determined by x. Then $\varphi = \tau_x \tau_{\rho x}$ is a non-defective plane rotation. But $\Lambda^{-1} \varphi = \Lambda^{-1} (\tau_x \rho \tau_x^{-1}) E_{i,w}$, and res $\Lambda^{-1} \varphi \le \frac{n}{2} + 2$ <*n*. By proposition 2.3, $\Lambda^{-1} \varphi$ is a non-defective plane rotation, and the residual plane of $\Lambda^{-1} \varphi$ behaves under Λ .

If Q(y) = 0, we can take $v \in (Fy)^*$ such that $v + \rho v \notin Fy$. Put $\psi = E_{y,v\rho} E_{y,v\rho}^{-1}$. Then $\psi = E_{y,v} E_{\rho y,\rho v} = E_{y,v} E_{y,\rho v} = E_{y,v+\rho v}$, which is a degenerate plane rotation. We have res $\Lambda^{-1}\psi \leq 4 < \frac{n}{2}$. Repeating step 1), we get through.

In order to prove at least one non-defective plane behaves under Λ in the case $\nu = 0$, we need the concept of Cayley rotations.

Definition 3. $\sigma \in O(V)$ is called a Cayley rotation on V if its minimal polynomial on V has the form $\lambda^2 + \beta \lambda + 1$ with $\beta \neq 0$. We call β the residual trace of the Cayley rotation σ , and denote $\beta = \operatorname{res} \operatorname{tr}(\sigma)$.

We list some simple properties (Lemma 2.6—Lemma 2.9) of Cayley rotations. (The proof can be proceeded as in section 1B of [6] or 1D of [7].)

Lemma 2.6. Suppose n=2. Then the set of Cayley rotations is $O^+(V)$ excluding

1. If σ is a Cayley rotation on V and x is a non-singular vector, then $\{x, \sigma x\}$ is a basis of V. Given any non-zero β in F, there are at most two Cayley rotations in O(V) with residual trace β . If σ is one of them, then σ^{-1} is the other.

Lemma 2.7. Let $\sigma \in O(V)$ be a Cayley rotation on V. Suppose U is a σ -invariant non-defective subspace of V. Then $\sigma|_{U}$ is a Cuyley rotation on U, and

res tr $(\sigma|_{U})$ = res tr (σ) .

Lemma 2.8. Suppose $\nu = 0$. Then $\sigma \in O(V)$ is a Cayley rotation on V if and only if Fx + Fox is a σ -invariant non-defective plane for any non-zero vector x in V.

Lemma 2.9. Suppose $\nu = 0$. Then $\sigma \in O(V)$ is a Cayley rotation on V if and only if

(a) res $\sigma = n$,

(b) there is a splitting $V = \pi_1 \perp \cdots \perp \pi_n$ into non-defective planes π_i , each invariant under σ .

(c) $\sigma|_{\pi i}$ is a Cayley rotation on π_i for each *i*,

(d) res tr $(\sigma|_{\pi_i})$ = res tr $(\sigma|_{\pi_i})$ for all i, j.

In the case $\nu = 0$, a plane need not be non-defective, but any plane rotation in Δ is non-defective by Lemma 1.4.

Proposition 2.10. Suppose $n \ge 6$ and $\nu = 0$. Let $\sigma \in \Delta$ be a plane rotation. If $\sigma' = \Lambda(\sigma)$ is not a Cayley rotation on V, then the non-defective plane R behaves under Λ .

Proof By Proposition 2.3, res $\sigma'=2$ or *n*. If res $\sigma'=2$, then *R* behaves under Λ . If res $\sigma'=n$, then for any non-zero vector *x* in *V* $Fx+F\sigma'x$ is a plane since $\nu=0$. We have $O \neq Q(x+\sigma'x) = (x, \sigma'x)$, which implies the plane $Fx+F\sigma'x$ is non-defective. Since σ' is not a Cayley rotation on *V*, by Lemma 2.8, there is a non-zero vector *y* in *V* such that $Fy+F\sigma'y$ is not σ' -invariant. Take a plane rotation ρ in Λ with residual space $Fy+F\sigma'y$. Clearly $\rho\sigma'\neq\sigma'\rho$. The residual space of $\rho\sigma'\rho^{-1}\sigma'^{-1}$ lies in the ternary subspace $Fy+F\sigma'y+F\sigma'^2y$, and so $\rho\sigma'\rho^{-1}\sigma'^{-1}$ is a plane rotation. But $\Lambda^{-1}(\rho\sigma'\rho^{-1}\sigma'^{-1}) = ((\Lambda^{-1}\rho)\sigma(\Lambda^{-1}\rho)^{-1})\sigma^{-1}$, being the product of two plane rotations, has residual index at most 4. Thus, $\Lambda^{-1}(\rho\sigma'\rho^{-1}\sigma'^{-1})$ is also a plane rotation by Proposition 2.3, and the residual Plane of $\Lambda^{-1}(\rho\sigma'\rho^{-1}\sigma'^{-1})$ behaves under Λ . Therefore *R* behaves under Λ by proposition 2.4.

