COMMUTATORS OF MULTIPLIER OPERATORS

QIAN TAO (钱 涛)

Abstract

Denote $M^l = \{\omega \in C^{\infty}(\mathbb{R}^K \setminus \{0\}: |\omega^{(\beta)}(\xi)| \leq C_{\beta} |\xi|^{l-|\beta|}\}, l \text{ is an integer. } \mathbb{R}^{(m)}_{-\alpha} \text{ is the } n\text{-fold composition of Taylor series remainder operator, } m = (m_1, \dots, m_n) \in \mathbb{Z}^n$. Z is the set of non-negative integers, $\alpha \in (\mathbb{R}^K)^n$.

Denote

$$T_{\sigma(\alpha,\xi)}(\alpha,f)(x) = \int_{(R\xi)n\tau^{2}} e^{tx\xi} \sigma(\alpha,\xi) \hat{a}(\alpha) \hat{f}(\xi - [\alpha]) d\alpha d\xi,$$

where
$$a = (a_1, \dots, a_n)$$
, a_i , $f \in \mathcal{S}(R^K)$, $\hat{a}(\alpha) = \hat{a}_1(\alpha_1) \dots \hat{a}_n(\alpha_n)$, $[\alpha] = \sum_{i=1}^n \alpha_i$, $d = d\alpha_1 \dots d\alpha_n$.

The main results are as follows:

(i) If γ_1 , $\gamma_2 \in Z^K$ and l is an integer such that $|\gamma_1| + |\gamma_2| + l = |m| = m_1 + \dots + m_n$, $0 \le |\gamma_1| \le \min_{1 \le i \le n} \{m_i\}$, and $\omega \in M^l$, then we have

$$\|\partial^{\gamma_1}T_{R(\underline{w}_o),\omega(\xi)}(a,\ \partial^{\gamma_2}f)\|_q \leqslant C\|f\|_{\mathcal{D}_o} \prod_{i=1}^n \|\nabla^{m_i}a_i\|_{\mathcal{D}_i},$$

where $\|\nabla^{m_i}a_i\|_{p_i} = \sum_{|\beta|=m_i} \|a_i^{(\beta)}\|_{p_i}$, $q^{-2} = p_0^{-1} + \sum_{i=1}^n p_i^{-1} \in (0, 1)$, p^{-1} , $p_i^{-1} \in (0, 1)$, $C = C(K, n, m, C_{\beta}, p_0, p_i, \gamma_1, \gamma_2)$ is a conseant.

(ii) In the same sense of notation as in (i), but now |m|=1, we have

$$\|\partial^{\gamma_1}T_{R^{(\underline{\epsilon}_m)}_{-(a)}\omega(\varepsilon)}(a, \partial^{\gamma_2}f)\|_{\mathcal{P}} \leqslant C\|f\|_{\mathcal{P}} \prod_{i=1}^n \nabla^{m_i}a_i\|_{\infty}p \in (1, \infty),$$

where $C = C(K, n, m, C_{\beta}, p, \gamma_1, \gamma_2)$.

These results extend the corresponding ones given by coifman-Meyer in [4] and Cohen, J. in [2], and, in a sense, extend those given by Calderón, A. P. in [1].

§ 1. Notation and Terminology

Denote

 $M^{l} = \{\omega \in C^{\infty}(R^{K} \setminus \{0\}) : \forall_{\beta}, \ \beta \in Z^{K}, \ \exists C_{\beta} \text{ such that } |\omega^{(\beta)}(\xi)| \leqslant C_{\beta} |\xi|^{l-|\beta|}\}, \quad l \in R^{1},$ $AC^{\infty}(n, 1) = \{\sigma(\alpha, \xi) : \alpha \in (R^{K})^{n}, \ \xi \in R^{K}, \ \sigma \text{ is defined and has partial derivatives}$ of arbitrary order for a. e. (α, ξ) .

