THE WEAK PROJECTION THEORY AND DECOMPOSITIONS OF QUASI-MARTINGALE MEASURES

HUANG ZHIYUAN (黄志远)

Abstract

In this paper it is proved that every bounded, $\mathscr{D} \times \mathscr{F}$ -measurable function has a unique predictable projection and that every admissible measure has a unique dual predictable projection. Using this weak projection theory, the author proves a weak version of Doob-Meyer's decomposition theorem for regular quasi-martingale measures.

It is well known that every quasi-martingale X of class [L. D.] has a Doléans measure λ_X and therefore there exists a unique, predictable process \widetilde{X} of finite variation such that $\lambda_X = \lambda_{\widetilde{X}}$, that is, $M = X - \widetilde{X}$ is a martingale (cf. [1, 3]). The process \widetilde{X} is called the dual predictable projection of X and $X = M + \widetilde{X}$ is called the Doob-Meyer's decomposition of the quasi-marsingale X. When the parameter set \mathbf{R}_+ is replaced by a general topological measurable space, it seems to be very difficult to establish a similar theorem since the existence and uniqueness of the dual predictable projection heavily depends on the linear order property of the parameter set \mathbf{R}_+ . However, we will prove a weak version of the predictable projection theory in this connection and establish a similar decomposition for a wide class of quasi-martingales.

Let (Ω, \mathcal{F}, P) be a complete probability space, \mathscr{U} be a topological space with its Borel σ -algebra \mathscr{B}, \mathscr{C} be a sublattice of \mathscr{B} such that $\mathscr{B} = \sigma(\mathscr{C})$ and \mathfrak{U} be the algebra generated by \mathscr{C} . As in [4], let $\{\mathcal{F}_{\sigma}, \mathcal{O} \in \mathscr{C}\}$ be a family of sub- σ -algebras of \mathscr{F} satisfying the following conditions:

(F. 1) \mathscr{F}_{ϕ} contains all *P*-null sets;

(F. 2) $\mathcal{O}_1 \subset \mathcal{O}_2$, \mathcal{O}_1 , $\mathcal{O}_2 \in \mathscr{C} \Rightarrow \mathscr{F}_{\mathcal{O}_1} \subset \mathscr{F}_{\mathcal{O}_2}$;

(F. 3) $C_n \downarrow C$, $\{C_n\} \subset \mathscr{C}$, $C \in \mathscr{C} \Rightarrow \mathscr{F}_{C_n} \downarrow \mathscr{F}_{C}$.

Assume that for every $A \in \mathfrak{A}$, there exists a set $t(A) \in \mathscr{C}$ such that

(i) $t(A) \cap A = \emptyset;$

(ii) $0 \in \mathscr{C}, 0 \cap A \neq \emptyset \Rightarrow t(A) \subset 0;$

(iii) A, $B \in \mathfrak{A}$, $A \subset B \Rightarrow t(B) \subset t(A)$.

Manuscript received August 15, 1983.

* Department of Mathematics, Wuhan University, Wuhan, China.

Denote by \mathscr{R} all subsets of the product space $\mathscr{U} \times \Omega$ of the form $A \times A$ where $A \in \mathscr{U}$ and $A \in \mathscr{F}_{t(A)}$. The σ -algebra \mathscr{P} generated by \mathscr{R} is said to be predictable σ -algebra.

For any real valued integrable random set function X = X(A, w) defined on $a \times \Omega$, we define a real valued set function λ_x on \mathscr{R} as follows:

 $\lambda_X(A \times \Lambda) = El_A X(A)$ for $A \times \Lambda \in \mathscr{R}$.

If there exists a sequence $\{A_n \times A_n\}$ of sets in \mathscr{R} such that $A_n \times A_n \uparrow \mathscr{U} \times \Omega$ and λ_x is finitely additive on the algebra generated by \mathscr{R} and has finite variation on each set $A_n \times A_n$, then we call X a quasi-martingale measure. If, moreover, the set function λ_x can be extended to a σ -finite signed measure on \mathscr{P} , then X is said to be regular and λ_x is called the Doléans measure of X. Clearly, the lodally square integrable martingale μ defined in [4] as well as its square μ^2 are examples of regular quasimartingale measures.