Now using the technique in 6.4 of [7], we prove

Proposition 2.11. Suppose $n \ge 6$ with $n \ne 8$ and $\nu = 0$. Then at least one nondefective plane behaves under Λ .

Proof Suppose, if possible, any non-defective plane does not behave under Λ . Then any non-defective plane does not behave unber Λ^{-1} either.

Take a plane rotation σ in Δ . By Proposition 2.10, σ' is a Cayley rotation on V. Using Lemma 2.9, we get a splitting $V = \pi_1 \perp \cdots \perp \pi_k$ and $\sigma' = \sum_1 \perp \cdots \perp \sum_k$, where

each π_i is a σ' -invariant non-defective plane, $\sum_i = \sigma'|_{\pi_i}$, and $k = \frac{n}{2}$.

For each *i*, take a symmetry τ_i in $O(\pi_i) \perp l$. Define Φ_i : $\rho \mapsto \tau_i \rho \tau_i^{-1}$ for all ρ in Δ . Put $\Psi_i = \Lambda^{-1} \Phi_i \Lambda$. Then the Φ_i and Ψ_i are automorphisms of Δ .

Now $\Phi_i(\sigma') = \tau_i(\sum_1 \perp \cdots \perp \sum_i \perp \cdots \perp \sum_k) \tau_i^{-1} = \sum_1 \perp \cdots \perp \sum_i^{-1} \perp \cdots \perp \sum_k = (\sum_i^{-2} \perp l) \sigma'$. Denote $\Lambda^{-1}(\sum_i^{-2} \perp l)$ by T_i . Then T_i , T_i^2 and T_i^4 are Cayley rotations on V by the Hypothesis and Proposition 2.10. T_i permutes with σ since $\sum_i^{-2} \perp l$ permutes with σ' . So $T_i R = R$ for each i

Consider $\Psi_i(\sigma) = \Lambda^{-1} \Phi_i \Lambda(\sigma) = \Lambda^{-1} \Phi_i(\sigma') = \Lambda^{-1} ((\sum_i^{-2} \lfloor l) \sigma') = T_i \sigma$. By Lemma 2.7, $T_i|_P$ is a Cayley rotation on P, and res $(T_i|_P) = n-2$. Applying Proposition 2.10 to the automorphism Ψ_i , we see $T_i \sigma$ is a Cayley rotation. By Lemma 2.7, res tr $(T_i) = \operatorname{res} \operatorname{tr} (T_i|_P) = \operatorname{res} \operatorname{tr} ((T_i\sigma)|_P) = \operatorname{res} \operatorname{tr} (T_i\sigma)$. Using Lemma 2.7 again, res tr $(T_i|_R) = \operatorname{res} \operatorname{tr} (T_i) = \operatorname{res} \operatorname{tr} (T_i\sigma) = \operatorname{res} \operatorname{tr} ((T_i\sigma)|_R)$, By Lemma 2.6, $(T_i\sigma)|_R = (T_i|_R)^{\pm 1}$. Since $\sigma|_R \neq 1$, we obtain $(T_i\sigma)|_R = (T_i|_R)^{-1}$, and $T_i^2|_R = \sigma^{-1}|_R$ for each i. Hence the T_i^2 have the same residual trace.

Now consider the automorphism $\Psi_i \Psi_j$ for $1 \leq i < j \leq k$.