For $g \in AO^{\infty}(0, 1)$, define

$$\begin{split} R_{-\alpha_{i}}^{m_{i}}g(\xi) &= g(\xi-\alpha_{i}) - \sum_{|\beta| < m_{i}} \frac{g^{(\beta)}(\xi)}{\beta!} (-\alpha_{i})^{\beta}, \ m_{i} \in \mathbb{Z}, \ \xi, \ \alpha_{i} \in \mathbb{R}^{K}, \\ P_{m_{i}}(g, \ x, \ y) &= g(x) - \sum_{|\beta| < m_{i}} \frac{g^{(\beta)}(y)}{\beta!} (x-y)^{\beta}, \quad m_{i} \in \mathbb{Z}, \ x, \ y \in \mathbb{R}^{K}, \end{split}$$

Mannscript received August 10, 1983.

^{*} Department of Mathematics, Beijing University, Beijing, China.

$$R_{(-\alpha)}^{(m)}g(\xi) = R_{-\alpha_1}^{m_1} \cdot \cdots \cdot R_{-\alpha_n}^{m_n}g(\xi),$$

where $m = (m_1, \dots, m_n) \in \mathbb{Z}^n$, $\alpha = (\alpha_1, \dots, \alpha_n) \in (\mathbb{R}^K)^n$, and $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}^K$, $\beta_1 = \beta_1 + \dots + \beta_n + \beta_n + \beta_n = \beta_n$.

For $\sigma \in AC^{\infty}(n, 1)$, define

$$T_{\sigma(\alpha,\xi)}(\alpha,f)(\alpha) = \int_{(R^{\mathbf{x}})^{n+1}} e^{i\alpha\xi} \sigma(\alpha,\xi) \hat{a}(\alpha) \hat{f}(\xi - [\alpha]) d\alpha d\xi,$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$, α_i , $f \in \mathcal{S}(R^K)$, $\hat{\alpha}(\alpha) = \hat{\alpha}_1(\alpha_1) \dots \hat{\alpha}_n(\alpha_n)$, $[\alpha] = \alpha_1 + \dots + \alpha_n$, $d\alpha = d\alpha_1 \dots d\alpha_n$.

If $m_1 = \cdots = m_n = 1$, it is easy to see that

$$T_{R(x_0),\omega(\xi)}(a, f)(x) = C[a_n, \dots, [a_1, \omega(D)] \dots] f(x),$$

which is the *n*th commutator of $\omega(D)$, where $a_i(f)(x) = (a_i f)(x)$. Therefore we can extend the notation of commutator and call $T_{R_{(m)}^{(m)},\omega(f)}(a, \cdot)$ a commutator of order |m|([2, 3]).

We will suppose a_i , $f \in \mathcal{S}(R^K)$ below and discuss two kinds of indexes:

(i)
$$p_0, p_i, q \in (1, \infty), q^{-1} = p_0^{-1} + \sum_{i=1}^n p_i^{-1};$$

(ii)
$$p_0, q \in (1, \infty), \forall i, p_i = \infty, p^{-1} = p_0^{-1} + \sum_{i=1}^n p_i^{-1}$$
.

Let us introduce

$$\| \nabla^{m_i} a_i \|_{p_i} = \sum_{|eta|=m} \| a_i^{(eta)} \|_{p_i}, \quad m_i \in Z, \ eta \in Z^{\mathbb{R}},$$

and

$$\|\nabla^m a\|_p = \prod_{i=1}^n \|\nabla^{m_i} a_i\|_{p_i},$$

where $p = (p_1, \dots, p_n)$, $m = (m_1, \dots, m_n)$ and $a = (a_1, \dots, a_n)$.

§ 2. The First Kind of Indexes

Theorem 1. If $\omega \in M^{|m|}$, then for the first kind of indexes we have

$$||T_{R_{(a)}^{(m)}\omega(f)}, (a, f)||_q \leq C||f||_{p_0} ||\nabla^m a||_{p_0}$$

where $C = C(K, n, m, C_{\beta}, p_0, p_i)$ is a constant.

The theorem can be proved by using the same method as in [8], Theorem 2, but instead of applying Coifman-Meyer's theorem ([3], Thereom 1) we now apply the following theorem, which can be obtained similarly.