We said that a σ -finite signed measure λ on \mathscr{P} is admissible if there exists a σ -finite measure m on \mathscr{B} such that $\lambda \ll m \times P$ on \mathscr{P} . This definition is more strict than that defined in [2, 3] in one dimensional case. Denote by \mathscr{P}_u the completion of σ -algebra \mathscr{P} with respect to all admissible measures. A set in \mathscr{P}_u is called a universal null set (u. n. set) if it has measure zero for all admissible measures. To describe the u. n. sets, we have the following lemma:

Lemma. A set N in \mathscr{P}_u is a u. n. set if and only if for each $u \in \mathscr{U}$, the u-section of N has probability zero, i. e.

$$P(Nu)=0, \quad \forall u \in \mathscr{U}.$$

Proof The "if" part: Suppose that λ is an arbitrary admissible measure on \mathscr{P} and $\lambda \ll m \times P$ for some measure m on \mathscr{B} . Since N is an $m \times P$ -null set if and only if almost all its *u*-sections are P-null sets, it follows that $\lambda(N) = 0$.

The "only if" part: Suppose that for some $u \in \mathscr{U}$ we have P(Nu) > 0. Then, we can find a measure m on \mathscr{B} such that $m(\{u\}) > 0$. Therefore, we have $(m \times P)(N) > 0$, which implies that N is not a u. n. set.

Now we state and prove a weak version of predictable projection theorem:

Theorem 1. For each bounded, $\mathscr{B} \times \mathscr{F}$ -measurable function h(u, w), there exists a unique(up to a u. n. set) \mathscr{P} -measurable function $h^{\mathscr{F}}(u, w)$ such that, for every σ -finite measure m on \mathscr{B} and every set S in \mathscr{P} , the equality

$$\int_{\mathcal{S}} h(u, w) d(m \times P) = \int_{\mathcal{S}} h^{\mathscr{G}}(u, w) d(m \times P)$$
(1)

holds.

Remark. If we consider the probability measures on $\mathscr{B} \times \mathscr{F}$, the equation (1) means that

$$h^{\mathscr{P}} = E^{m \times P}(h | \mathscr{P})$$

for every probability measure m on \mathscr{B} . We will use this notation for general measures. $h^{\mathscr{P}}$ is said to be the predictable projection of h. It is easy to see that the map: $h \rightarrow h^{\mathscr{P}}$ has similar properties as those of a conditional expectation.

Proof (Uniqueness) Let $h_1 \ge h_2$ be two $\mathscr{B} \times \mathscr{F}$ -measurable functions with predictable projections $h_1^{\mathscr{P}}$ and $h_2^{\mathscr{P}}$ respectively. We will prove that the predictable set $S = [(u, w): h_1^{\mathscr{P}}(u, w) < h_2^{\mathscr{P}}(u, w)]$

is a u. n. set. Actually, if for some $u \in \mathcal{U}$, $P(S_u) > 0$, then we can find a measure m on \mathcal{B} such that $m(\{u\}) > 0$ and therefore $(m \times P)(S) > 0$. It follows that

$$\int_{\mathcal{S}} h_{1}d(m \times P) = \int_{\mathcal{S}} h_{1}^{\mathscr{D}}d(m \times P) < \int_{\mathcal{S}} h_{2}^{\mathscr{D}}d(m \times P) = \int_{\mathcal{S}} h_{2}d(m \times P),$$

which contradicts the assumption.

(Existence) Firstly we consider the indicator of a product set $A \times A$, $h(u, w) = \mathbf{1}_A(u)\mathbf{1}_A(w)$, where $A \in \mathfrak{A}$ and $A \in \mathscr{F}$. For every finite partition of set A,

$$\pi:A=\sum_{i=1}^{n_{\pi}}A_{i}^{\pi},$$

where $\{A_i^{\pi}, i=1, 2, \dots, n_{\pi}\}$ are disjoint sets in \mathfrak{A} , define

$$\mathbf{1}_{A\times A}^{\pi}(u, w) \quad \sum_{i=1}^{n_{\pi}} \mathbf{1}_{A_{i}^{\pi}}(u) E(\mathbf{1}_{A} | \mathscr{F}_{t(A_{i}^{\pi})})(w).$$

All the partitions ordered by the "finer" relation constitute a partially ordered set π which is filtering to the right. Every linearly ordered subset in Π is contained in a maximized linearly ordered subset. We choose any one of the maximized linearly ordered subsets, fix it and denote it by Π_0 .

For each $u \in \mathcal{U}$, it is easy to prove that

$$\mathbf{1}_{A\times A}^{\pi}(u, \), \ \pi \in \Pi_{\mathbf{0}} \}$$

is a martingale bounded in L^1 . Accordingly, it will converge almost surely to some limit $\mathbf{1}_{A\times A}^{\mathfrak{A}}(u, w)$ which is defined up to a u. n. set.