 $\Psi_i \Psi_j(\sigma^2) = \Lambda^{-1} \Phi_i \Phi_j(\sigma'^2) = \Lambda^{-1} ((\sum_i^{-4} \perp l) (\sum_j^{-4} \perp l) \sigma'^2) = T_i^2 T_j^2 \sigma^2$. But $(T_i^2 T_j^2 \sigma^2) |_{\mathcal{R}}$ = l, and so $T_i^2 T_j^2 \sigma^2$ is a plane rotation by proposition 2.3. Let R_{ij} be the residual space of $\Psi_i \Psi_j(\sigma^2)$.

Take $R_1 = R$ and write $V = R_1 \perp U_1$. Since R is invariant under each T_i^2 and $T_i^2|_R = \sigma^{-1}|_R$, we can write

 $T_i^2 = T_{11} \perp T_i^2 |_{U_1} \quad \text{for } i = 1, \dots, k.$

Consider $\Psi_1 \Psi_2(\sigma^2) = T_1^2 T_2^2 \sigma^2$. Its residual plane $R_{12} \subseteq R^* = U_1$. Put $R_2 = R_{12}$ and write $V = R_1 \perp R_2 \perp U_2$. T_i^2 permutes with $T_1^2 T_2^2 \sigma^2$ since $\sum_{i=1}^{i=4} \perp l$ permutes with $\sum_{i=1}^{i=4} \perp l$, $\sum_{i=1}^{i=4} \perp l$ and σ'^2 . So R_2 is invariant under each T_i^2 . With respect to the splitting $V = R_1 \perp R_2 \perp U_2$, write $T_i^2 = T_{11} \perp T_{i2} \perp T_i^2 \mid_{U_2}$, where $T_{i2} = T_i^2 \mid_{R_2}$, for each i.

Since res tr $(T_{i2}) = \operatorname{res} \operatorname{tr} (T_i^2) = \operatorname{res} \operatorname{tr} (T_1^2) = \operatorname{res} \operatorname{tr} (T_{12})$, we get $T_{i2} = T_{12}^{\pm 1}$ by Lemma 2.6. In particular, since $T_1^2 T_2^2 \sigma^2$ has the residual space R_2 , we must have $T_{22} = T_{12}$ and $T_2^2|_{U_2} = T_1^{-2}|_{U_2}$. For $i \ge 3$, we can prove $T_{i2} = T_{12}^{-1}$. Now we write

$$T_1^2 = T_{11} \perp T_{12} \perp T_1^2 |_{U_s},$$

$$T_2^2 = T_{11} \perp T_{12} \perp T_1^{-2} |_{U_s},$$

$$T_i^2 = T_{11} \perp T_{12}^{-1} \perp T_i^2 |_{U_s} \quad \text{for } i \ge 3$$

We now consider the plane rotation $T_1^2T_3^2\sigma^2$ and repeat the above process. Clearly, $(T_1^2T_3^2\sigma^2)|_{R_1\perp R_2} = l$, and so $R_{13} \subseteq U_2$. Put $R_3 = R_{13}$ and write $V = R_1 \perp R_2 \perp R_3 \perp U_3$ As above, R_3 is invariant under each T_i^2 . With respect to this splitting of V, we have

$$T_{1}^{2} = T_{11} \perp T_{12} \perp T_{13} \perp T_{1}^{2} |_{U_{s}},$$
$$T_{2}^{2} = T_{11} \perp T_{12} \perp T_{13}^{-1} \perp T_{1}^{-2} |_{U_{s}},$$

$$T_3^2 = T_{11} \perp T_{12}^{-1} \perp T_{33} \perp T_3^2 |_{U_s},$$
$$T_i^2 = T_{11} \perp T_{12}^{-1} \perp T_{i3} \perp T_i^2 |_{U_s} \quad \text{for } i \ge 4.$$

As above, we can prove $T_{33} = T_{13}$ and $T_3^2|_{U_8} = T_1^{-2}|_{U_8}$.

If n=6, we have

$$T_2^2 = T_{11} \perp T_{12} \perp T_{13}^{-1},$$

 $T_3^2 = T_{11} \perp T_{12}^{-1} \perp T_{13},$

with respect to the splitting $V = R_1 \perp R_2 \perp R_3$. Then $T_2^2 T_3^2 \sigma^2 = l$. This contradicts the fact that $T_2^2 T_3^2 \sigma^2$ is a plane rotation.

