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THE WEAK PROJECTION THEORY AND
DECOMPOSITIONS OF QUASI-
MARTINGALE MEASURES
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Abstract

In this paper it is proved that every bounded, #X $—measurable function has a unique
predictable projection and that every admissible measure has a unique dual predictable
projection. Using this weak projection theory, the author proves a weak version of Doob-
Meyer’s decomposition theorem for regular quasi- martingale measures.

It is well known that every quaS1-mart1ngale X of class [L. D.] has a Doléans
measure Ay and therefore there exists a unique, predmtable process X of finite
variation such that Ax=Ax, that is, M=X —~X is a martingale (of. [1, 31). The
process X is called the dual predictable projection of X and X =M+ X is called the

. Doob-Meyer’s decomposition. of the quasi-marsingale X. When the parameter set R,

is replaced by a general topological measurable space, it seems to he very difficult to
establish a similar theorem since the existence and uniqueness of the dual predmtable
projection heavily depends on the linear order property of the parameter set R..

‘However, we will prove a weak version of the predictable projection theory in this

connection and establish a similar decomposition for a wide clags of quasi-martingales.
Let (Q, #, P) be a complete probability space, % be a topological space with its
Borel g-algebra &, € be a sublattice of & such that Z=0(%) and ¥ be the algebra
generated by ¥. As in [4], let {Fo, CE€EF} be a family of sub—a—a,lgebras of #
satisfying the followmg conditions:
(F. 1) Z, contains all P-null sets;
(B.2) C1c0;, Oy, C2€EC=>F 0, CF oy
(F. 8) G0, {C,}=¥, OCC>F 0, Fo.
Agsume that for every A€ Y, there exists a set {(4) € € such that
(1) H(A)NA=g;
(ii) CEZ, ONA-G=>t(A)O;
(iii) 4, BEY, ACB=>t(B)ci(4).
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Denote by # all subsets of the product space %% Q@ of the form A X . where
AEU and A€ F 4y The o-algebra & generated by Z is said to be predictable
o-algebra. .

For any real valued 1ntegrab1e random set function X =X (4, w) defined on
aX Q, we define a real valued set function Az on Z as follows:

' Ax(Ax A)=EL,X (4) for AxAER.

If there exists a sequence {4, XA,.} of sets in # such that A, X A4 UXQ and Ay is
finitely additive on the algebra generated by Z and has finite variation on each seb
ApX A,, then ‘we call X a quasi-martingale measure. If, moreover, the set function
Ax can be extended to a o-finite signed measure on &, then X is said to be regular
and Ay is called the Doléans measure of X. Olearly, the lodally square integrable
martingale u defined in [4] as well ag its square u? are examples of reqular quasi-
martingale measures. '

We said that a o~finite signed measure A on & is adm1ss1ble if there exists a
o—finite measure m on % such that A«<m X P on . This definition is more strict

than that defined in [2, 8] in one dimensional case. Denote 'by 2, the completion of

o- algebra & with respect to all admissible measures. A set in &, is called a universal
null set (u. n.'set) if it has measure zero for all admissible measures. To describe
the u. n. sets, we have the following lemma:

Lemma. A set Nin P, isau. n. set 4f and only if for each uE U, the u-section.

of N has probab@lrbty zero, ©. e.
' P(Nu)=0, Vu€%.

Proof The “if” part: Suppose that A 'is an arbitrary admissible measure on &

and Agm X P for some measure m on . Since N is an m X P-null set if and only if
almost all its u-sections are P-null sets, it follows that A(N )=0.
 The “only if” part: Suppose that for some ¥E€ % we have P(Nu)>0. Then, we
can find a measure m on & such that m({u})>0 Therefore, we. have(m X P)(N)>0,
which implies that N is not a u. n. set. '
Now we state and prove a weak version of predictable. progectlon theorem:
Theorem 1. For each bounded, %X F—measurable function h(u, w), there ewists
@ unique(up to @ . n. set) P-measwrable function h®(w,w) such that, for efvefry a—ﬁmte
measure m on % and every set S in P, the equality :

Lh(u, w)d(mx P)= L;ﬂ(u, w)d(mxp) | | (1)

holds.
Remark. If we consider the probability measures on Zx Z, the equation (1)

means that
h®=E"*F(h|P)
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for ev_eiy probability measure m on %. We will use this notation for general
measures. A% is said to be the prediotable projection of A. It is easy to see that the

‘map: h~>h” has similar properties as those of a conditional expectation.

Proof (Uniqueness) Let ai=>hy, be two %% .F-measurable funotlons with
predictable projections Af and Af respectively. We will prove that the predictable set
S=1[(u, w):hf(u, w)<hi(u, w)]
ig a w. n. get. Aotually, if for some u € %, P(S,)>0, then we can find a measure m

on % such that m({u})>>0 and therefore (m X P)(8)>0. It follows that

j hid(mxp)=j hfd(me)<[shgd(me)=jsh2d(m><1>),

which contradiots the assumption.
(Existence) Firstly we consider the mdmator of a product set Ax A, h(u, w)
=1,(u)14(w), where ACY and A€ Z. For every finite partition of set 4,
A= % AT,
. ' {=1
where {47, ¢=1, 2, +-:, n,} are disjoint sets in A, define
1% a(u, w) glﬂ @B (2| Frap) (w).

