ADDENDUM TO "THE STRUCTURES OF GROUPS OF ORDER 2^3p^2 "

JING NAIHUAN (景乃桓)

Abstract

The present paper is a complement to the paper [1]. It is proved that groups of order 2^{37^2} have 44 types.

In the paper [1] Zhang Yuanda has solved the structures of groups of order 2^3p^2 , where p is a prime different from 3 and 7. We discuss the problem when p=7 in the present paper. We shall show the following

Theorem. The groups of order 2³ 7² have 44 types.

Recalling the article [1], we find out that the proof and the result are also valid when the Sylow p-subgroup is normal. In other words, we have the following

Lemma. The groups of order 2³ 7² have 42 types, when their Sylow 7-subgroups are normal.

Owing to this, we shall only consider groups of order 2³7² without normal Sylow 7-subgroups.

Let G be a group of order 2^3 7^2 , P the Sylow 7- subgroup of G and A the Sylow 2-subgroup of G. Moreover assume that P is not normal in G. From the Sylow's theorem we conclude that $|G:N_G(P)| \equiv 1 \pmod{7}$. Note that P is not normal, $|G:N_G(P)| = 8$, consequently $N_G(P) = P$.

Because of the commutativity of P, we have $N_G(P) = P = C_G(P)$. The argument of the Burnside's theorem^[2] shows that G has a normal 7-complement, whence A is a normal subgroup.

Since A is normal in G, and since the order |A| of A is prime to the order |P| of P, the group G = AP may be viewed as a semi-direct product, i. e., $G = P_f \circ A$, where f is the mapping of P into Aut(A) such that each element of P corresponds to the automorphism of A induced by its conjugation. i. e., $f: x(\in P) \to (a \to a^x = x^{-1}ax, a \in A) \in \text{Aut}(A)$.

Therefore

 $P/\ker nf \cong S \leqslant \operatorname{Aut}(A)$.

However, A has the following five possibilities: (i) cyclic group Z_8 ; (ii) abelian

Manuscript received July 27, 1983.

^{*} Department of Mathematics, Hubei Uniersity, Wuhan, China.

group $Z_4 \times Z_2$; (iii) elementary abelian group $Z_2 \times Z_2 \times Z_2$; (iv) quaternion group Q_8 ; (v) dihedral group D_8 . When A lies in the case (i), (ii), (iv) and (v), |Aut(A)| is 4, 8, 24 and 8 respectively, so (|Aut(A)|, |P|) = 1, which means that P acts on A trivially. Then G = AP, which contradicts our assumption of non-normality of P. Hence A has only one possibility (iii).

Suppose $A = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, viewed as a vector space over the field Z_2 . Since we are not discussing the trivial action of P on A, kern $f \neq P$. But $|\operatorname{Aut}(A)| = |GL(3, 2)| = 7 \times 3 \times 2^3$, we also have kern $f \neq 1$. Then

$$P/\ker nf \cong S \in Syl_7Aut(A), Aut(A) = GL(3, 2).$$

Now let $M, N \in GL(3, 2)$, and |M| = |N| = 7. By the above statement there exists a matrix $T \in GL(3, 2)$ such that $M = TNT^{-1}$. Here the minimal polynomial of M is a factor of the polynomial $X^7 + 1 = (X+1)(X^3 + X^2 + 1)(X^3 + X + 1)$. However, the polynomials $X^3 + X + 1$ and $X^3 + X^2 + 1$ are all irreducible over the field Z_2 , hence the minimal polynomial must be $X^3 + X + 1$ or $X^3 + X^2 + 1$. So M is similar to the

$$\text{matrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}. \text{ Therefore } \\
 \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = T \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}^{t} T^{-1}$$

for some $T \in GL(3, 2)$ and for some i prime to 7. As A is a vector space over Z_2 ; and since $G = A\langle y \rangle = A\langle y^i \rangle (y^{49} = 1)$ or $G = A(\langle x \rangle \times \langle y \rangle) = A(\langle x \rangle \times \langle y^i \rangle)$, where $\langle x \rangle = \ker f$, we know that in the case of P being non-normal, there exist two types of G in the following:

(i)
$$G = \langle a, b, c, y \rangle$$
, $a^2 = b^2 = c^2 = y^{49} = [a, b] = [b, c] = [c, a] = 1$.
$$\begin{cases} a^y = c, \\ b^y = ac, \\ c^y = b. \end{cases}$$
(ii) $G = \langle a, b, c, x, y \rangle$, $a^2 = b^2 = c^2 = x^7 = y^7 = [a, b] = [b, c] = [c, a] = [x, y] = 1$

$$\begin{cases} a^x = a, \\ b^x = b, \\ c^x = c, \end{cases} \begin{cases} a^y = c, \\ b^y = ac, \\ c^y = b. \end{cases}$$

Obviously the Sylow 7-subgroups of G in (i) and (ii) are not normal, and therefore by the LEMMA mentioned above we finish the proof of the theorem.

References

^[1] Zhang Yuanda (张远达), The structures of groups of order 23p2, Chin. Ann. of Math., 4B: 1 (1983), 77-93.

^[2] Zhang Yuanda (张远达)有限群构造(下) (The Structuyes of finite groups), 科学出版社,北京(1982).