Theorem A. Let $\sigma \in C^{\infty}((R^{\mathbb{K}})^n \setminus \{0\})$ and for $\forall \beta = (\beta_1, \dots, \beta_n) \in (Z^{\mathbb{K}})^n$, $\forall \xi = (\xi_1, \dots, \xi_n) \in (R^{\mathbb{K}})^n \exists \text{ constant } C_{\beta} \text{ such that } |\sigma^{(\beta)}(\xi)| \leqslant C_{\beta} |\xi|^{-|\beta|}$. Then with

$$T(f_1, \dots, f_n)(x) = \int_{(R^x)^n} e^{ix\xi_1^2} \sigma(\xi) \hat{f}_1(\xi_1) \dots \hat{f}_n(\xi_n) d\xi_n$$

we have

$$||T(f_1, \dots, f_n)||_q \leq C||f_1||_{p_1} \cdots ||f_n||_{p_n},$$

where $q, p_i \in (1, \infty), q^{-1} = \sum_{i=1}^n p_i^{-1}, C = C(K, n, C_{\beta}, p_i)$ is a constant.

Theorem 1 extends [2], Theorem I, which is for K=1, $\omega(\xi)=|\xi|^{|m|}\operatorname{sgn}\xi$. A further extension of them is as follows.

Theorem 2. If γ_1 , $\gamma_2 \in Z^K$ and l is an integer such that $|\gamma_1| + |\gamma_2| + l = |m|$, and $\omega \in M^l$, then for the first kind of indexes we have

$$\|\partial^{\gamma_1}T_{R_{\epsilon}^{(m)},\ \omega(\xi)}(\alpha,\ \partial^{\gamma_2}f)\|_q \leqslant C\|f\|_{p_0}\|\nabla^m\alpha\|_{p_2}$$

where $C = C(K, n, m, C_{\beta}, p_0, p_i, \gamma_i)$ is a constant.

Proof Denote

$$\overline{T}_{\sigma(\alpha,\,\xi)}(\alpha,\,f)(x) = \int_{(R^K)^{n+1}} e^{ix(\xi + [\alpha])} \hat{a}(\alpha) \hat{f}(\xi) d\alpha \,d\xi,$$

 $\overline{M}(m) = \{\alpha, \xi\} \in AC^{\infty}(n, 1): \text{ For the first kind of indexes } p_0, p_i, q, \|\overline{T}_{\sigma(\alpha, \xi)}(a, f)\|_q$ $\leq C\|f\|_{p_0}\|\nabla^m a\|_p, C = C(K, n, m, p_0, p_i, \sigma) \text{ is a constant}\}.$

We should prove

$$(\xi + [\alpha])^{\gamma_1} \xi^{\gamma_2} R_{-\alpha}^{(m)} \omega(\xi + [\alpha]) \in \overline{M}(m). \tag{2.1}$$

We use induction for (γ_1, γ_2) in the following manner.

First we prove (2.1) for $\gamma_1 = \gamma_2 = 0$. Then we reduce every other couple (γ_1, γ_2) to the cases $(0, \gamma_2')$, $(\gamma_1', 0)$, (γ_1', γ_2') , where $0 \le |\gamma_1'| < |\gamma_1|$, $0 \le |\gamma_2'| < |\gamma_2|$, for which we suppose (2.1) has been proved.

Theorem 1 shows that (2, 1) is correct for $\gamma_1=0$, $\gamma_2=0$. For other (γ_1 , γ_2) there are three cases:

(i)
$$\gamma_1=0$$
, $\gamma_2\neq 0$.

If |m| = 0, there exists

$$\begin{split} T_{R_{\ell}^{(m)},\,\omega(\xi)}(\alpha,\ \partial^{\gamma_2}f)\,(x) = & \int_{(R^E)^{n+1}} \,e^{ix(\xi+[\alpha])}\xi^{\gamma_2}R_{(-\alpha)}^{(m)}\omega(\xi+[\alpha])\,\hat{a}(\alpha)\hat{f}(\xi)\,d\alpha\,d\xi \\ = & \int_{(R^E)^{n+1}} \,e^{ix(\xi+[\alpha])}\xi^{\gamma_2}\omega(\xi)\,\hat{a}(\alpha)\hat{f}(\xi)\,d\alpha\,d\xi. \end{split}$$

Because $\xi^{\gamma_2}\omega(\xi) \in M^0$, we obtain (2.1) by applying Mihlin multiplier theorem and Hölder inequality.