If $n \ge 10$, then dim $U_3 \ge 4$. We have

$$T_{2}^{2} = T_{11} \perp T_{12} \perp T_{13}^{-1} \perp T_{1}^{-2} |_{U_{3}},$$

$$T_{3}^{2} = T_{11} \perp T_{12}^{-1} \perp T_{13} \perp T_{1}^{-2} |_{U_{3}},$$

with respect to the splitting $V = R_1 \perp R_2 \perp R_3 \perp U_3$. Then $T_2^2 T_3^2 \sigma^2 = l_{R_1 \perp R_2 \perp R_3} \perp T_1^{-4}|_{U_3}$. Since T_1^{-4} is a Cayley rotation on V, $T_1^{-4}|_{U_3}$ is a Cayley rotation on U_3 , and so $\operatorname{res}(T_2^2 T_3^2 \sigma^2) = \operatorname{res}(T_1^{-4}|_{U_3}) \ge 4$. This is a contradiction.

Therefore, at least one non-defective plane behaves under Λ .

Theorem 2.12. Suppose $n \ge 6$ with $n \ne 8$. All non-defective planes behave under Λ .

Proof Apply propositions 2.4, 2.5 and 2.11.

III. The Automorphisms

In this section we prove any automorphism Λ of Δ has the standard type Φ_g provided $n \ge 6$ with $n \ne 8$, The steps of proof are as follow. First of all, we prove that Λ induces in a natural way a one-one correspondence of the set of the non-defective planes in V onto itself. Then Λ naturally induces a one-one correspondence of the set of lines in V onto itself. We show that the mapping preserves incidence between a line and a plane, and preserves the quadratic structure. Finally, using the Fundamental Theorem of Projective Geometry, we obtain the main theorem of this paper. As a corollary, we easily prove that any automorphism of O(V) or $O^+(V)$ has the same type.

Suppose $n \ge 6$ with $n \ne 8$. Let R be a non-defective plane in V, and let σ in Δ be chosen with residual space R. Then R' is a non-defective plane by Theorem 2.12 and Proposition 2.3. Let R correspond to R'. Denote $R' = \Lambda R$. This map does not depend on the choice of σ by Lemma 1.10. It is injective by Lemma 1.10 again. It is surjective since Λ^{-1} is also an automorphism of Δ . So Λ is a bijection of the set of the non-defective planes in V onto itself.

Proposition 3.1. Suppose $n \ge 6$ with $n \ne 8$. Let R_1 and R_2 be two non-defective planes in V. Then $(R_1, R_2) = 0 \Leftrightarrow (R'_1, R'_2) = 0$.

No. 3 Li, F. A. THE AUTOMORPHISMS OF NON-DEFECTIVE OBTHOGONAL GROUPS 371

Proof Apply Lemma 1.11.

Proposition 3.2. Suppose $n \ge 6$ with $n \ne 8$. Let R_1 and R_2 be two non-defective planes in V. Then

$$\dim(R_1 \cap R_2) = 1 \Leftrightarrow \dim(R'_1 \cap R'_2) = 1.$$

Proof See 5.7 of [4]

Proposition 3.3. Suppose $n \ge 6$ with $n \ne 8$. Let $\{R_{\mu}\}_{\mu \in I}$ be a family of nondefective planes in V. Then

$$\dim (\bigcap_{I} R_{\mu}) = 1 \Leftrightarrow \dim (\bigcup_{I} R'_{\mu}) = 1.$$

Proof It suffices to show that dim $(\bigcap_{I} R_{\mu}(=1 \Rightarrow \dim (\bigcap_{I} R'_{\mu}) = 1.$

Without loss of generality we can assume card I=3. Let $R_1 \cap R_2 \cap R_3 = Fx$ with R_1 , R_2 and R_3 distinct.

1) First suppose $R_1 + R_2 + R_3 = U$ is quaternary. If we can find a non-defective plane $\pi \subseteq (R_i + R_j)^*$, $\pi \not\subseteq (R_1 + R_2 + R_3)^*$, for some *i*, *j*, $1 \leq i < j \leq 3$, then $(\pi, R_i) =$ $(\pi, R_j) = 0$ and $(\pi, R_k) \neq 0$, where *k* is the remaining index. Hence $(\pi', R'_i) =$ $(\pi', R'_j) = 0$ and $(\pi', R'_k) \neq 0$ Py proposition 3.1. Put $R'_i \supset R'_k = L_i$ and $R'_j \cap R'_k = L_j$, which are lines by Proposition 3.2. Then $L_i = L_j$, otherwise $(R'_k, \pi') = (L_i + L_j, \pi')$ = 0. Hence $R'_i \cap R'_j \cap R'_k$ is a line. Now we attempt to find such a π . Notice dim $U \cap U^* = 2$ or O.