All the partitions ordered by the “finer” relation constitute a partially ordered set a

" which is filtering to the right. Every linearly ordered subset in II is contained in a

maximized linearly ordered subset. We choose any one of the maximized linearly
ordered subsets, fix it and denote it by Il,.
For each u & %, it is easy to prove that
 {15uu, ), wEM}
is a martingale bounded in L. Accordingly, it will converge almost surely to some
limit 1%,,(u, w) which is defined up to a u. n. set. -
For any o-finite measure m on & and any set 4; X 4; in #, we have

[, Liad(mx P) = Sm( 444D BAB L] Fraa))- @

Since IT, is a maximized linearly ordered subset of II, it follows that there exists
some o€ JJo such that for Va>m,, all those sets AF(i=1, 2, --+, n,) will be
eventually either contained in A, or disjoint from A4,. If 4,47 = for some ¢, then
m( A1 AF) =0; if 4,0 AT for some 4, then (A4y) C#(AF) and

EQ 4B F1un)) =EB(HA 44| F 1ap) = E(IA.A) =P(4:4).
Hence, by passage to limit in (2) , Weo have

J 18, d(mx Py =m(AsA)P( ) = j 1,,.,d(mx P).
AyX Ay Ar X4y

Using a standard reasoning in measure theory, it is easy to see that for each bounded,

- # X F-measurable function A(u, w), there exists a #-measurable function A?(u, w)
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such that (1) holds for every get § in £. So the proof is complete.

Theorem 2. For every admissible measwre A on P, there ewists & unique extension
A on BXF such that for every bounded, % x F-measurable function h(u, w) and iis
predicatable projection h?(u, w), the equality

J th=I heda 3)
axQ #%xe
holds.
Remark. This extension A is called the dual predicatable projection of A.
Proof For 8S€ B X F, define

() = f 1203,
UK
where 17 is the predicatable projection of ly. Since the map h—)fh”d?» is a positive

linear functional on the Banach space of all bounded, Zx Z- ~measurable functions
‘whenever A is a nonnegative admissible measure, it follows that A(+) thus defined is
a meagure on HX.F and for each bounded %X .Z—measurable function A, the
equation (3) holds. Since every admissible signed measure is a difference of two
nonnegative admissible meagures, the theorem follows immediately.

Remark. For any admigsible measure A on ? we oan. always find an extension
by setting

An(8) =Ld(_—m§< 7) ‘ ,I(m* P) )

for § € Bx F provided ALm X P on & for some g—finite measure m on Z. However,
Theorem 2 shows that the extension doesn’t depend on the choice of m. Actually, by
Theorem 1 we have

d(mx P) = I (L |gf)d(mxp)

(=], 1 am“dz'ﬂl m‘?ﬁ—p—)\
_j (L)) B d( L )\ d(mx P) = j 18dA=1(5). (5)

Theorem 3. For e'very admissible measure b on 2P, there ewists a unique (up to
equivalence) st SJunction X (4, w) on ax Q such that
i) for each wEQ, X (-, w) can be ewtended to @ o—finite signed measure on %,
ii) for each AC¥, X (A, «) is Fo—measurable provided ACCE G,
iii) the Doléans measwre hx of X coincides with A on P.
Proof Suppose that ALmXP on & for some o-finite measure m on Z.
Combining (4) and (5) we see that

—_dh ___dx
d(m X P)|axs d(mXP)le

Define .
[ __@dA
X(A, ’U)) —IAmdm fOI' AE%[.

Olearly, this set function satisfies (i) and (ii). Moxeover, for each A€ F
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F1,X (4) =LM;&W"ZZ“<_E d(mx P)=i(4Ax 4).

It follows that (iii) also holds and that the function X actually doesn’t depend on
the choice of m. In fact, if A< X P for another g—finite measure m on % and if we
define _ :

' dA ~

| (4, w) =Lmdm for A€ Y,
then we have
F1,%(A)=H1,X (4)=A(4x4)

for each A€ Z. It follows that for each A€ ¥ '

X4, wy=X(4, w) a.s.
and thus the proof is completed.

Remark. If the admissible measure A is the Doléans measure of some regular

- quasi-martingale measure Y, then we call X the dual predictable projection of ¥
According to the above theorem, Ay_x=0, i. e. ¥'—X is a martingale measure in
some weak sense. This is a weak version of Doob—Meyer’s decomposition theorem. If w
is a locally square integrable martingale measure (cf. [4]), then u? is a regular
quasi-martingale measure. If, moreover, the Doléans measure of w? (in [4], it is t
denoted by {up) is an admissible meagure, then there exists a unique dual predicatable

projection of u?. We can use this pro jection to define the stochastic integral with
respect to w as many authors have already done. But we prefer to use the Doléans
meastre directly since the conditions imposed on the existence of Doléans measure are
much weaker than those of validity of Doob-Meyer’s decomposition theorem on a
general topological measurable space;-
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