If
$$|m| > 0$$
, denote $J = \{i: m_i = 0\}$, $J' = \{1, \dots, n\} \setminus J$. It follows that $T_{R(m), \omega(\ell)}(a, \partial^{\gamma_2} f)(x) = Ca_J(x)T_{R(m), \omega(\ell)}(a_{J'}, \partial^{\gamma_2} f)(x)$,

where
$$a_J(x) = \prod_{i \in I} a_i(x)$$
, $m_{J'} = (m_{j_1}, \dots, m_{j_r})$, $a_{J'} = (a_{j_1}, \dots, a_{j_r})$, $J' = (j_1, \dots, j_r)$.

Therefore, without loss of generality we can suppose $\forall i$, $m_i \ge 1$.

As in [8], Lemma 1, we can verify the following equality

$$R_{(-\alpha)}^{(m)}(\xi_{j}\omega(\xi+[\alpha])) = \xi_{j}R_{(-\alpha)}^{(m)}\omega(\xi+[\alpha]) - \sum_{i=1}^{n}\alpha_{i,j}R_{(-\alpha)}^{(m)}\omega(\xi+[\alpha]), \qquad (2.2)$$

where $m^i = (m_1, \dots, m_i - 1, \dots, m_n)$. Therefore

$$\xi^{\gamma_2} R^{(m)}_{(-\alpha)}(\xi_j \omega(\xi + [\alpha])) = \xi^{\gamma_2} R^{(m)}_{(-\alpha)} \omega(\xi + [\alpha]) - \sum_{i=1}^n \alpha_{i,j} \xi^{\gamma_2} R^{(m^i)}_{(-\alpha)} \omega(\xi + [\alpha]),$$

where
$$\xi^{\gamma_2} = \xi_i \xi^{\gamma'_2}$$
, $|\gamma'_2| = |\gamma_2| - 1$, $|\gamma'_2| + 1 = |m^i|$.

From the induction hypothesis, $\forall i$

$$\alpha_{i,j} \xi^{\gamma_i^j} R_{(-\alpha)}^{(m)} \omega(\xi + \lceil \alpha \rceil \in \overline{M}(m)).$$

So, because $R_{(-\alpha)}^{(m)}$ is a linear operator, what we need to prove is

$$\forall i, \alpha_{i,j} \xi^{\tau_i} R_{(-\alpha)}^{(m)} \omega(\xi + [\alpha]) \in \overline{M}(m).$$

And then it follows that

$$\xi^{\gamma_2'}R^{(m)}_{(-\alpha)}(\xi_j\omega(\xi+[\alpha])) = \xi^{\gamma_2'}R^{(m)}_{(-\alpha)}((\xi+[\alpha])_j\omega(\xi+[\alpha]))$$
$$-\sum_{i=1}^n \xi^{\gamma_2'}R^{(m)}_{(-\alpha)}\omega(\xi+[\alpha]) \in \overline{M}(m).$$

For the assertion we have

$$\alpha_{i,j}\xi^{\gamma_{i}}R_{(-\alpha)}^{(n)}\omega(\xi+[\alpha]) = \alpha_{i,j}\xi^{\gamma_{i}}R_{(-\alpha)}^{(m')}\omega(\xi+[\alpha]) - \alpha_{i,j}\xi^{\gamma_{i}}\frac{1}{(m_{i}-1)!} \cdot \sum_{|\beta|=m_{i}-1} \frac{(-\alpha_{i})^{\beta}}{\beta!}R_{-\alpha_{1}}^{m_{1}} \cdot \cdots \cdot R_{-\alpha_{i-1}}^{m_{i-1}} \cdot R_{-\alpha_{i+1}}^{m_{i+1}} \cdot \cdots \cdot R_{-\alpha_{n}}^{m_{n}}\omega(\xi+[\alpha]),$$
(2.3)

and then apply the induction hypothesis to each term on the right hand of (2.3).

(ii)
$$\gamma_1 \neq 0$$
, $\gamma_2 = 0$.