Suppose dim $U \cap U^* = 2$. We can write the ternary subspace $R_1 + R_2 = R_1 \perp Fy$ for some $y \in U \cap U^*$. Since dim $(R_1 + R_2)^* \ge 3$ and $(R_1 + R_2) \cap (R_1 + R_2)^* = Fy$, there is a non-defective plane in $(R_1 + R_2)^*$. It is easily seen that $(R_1 + R_2)^*$ is spanned by non-defective planes. Since $(R_1 + R_2)^* \not\equiv (R_1 + R_2 + R_3)^*$, we can choose a non-defective plane π in $(R_1 + R_2)^*$ which is not in $(R_1 + R_2 + R_3)^*$. Hence in this case we are done.

Suppose now dim $U \cap U^* = 0$, i. e., U is non-defective. Take a non-zero vector U in U^* . Write $R_1 = Fx + Fz$. Then $(x, z) \neq 0$ since R_1 is non-defective. Put $R_4 = Fx + F'(z+u)$ which is a non-defective plane containing Fx. Now both $R_1 + R_2 + R_4$ and $R_1 + R_3 + R_4$ are quaternary and defective. Hence by the previous case, $R'_1 \cap R'_2 \cap R'_4 = L'_3$ and $R'_1 \cap R'_3 \cap R'_4 = L'_2$ are lines. Therefore $R'_1 \cap R'_2 = L'_3 = R'_1 \cap R'_4 = L'_2 = R'_1 \cap R'_3$, and so $R'_1 \cap R'_2 \cap R'_3$ is a line.

2) Finally suppose U is ternary. We can choose a non-defective plane R_4 with $Fx \subset R_4 \not\subseteq U$. Then $U + R_4 = R_1 + R_2 + R_4 = R_1 + R_3 + R_4$ is quaternary. By step 1), $R'_1 \cap R'_2 \cap R'_4$ and $R'_1 \cap R'_3 \cap R'_4$ are lines. Therefore $R'_1 \cap R'_2 = R'_1 \cap R'_4 = R'_1 \cap R'_3$, and so $R'_1 \cap R'_2 \cap R'_3$ is a line.

Proposition 3.4. Suppose $n \ge 6$ with $n \ne 8$. Let R_1 and R_2 be two non-defective planes. Then $R_1 \cap R_2$ is a singular line if and only if $R'_1 \cap R'_2$ is a singular line.

Proof See 5.12 of [4]

Proposition 3.5. Suppose $n \ge 4$. Let L_1 and L_2 be two distinct lines in V. Then there are non-defective planes R_1 and R_2 in V such that $L_1 \subset R_1$, $L_2 \subset R_2$ and $R_1 \cap R_2$ =0. Moreover, if $(L_1, L_2) = 0$, we can choose R_1 and R_2 with $(R_1, R_2) = 0$.

Proof See 7.2 of [4].

We now define a correspondence of the set of lines in V onto itself. Let L be a line in V. Then $L = \bigcap_{I} R_{\mu}$, where $\{R_{\mu}\}_{\mu \in I}$ is the set of all non-defective planes containing L. By Proposition 3.3, $\bigcap_{I} R'_{\mu} = L'$ is a line. Let L correspond to L'. Denote $L' = \Lambda L$. Using Propositions 3.5 and 3.2 and the fact that Λ^{-1} is also an automorphism of Δ , we easily see the correspondence is a bijection.

Proposition 3.6. Suppose $n \ge 6$ with $n \ne 8$. Let R_1 and R_2 be non-defective planes in V, and let L, L_1 and L_2 be lines in V with $L_1 \ne L_2$. Then

(a) $(L_1, L_2) = 0 \Leftrightarrow (L'_1, L'_2) = 0.$

(b) $L = R_1 \cap R_2 \Leftrightarrow L' = R'_1 \cap R'_2$.

(c) $L \subset L_1 + L_2 \Leftrightarrow L' \subset L'_1 + L'_2$,

Proof See 7.4 of [4].