For any σ -finite measure *m* on \mathscr{B} and any set $A_1 \times A_1$ in \mathscr{R} , we have

$$\int_{A_1 \times A_1} \mathbf{1}_{A \times A}^{\pi} d(m \times P) = \sum_{i=1}^{n_x} m(A_1 A_i^{\pi}) E(\mathbf{1}_{A_1} E(\mathbf{1}_A | \mathscr{F}_{t(A_i^{\pi})})).$$
(2)

Since Π_0 is a maximized linearly ordered subset of Π , it follows that there exists some $\pi_0 \in \Pi_0$ such that for $\forall \pi \succ \pi_0$, all those sets $A_i^{\pi}(i=1, 2, \dots, n_{\pi})$ will be eventually either contained in A_1 or disjoint from A_1 . If $A_1 A_i^{\pi} = \emptyset$ for some *i*, then $m(A_1 A_i^{\pi}) = 0$; if $A_1 \supset A_i^{\pi}$ for some *i*, then $t(A_1) \subset t(A_i^{\pi})$ and

$$E(\mathbf{1}_{A_1}E(\mathbf{1}_A|\mathscr{F}_{t(A_1^{\tau})})) = E(E(\mathbf{1}_{A_1A}|\mathscr{F}_{t(A_1^{\tau})}) = E(\mathbf{1}_{A_1A}) = P(A_1A).$$

Hence, by passage to limit in (2), we have

$$\int_{A_1\times A_1} \mathbf{1}_{A\times A}^{\varphi} d(m\times P) = m(A_1A)P(A_1A) = \int_{A_1\times A_1} \mathbf{1}_{A\times A} d(m\times P).$$

Using a standard reasoning in measure theory, it is easy to see that for each bounded, $\mathscr{B} \times \mathscr{F}$ -measurable function h(u, w), there exists a \mathscr{P} -measurable function $h^{\mathscr{C}}(u, w)$

such that (1) holds for every set S in \mathcal{P} . So the proof is complete.

Theorem 2. For every admissible measure λ on \mathcal{P} , there exists a unique extension $\tilde{\lambda}$ on $\mathscr{B} \times \mathscr{F}$ such that for every bounded, $\mathscr{B} \times \mathscr{F}$ -measurable function h(u, w) and its predicatable projection $h^{\mathscr{P}}(u, w)$, the equality

$$\int_{\mathscr{U}\times\mathcal{Q}} hd\tilde{\lambda} = \int_{\mathscr{U}\times\mathcal{Q}} h^{\mathscr{G}}d\lambda \tag{3}$$

holds.

Remark. This extension $\tilde{\lambda}$ is called the dual predicatable projection of λ . *Proof* For $S \in \mathscr{B} \times \mathscr{F}$, define

$$\tilde{\lambda}(S) = \int_{\mathfrak{A}\times \mathfrak{Q}} \mathbf{1}_{S}^{\mathfrak{P}} d\lambda,$$

where $\mathbf{1}_{\mathcal{S}}^{\mathscr{G}}$ is the predicatable projection of $l_{\mathcal{S}}$. Since the map $h \to \int h^{\mathscr{G}} d\lambda$ is a positive linear functional on the Banach space of all bounded, $\mathscr{B} \times \mathscr{F}$ -measurable functions whenever λ is a nonnegative admissible measure, it follows that $\tilde{\lambda}(\cdot)$ thus defined is a measure on $\mathscr{B} \times \mathscr{F}$ and for each bounded $\mathscr{B} \times \mathscr{F}$ -measurable function h, the equation (3) holds. Since every admissible signed measure is a difference of two nonnegative admissible measures, the theorem follows immediately.