The hypothesis on γ_1 implies $\forall i$, $m_i \geqslant 1$. Therefore

$$(\xi + [\alpha])^{\gamma_1} R_{(-\alpha)}^{(m)} \omega(\xi + [\alpha]) = (\xi + [\alpha])^{\gamma_1} R_{(-\alpha)}^{(m)} ((\xi + [\alpha])_j \omega(\xi + [\alpha]))$$

$$+ \sum_{i=1}^n \alpha_{i,j} (\xi + [\alpha])^{\gamma_1} R_{(-\alpha)}^{(m)} \omega(\xi + [\alpha]) , \qquad (2.4)$$

and then the induction hypothesis can be applied to each term on the right hand of (2.4).

(iii)
$$\gamma_1 \neq 0$$
, $\gamma_2 \neq 0$.

In this case by repeatedly applying formulas (2.4), (2.2) and (2.3) we reduce the assertion to the induction hypothesis and to the cases mentioned above.

A corollary to the theorem and [7], Theroem 1 is as follows.

Corollary 1. Let $\Omega \in C^{\infty}$ $(R^K \setminus \{0\})$, homogeneous of degree 0, $1 \in Z$, $\gamma_i \in Z^K$, $i = 1, 2, 0 \le |\gamma_1| \le \min_{1 \le i \le n} \{m_i\}$, and $\beta \in Z^K$, $|\beta| \le 1 \Longrightarrow \int_{S^{K-1}} \Omega(y) y^{\beta} d\sigma(y) = 0$. Then for $|m| \le l+n$ and

$$T_{i,\Omega}^{(m)}(f, a)(x) = P. V. \int_{i=1}^{n} P_{m_i}(a_i, x, y) \cdot \frac{\Omega(x-y)}{|x-y|^{K+1}} f(y) dy,$$

we have

$$\|\partial^{\gamma_1}T_{i,\varnothing}^{(m)}(a,\partial^{\gamma_2}f)\|_q \leqslant C\|f\|_{p_0}\|\nabla^m a\|_{p_0}$$

where $\{p_0, p_i, q\}$ satisfies index condition (i), $C = C(K, n, m, l, \Omega, p_0, p_i)$ is a constant.

The corresponding conclusions for the cases K=n=1, $\gamma_1=0$ or $\gamma_2=0$ were obtained by Calderón, A. P. in [1]. Though the conditions upon Ω were weaker ones in the paper, the complex method used there can not be easily extended to the case K>1, n>1.

§ 3. The Second Kind of Indexes

At first we prove the following proposition.

Proposition 1. Suppose $m \in \mathbb{Z}^n$, $\omega \in M^{|m|}$, $\varphi \in C_0^{\infty}(\mathbb{R}^K)$ such that supp $\varphi \subset \{y: 1 \le |y| \le 2\}$ and $\xi \ne 0 \Rightarrow \sum_{j=-\infty}^{\infty} \varphi(2^{-j}\xi) = 1$. Denote $\omega_j(\xi) = \varphi(2^{-j}\xi)\omega(\xi)$, $K_j = \omega_j^v$, $g_j(x,y) = \left(\prod_{i=1}^n P_{m_i}(a_i, x, y)\right) K_j(x-y)$ and $G_N(x, y) = \sum_{-N}^N g_j(x, y)$. Then G_N satisfies the following condition

$$\int_{x \in B'(y_0, 2t)} |G_N(x, y) - G_N(x, y_0)| dx \leq C, \quad y \in B(y_0, t),$$

where the constant O is independent of N and t, $B(y_0, t)$ is the ball of center y_0 and radius t, $B'(y_0, 2t) = R^K \setminus B(y_0, 2t)$.

Proof Because $\omega_j \in M^{|m|}$ with the uniform constants C_s , we have, for $k_0 = \left[\frac{K}{2}\right] + 1$,

$$2^{-Kj} \int_{\mathbb{R}^K} \sum_{|\beta| \le k_0} |2^{j|\beta|} \partial^{\beta+\alpha} \omega_j|^2 d\xi \le C 2^{2j(|m|-|\alpha|)}. \tag{3.1}$$

From the Parseval equation it follows that

$$\int_{\mathbb{R}^K} (1+2^{2j}|x|^2)^{k_0} |x^{\alpha}K_j(x)|^2 dx \leq C2^{Kj} 2^{2j(|m|-|\alpha|)}. \tag{3.2}$$