Definition 4. Let g be a semilinear automorphism of V with field automorphism μ . We say that g preserves Q (or g preserves the quadratic structure) if there is a non-zero α in F such that $Q(gx) = \alpha(Q(x))^{\mu}$ for all x in V. We say that g preserves orthogonality if (x, y) = 0 implies (gx, gy) = 0.

Proposition 3.7. Let g be a semilinear automorphism of V. Then g preserves Q if and only if g preserves orthogonality and Q(gx) = 0 whenever Q(x) = 0.

Proof See 7.5 of [4].

Now consider the may $\Phi_g: GL(V) \rightarrow GL(V)$, sending σ to $g\sigma g^{-1}$. This is an automorphism of GL(V).

Proposition 3.8. Suppose $n \ge 4$ and g is a semilinear automorphism of V. If g preserves Q, then Φ_g induces an automorphism of O(V), $O^+(V)$, O'(V), and $\Omega(V)$.

Proof See 6.3 of [4].

Proposition 3.9 Suppose $n \ge 6$ with $n \ne 8$. Let Λ be an automorphism of Δ . If R' = R for all non-defective planes R, then $\Lambda = 1$.

Proof Proceed as in 4.5 of [9].

Using Proposition 3.6 and the Fundamental Theorem of Projective Geometry, we see that there exists a semilinear automorphism g of V such that L' = gL. By Propositions 3.6 and 3.4, g preserves orthogonality and sends singular lines to singular lines, and so g preserves Q by Proposition 3.7. Then Φ_g induces an automorphism of Δ . Consider the automorphism $\Delta \Phi_g^{-1}$ of Δ . Under this autorphism, R'= R for all non-defective planes R in V. Therefore we obtain the main theorem of this paper. **Theorem 3.10.** Let V be a non-defective n-dimensional quadratic space over a field F of characteristic 2. Suppose $n \ge 6$ with $n \ne 8$ and $F \ne \mathbf{F}_2$. Let Λ be any automorphism of $\Omega(V)$ or O'(V). Then Λ has the standard type $\Lambda = \Phi_g$, where g is a semilinear automorphism of V which preserves Q. Hence

Aut $\Omega(V) \simeq \operatorname{Aut} O'(V) \simeq \Phi \Gamma O(V)$,

where $P\Gamma O(V)$ is the projective group of the semilinear automorphisms of V which preserve Q.

Finally, if Λ is an automorphism of O(V) or $O^+(V)$, then Λ induces an automorphism of $\Omega(V)$, and $\Lambda|_{\Omega(V)}$ induces a bijection of the non-defebtive planes in V as above. We easily see that $\Lambda = 1$ if and only if the associated correspondence of the non-defective planes is the identity. Thus, we have

Corollary 3.11. Let V be a non-defective n-dimensional quadratic space over a field F of characteristic 2. Suppose $n \ge 6$ with $n \ne 8$ and $F \ne \mathbf{F}_2$. Then all automorphisms of O(V) and $O^+(V)$ are of standard type Φ_g , and

Aut $O(V) \simeq \operatorname{Aut} O^+(V) \simeq P \Gamma O(V)$.

REFERENCES

[1] Hua, L. K. and Wan, Z. X., Classical Groups, 1963 (In Chinese).

[2] Artin, E., Geometric Algebra, Interscience Publishers, New York-London, 1957.

- [3] Chevalley, C., The Algebraic Theory of Spinors, New York, 1954.
- [4] Connors, E. A., Automorphisms of Orthogonal Groups in Characteristic 2, J. Number Theory, 5(1973), 477-501.

[5] Dieudonné, J., On the Automorphisms of the Classical Groups, Memoirs of the American Mathematical Society, New York, 1951.

- [6] Hahn, A., Cayley Algebras and the Automorphisms of $PO'_8(V)$ and $P\Omega_8(V)$, Amer. J. Math., 98(1976), 953-987.
- [7] Johnson, A. A., The Automorphisms of the Orthogonal Groups $\Omega_n(V)$, $n \ge 5$, J. Reine Angew. Math., **298**(1978), 112-155.
- [8] O'Meara, O. T., Introduction to Quadrrtic Forms, Berlin-Göttingen-Heidelberg, 1963.
- [9] O'Meare, O. T., The Automorphisms of the Orthogonal Groups $\Omega_n(V)$ over Fields, Amer. J. Math., 90 (1968), 1260-1306.
- [10] Tamagawa, T., On the Structure of Orthofonal Groups, Amer. J. Math., 80 (1958), 191-197.