Remark. For any admissible measure λ on \mathscr{P} , we can always find an extension by setting

$$\lambda_m(S) = \int_S \frac{d\lambda}{d(m \times P)} \bigg|_{\mathscr{O}} d(m \times P)$$
(4)

for $S \in \mathscr{B} \times \mathscr{F}$ provided $\lambda \ll m \times P$ on \mathscr{P} for some σ -finite measure m on \mathscr{B} . However, Theorem 2 shows that the extension doesn't depend on the choice of m. Actually, by Theorem 1 we have

$$\lambda_{m}(S) = \int_{\mathscr{A} \times \mathscr{O}} \mathbf{1}_{S} \cdot \frac{d\lambda}{d(m \times P)} \Big|_{\mathscr{P}} d(m \times P) = \int_{\mathscr{A} \times \mathscr{O}} E^{m \times p} \Big(\mathbf{1}_{S} \cdot \frac{d\lambda}{d(m \times P)} \Big|_{\mathscr{P}} \Big| \mathscr{P} \Big) d(m \times P) \\= \int_{\mathscr{A} \times \mathscr{O}} E^{m \times p} (\mathbf{1}_{S} | \mathscr{P}) \frac{d\lambda}{d(m \times p)} \Big|_{\mathscr{P}} d(m \times P) = \int_{\mathscr{A} \times \mathscr{O}} l_{S}^{\varphi} d\lambda = \tilde{\lambda}(S).$$
(5)

Theorem 3. For every admissible measure λ on \mathscr{P} , there exists a unique (up to equivalence) set function X(A, w) on $\alpha \times \Omega$ such that

i) for each $w \in \Omega$, $X(\cdot, w)$ can be extended to a σ -finite signed measure on \mathscr{B} ;

ii) for each $A \in \mathfrak{A}$, $X(A, \cdot)$ is \mathscr{F}_{o} -measurable provided $A \subset C \in \mathscr{C}$;

iii) the Doléans measure λ_X of X coincides with λ on \mathcal{P} .

Proof Suppose that $\lambda \ll m \times P$ on \mathscr{P} for some σ -finite measure m on \mathscr{B} . Combining (4) and (5) we see that

$$\frac{d\tilde{\lambda}}{d(m\times P)}\Big|_{\mathfrak{H}\times\mathfrak{F}}=\frac{d\tilde{\lambda}}{d(m\times P)}\Big|_{\mathfrak{s}}.$$

Define

$$X(A, w) = \int_{A} \frac{d\tilde{\lambda}}{d(m \times P)} dm \text{ for } A \in \mathfrak{A}.$$

Clearly, this set function satisfies (i) and (ii). Moreover, for each $\Lambda \in \mathscr{F}$

$$E\mathbf{1}_{A}X(A) = \int_{A \times A} \frac{d\tilde{\lambda}}{d(m \times P)} d(m \times P) = \tilde{\lambda}(A \times A).$$

It follows that (iii) also holds and that the function X actually doesn't depend on the choice of m. In fact, if $\lambda \ll \widetilde{m} \times P$ for another σ -finite measure \widetilde{m} on \mathscr{B} and if we define

$$\widetilde{X}(A, w) = \int_{A} \frac{d\widetilde{\lambda}}{d(\widetilde{m} \times P)} d\widetilde{m} \text{ for } A \in \mathfrak{A},$$

then we have

$$E\mathbf{1}_{A}\widetilde{X}(A) = E\mathbf{1}_{A}X(A) = \widetilde{\lambda}(A \times A)$$

for each $A \in \mathscr{G}$. It follows that for each $A \in \mathfrak{A}$

$$\overline{X}(A, w) = X(A, w)$$
 a.s.

and thus the proof is completed.

Remark. If the admissible measure λ is the Doléans measure of some regular quasi-martingale measure Y, then we call X the dual predictable projection of Y. According to the above theorem, $\lambda_{Y-X}=0$, i. e. Y-X is a martingale measure in some weak sense. This is a weak version of Doob-Meyer's decomposition theorem. If μ is a locally square integrable martingale measure (cf. [4]), then μ^2 is a regular quasi-martingale measure. If, moreover, the Doléans measure of μ^2 (in [4], it is denoted by $\langle \mu \rangle$) is an admissible measure, then there exists a unique dual predicatable projection of μ^2 . We can use this projection to define the stochastic integral with respect to μ as many authors have already done. But we prefer to use the Doléans measure are much weaker than those of validity of Doob-Meyer's decomposition theorem on a general topological measurable space.

References

- [1] Orey, S., F-processes, Fifth Berkely Symp., 2 (1965), 301-313.
- [2] Pellaumail, J., Sur L'intégrale stochastique et la décomposition de Doob-Meyer, Asterisque, 9, S. M. F. (1973).
- [8] Métivier, M., Semimartingales a course on stochastic processes, Walter de Gruyter, Berlin, New York (1982).
- [4] Huang, Z. Y. Stochastic integrals on general topological measurable spaces, Z. Wahr. verw. Gebiete 66 (1984), 25-40.

· · · · · · • ` .