Applying the Höler inequality, since $2k_0 > K$, we obtain

$$\int_{\mathbb{R}^{x}} |x^{\alpha} K_{j}(x)| dx \leq \left(\int_{\mathbb{R}^{x}} (1 + 2^{2j} |x|^{2})^{k_{0}} |x^{\alpha} K_{j}(x)|^{2} dx \right)^{1/2} \cdot \left(\int_{\mathbb{R}^{x}} \frac{1}{(1 + 2^{2j} |x|^{2})^{k_{0}}} dx \right)^{1/2} \leq C2^{j(|m| - |\alpha|)}.$$
(3.3)

Similarly, for $j: 2^{j}t > 1$,

$$\int_{|x|>t} |x^{\alpha}K_{j}(x)| dx \leq C \left(\int_{|x|>t} \frac{2^{jK}}{(1+2^{2j}|x|^{2})^{k_{0}}} dx \right)^{1/2} \leq C(2^{j}t)^{(K-2k_{0})/2} 2^{j(|m|-|\alpha|)}.$$
(3.4)

Since $|x|^{|\alpha|} \leq C \sum_{|\beta|=|\alpha|} |x^{\beta}|$, there exists

$$\int_{\mathbb{R}^n} \left| x^{\lfloor |\alpha|} \right| K_j(x) \left| dx \leqslant C2^{j(|m|-|\alpha|)} \right| \tag{3.5}$$

and for $j: 2^{j}t > 1$ we deduce

$$\int_{|x|>t} |x|^{|\alpha|} |K_{j}(x)| dx \leq C(2^{j}t)^{(K-2k_{0})/2} 2^{j(|m|-|\alpha|)}.$$
 (3.6)

To prove the assertion we estimate the integral

$$\int_{x \in B'(y_0, 2j)} |g_j(x, y) - g_j(x, y_0)| dx,$$

and this reduces to the estimates of the following two integrals

$$I_{1} = \int_{x \in B'(y_{0}, 2t)} \left| \prod_{i=1}^{l-1} P_{m_{i}}(a_{i}, x, y) P_{m_{i}}(a_{l}, x, y) - P_{m_{i}}(a_{l}, x, y_{0}) \right| dx$$

$$\cdot \left(\prod_{i=l+1}^{n} P_{m_{i}}(a_{i}, x, y_{0}) \right) K_{j}(x-y_{0}) dx$$
(3.7)

and

$$I_{2} = \int_{x \in B'(y_{0}, 2t)} \left| \prod_{i=1}^{n} P_{m_{i}}(a_{i}, x, y) \left(K_{j}(x-y) - K_{j}(x-y_{0}) \right) \right| dx.$$
 (3.8)

To see I_1 , applying the equation

$$\nabla_{y} P_{m_{i}}(a_{i}, x, y) = \frac{-1}{(m_{i} - 1)!} \left(\sum_{j=1}^{n} (x_{j} - y_{j}) D_{j} \right)^{m_{i} - 1} \nabla a_{i}(y)$$
 (3.9)

and the estimate

$$\frac{|P_{m_i}(a_i, x, y)|}{|x-y|^{m_i}} \leqslant C \|^{m_i} a_i\|_{\infty}, \tag{3.10}$$

we conclude

$$I_{1} \leqslant C \int_{x \in B'(y_{0}, 2t)} |x-y|^{|m|-1} |y-y_{0}| |K_{j}(x-y)| dx$$

$$\leqslant Ct \int_{\mathbb{R}^{n}} |x-y|^{|m|-1} |K_{j}(x-y)| dx \leqslant C2^{j}t, \qquad (3.11)$$

where the last inequality is obtained in terms of (3.5) for $|\alpha| = |m| - 1$.

For I_2 , firstly we have

$$I_{2} \leqslant C \int_{\mathbb{R}^{K}} |x|^{|m|} |K_{j}(x) - K_{j}(x - \bar{y})| dx$$
 (3.12)

where $\bar{y} = y - y_0$, $|\bar{y}| \leq t$.

Write

$$K_j(x) - K_j(x - \bar{y}) = C \int_{\mathbb{R}^K} (1 - e^{-i\overline{\sigma}\xi}) \omega_j(\xi) e^{ix\xi} d\xi.$$

When $2^{j}t \leq 1$, since

$$\left| \partial_{\xi}^{\gamma} ((1 - e^{-i\Im\xi})\omega_{j}(\xi)) \right| \leq Ct 2^{j(|m| - |\gamma| + 1)},$$

we derive

$$2^{-Kj} \int_{\mathbb{R}^{K}} \sum_{|\beta| \leq k_{0}} |2^{j\beta} \partial^{\beta+\alpha} ((1 - e^{-i\mathfrak{F}_{\xi}}) \omega_{j}(\xi)|^{2} d\xi \leqslant Ct 2^{j} 2^{j(|m|-|\alpha|)}, \tag{3.13}$$

and

$$\int_{\mathbb{R}^K} (1+2^{2j}|x|^2)^{k_0} |x^{\alpha}(K_j(x)-K_j(x-\bar{y}))|^2 dx \leq Ct 2^{j} 2^{j(|m|-|\alpha|)} 2^{K_j}.$$

Then, with a method similar to that used in getting (3.5), we obtain

$$\int_{\mathbb{R}^{x}} |x|^{|m|} |K_{j}(x) - K_{j}(x - \bar{y})| dx \leqslant Ct2^{j},$$

where the constant C is independent of j, and $2^{j}t \le 1$.

When $2^{j}t > 1$, because

$$\int_{|x-y|>t} \left| \prod_{i=1}^{n} P_{m_{i}}(a_{i}, x, y) K_{j}(x-y) \right| dx \leq C \int_{|x-y|>t} |x-y|^{|m|} |K_{j}(x-y)| dx \leq C (2^{j}t)^{(K-2k)/2},$$

it leads to

$$\int_{x \in B'(y_0, 2t)} |g_j(x, y) - g_j(x, y_0)| dx \leq C(2^j t)^{(K-2k)/2}.$$
 (3.15)

Then (3.11), (3.14) and (3.15) give

$$\int_{x \in B'(y_0, 2t)} |G_N(x, y) - G_N(x, y_0)| dx \leq C \sum_{-\infty}^{\infty} \min\{2^j t, (2^j t)^{(K-2k)/2}\}$$

$$\leq C \left(\sum_{-\infty}^{l_0} 2^j t + \sum_{l_0+1}^{\infty} (2^j t)^{(K-2k)/2}\right) \leq C,$$

where $2^{l_0}t\approx 1$. The proof is thus finished.

The following theorem is obtained.

Theorem 3. If γ_1 , $\gamma_2 \in Z^K$, l is an integer, $|\gamma_1| + |\gamma_2| + l = |m| = 1$, $0 \le |\gamma_1| \le \min_{1 \le l \le n} \{m_l\}$ and $\omega \in M^l$, then for p_0 : $1 < p_0 < \infty$ there exists

$$\|\partial^{\gamma_1}T_{R_t^{(m)},\omega(\xi)}(a,\partial^{\gamma_1}f)\|_{p_0} \leqslant C\|f\|_{y_0}\|\nabla^m a\|_{\infty}.$$

where $C = C(K, n, m, C_{\beta}, p_0, \gamma_i)$ is a constant.

For the proof, the following theorems are needed.

Theorem B. ([6], Theorem 8)

If a linear operator T satisfies the following conditions:

(i)
$$f \in C_0^{\infty}(\mathbb{R}^K)$$
, $x \in \operatorname{supp} f \Rightarrow T(f)(x) = \int_{\mathbb{R}^K} K(x, y) f(y) dy$;

- (ii) $f \in L^2(\mathbb{R}^K) \Rightarrow ||T(f)||_2 \leqslant C||f||_2$, C is a constant;
- (iii) the kernel K satisfies

$$\int_{x \in B'(y_0, 2t)} |K(x, y) - K(x, y_0)| dx \leq C, \quad y \in B(y_0, t),$$

where C is a constant independent of t; then for T there are the inequalities of strong type (p, p), 1 .

Theorem C. ([4], Theorem 35)

If $\omega \in M^0$, $|\beta| = 1$, $m \in \mathbb{Z}^n$ and |m| = 1, then for the operator $\overline{T}_{\ell^{g}R(\mathbb{Z}_n)} \omega(\ell+1/2)$ (a, •) there exists the inequality of strong type (2, 2).

Remark. The original form of the theorem is for K=n=1. In this more general situation it holds too.

Proof of Theorem 3 Choose φ_1 , ..., $\varphi_K \in C^{\infty}(\mathbb{R}^K \setminus \{0\})$ such that $\forall j, \varphi_j$ is homogeneous of degoee 0, $1 = \varphi_1 + \cdots + \varphi_K$ on $\mathbb{R}^K \setminus \{0\}$, and $\varphi_j(\xi) \neq 0 \Rightarrow |\xi_j| \geqslant \frac{1}{2} \sup(|\xi_1|, \dots, |\xi_K|)$. We write $\omega(\xi) = \omega_1(\xi) + \dots + \omega_K(\xi)$ with $\omega_j(\xi) = \omega(\xi)\varphi_j(\xi) = \xi_j \overline{\omega}^j(\xi)$. Now suppose $\omega \in M^1$, and then it follows that $\overline{\omega}^j \in M^0$. We will prove that the conclusion holds in the case of |I| = |m| = 1, $\gamma_1 = \gamma_2 = 0$. Then by using the same method as in the proof of Theorem 2, we derive the desired results in the extended cases $|\gamma_1| + |\gamma_2| + l = |m| = 1$.

From the decomposition of ω mentioned above, we can restrict ourself to the case of $\omega = \xi_{j,\overline{\omega}}$, where $\overline{\omega} \in M^0$. Let $\omega^N = \sum_{j=-N}^N \omega_j$, where ω_j are obtained from ω as in

Proposition 1.

Denote $T(f)(x) = T_{R_{(-x)}^{(m)} \omega(f)}(a, f)(x) = \overline{T}_{R_{(-x)}^{(m)} \omega(f+[a])}(a, f)(x)$ and $T_N(f)(x) = T_{R_{(-x)}^{(m)} \omega^n(f)}(a, f)(x)$. From the equality

$$T_N(f) = \overline{T}_{f_{j_0}R_{(\alpha)}^{(\alpha)}} \overline{\omega}^{N}_{(f+[\alpha])}(a, f) - \overline{T}_{\alpha_0 j_0 \overline{\omega}^{N}(f+[\alpha])}(a, f), \qquad (3.16)$$

where i_0 satisfies $m_{i_0}=1$, by applying Theorem C to the first term and Mihlin multiplier theorem to the second term on the right hand of (3.16), we obtain

$$||T_N(f)||_2 \leqslant C||f||_2, \tag{3.17}$$

where the constant O is independent of N.

Resorting to [8], Theorem 1, we have

$$T_N(f)(x) = \int_{R^x} G_N(x, y) f(y) dy,$$
 (3.18)

where G_N is introduced from ω as in Proposition 1. Then the Proposition can be applied to T_N . From Fatou's Lemma we conclude the inequality

$$||T(f)||_p \leqslant C||f||_p$$
, $1 .$

By virtue of linearity of T(a, f) in a_i , the constant $C = C_0 \|\nabla^m a\|_{\infty}$ where $C_0 = C_0(K, n, m, C_{\beta}, p)$ is another constant.

References

- [1] Calderón, A. P., Algebras of singular integral operators, Proc. Symp. in Pure Math., 10 (1967), 18-55.
- [2] Cohen, J., Multilinear singular integrals, Studia Math., T. LXVIII 1980.
- [3] Coifman, R. et Meyer, Y., Commutateurs d'integrables singulières et opérateurs multilineaires, Ann. Inst. Fourier, Grenoble, 28; 3 (1978), 177-202.
- [4] Coifman, R. et Meyer, Y., Au delà des operateurs pseudo-Differentiels, Astérisque, no 57.
- [5] Hömander, L., Estimates for translation invariant operators in L^p spaces, Acta Math., 104 (1960), 93—139.
- [6] Nagel. A. and Stein, E. M., Lectures On pseudo-differential operators, Princeton University Press, Princeton, New Jersey, 1979.
- [7] Qian Tao(钱涛), Commutators of the homogeneous multiplier operators, to appear in Scientia Sinica.
- [8] Qian Tao, Higher commutators of pseudo-differential operators, to appear in Chin. Ann. of Math.
- [9] Stein, E. M., Singular integrals and differentiability properties of functions, Princeton 1970.