Chin. dnn. of Math.
6B (4) 1985

COMMUTATORS OF MULTIPLIER OPERATORS
Quan Tao (& #%)

Abstract

Denote M= {w € C*(BE\{0}. |o®2(€) | <04|&|"¥1}, 1is an integer. R{™), is the n—Ffold
composition of Taylor series remainder operator, m=(my, -+, m,) € Z* 7 is the set of
non-negative integers, a € (B¥)",

Denote

Tea @ H@=[ (s, Oi@FE-[aDdadk,

Where a=(ail "oty an); ay, fey(RK), a(a)=ai,(a1)'"an(an>; [a:l:cz-lai; d”dal"'dam

The main results are as follows:
(i) If 1, v2€ Z¥ and l is an integer such that |y1) +l'yzl +l=|m|=myt-ret-my,,
- 0< |')'1l <mm{m,;}, and we M?, then we have

"9 Trgmyuey(@ M) [<C Hfllpoﬂ 1v™a s,

where ||[V™a,,, |Z a®lo, 9 2=1001+ Zpsle O, 1), p7%, pi1e 0, 1), C=C(&K,n,m
Cos Do» Pus Y1, ¥2) is a conseant. ,

(ii) In the same sense of notation as in (i), but now |m|=1, we have

2" Taggger (@ P 1e<OUl, LV aulp€ 1, ),

(&3
where 0=C (K, n, m, Cp, D, v1, ¥2)-
These results extend the corresponding ones given by coifman-Meyer in [4] and
Cohen; J. in [2], and, in a sense, extend those given by Calderén, A. P. in [1].

§ 1. Notation and Terminology

Denote
'={w€ O°(RF\{0}): Va, EZK 30, such. that|w®@(£) |<O’,3|§["'3'} I€ R,
AO"” (n, 1)={0o(a, £):a€ (RE)*, £€ RE, o is defined and has partial derivatives
of arbitrary order for a. e. (a, £)}.
For g€ AC~(0, 1), define

Rrtg(©) =g(E—a)— 3 L8 <—"a;>'8, m€Z, £, uE R,
Pn (9, o, y>=g<m>-m§m_—g‘—‘;-’,—§ﬂl<w—y>e, mEZ, u, yERY,
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R{myg(€) = Brg, e« B™ (), -
where m=(my, +--, my) €Z" a="(0y, **, o) € (R¥)", and B= (,31, , Bn) €EZ%, B1=
Bil:-Bul, |B]= lﬁil+ | Bal, 9 =0. ‘

For g€ A40*(n, 1), define

Toir(@, @)= oo, Da@] (¢~ [a])dade,
where a= (a1, *, @), &, fFE L (RF), a(e) =G1(on) - dn(an), [o]=0ut -+, da=
dai---da,,.

If my=+ee=m,=1, it is eagy t0 see that | _ ®

Tzem, w@(a, ) (®) =0lan, -, [a, ©(D)]--1f (o),
which is the nth commutator of w(D), where a,(f) (&) = (& f) (). Therefore we can
extend the notation of commutator and call T rmwe(@, +) @ commutator of order

ml (L2, 8).
We will suppose a;, f€ .9 (RE) below aod discuss two kinds of indexes:

( i ) Do, i, qe (1 oo): _p01+2.p
(ii) po, g€ (1, o), Vi, =0, p 1=p01+2p . ' ;

Let us introduce : 5
IV™aly= 2 1ails, m€Z, BEZT,

and
(7al, = 117"l

where p=(p1, *++, Pa), M= (m1, *+, my) and G=(ay, **, Gn).

§ 2. The First Kind of Indexes

Theorem 1. If 0 €M™, then for the first kind of indexes we have

| Tempucers (@ F)1e<OIFlsulV7al,,
where O=C (K, n, m, Cg, Do, Ds) 48 & constant.

The theorem can be proved by using the same method as in [8], Theorem 2,
but instead of applying Coifman-Meyer’s theorem ([8], Thereom 1) we now apply
the following theorein, which can be obtained similarly.

Theorem A. Let o€ C°((RX)"\{0}) and for YB=(By, ++, Ba) € (ZE)®, Vé=
(&4, +++, &) € (REY™T constant Cp such that |o® (&) | <Os| &4\, Then with

A CE NTOR B GYACARSACAL S

we have '
U oy <Ol bl

where ¢, p€ (1, o0), q‘1=§ pit, O=0(K, n, O, py) 8 ¢ constant.
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Theorem 1 extends [2], Theorem I, which is for K=1, o(§)=|£|"™'sgné. A
further extension of them is as follows.
Theorem 2. If y1, v2€ Z% and 1 is an onteger such that [yll—l— [va]| +1= {ml,
and w € M?, then for the first kind of indewes we have
[67T vy wier(@, 8F) [«<O|f 2| V"5,
where O=0(K, n, m, Og, Do, i, 7:) %8 @ constant.
Proof Denote

Town(a, @)= oxeoi(o)(8)dad,

(R

M (m) {a, &) €AC=(n, 1): For the first kind of indexes po, i, ¢, | Tow, & (@, 1) |4
<O|flslV™al,, O=C(X, n, m, po, m, o) is a constant}.

We should prove ,
(€-+ [a]) e R0 (§+ [a]) € M(m). (2.1)

‘We use induetion for (y 1, ) in the following manner,

First we prove (2.1) for y;=73=0. Then we reduce every other couple (i, va)
to the cases (0, v2), (74, 0), (74, 75), where O0<<|7i|<|7il, O<<[y2[<[7al, for
which we suppose (2.1) has been proved.

Theorem 1 shows that (2, 1) is correct for v;=0, y,=0. For other (yi, va)
there are three cages:

(1) 71=0, 73%0.

If [m|=0, there exists

Tammuo(a, S @)=[ DR 0(E+ [)30F €)dadg

RE)n#1
=.J J— e DYy (£) a(a) F(€) dos dE.

Because {"w(§) € M°, we obtain (2.1) by applying Mihlin multiplier ‘theorem and
Hélder inequality. -
If |[m|>0, denote J = {i: m;=0}, J'={1, -+, n}\J. It follows that
T s wier (@, 0Vf) () =Cas (@) T rmgy wipy (@r, 07f) (@),
where a;(#) = 5@ o (@), my=_(my,, +, my,), ap=_(as, *, @;,), J'=(j1, =, jr).
_Therefore, without loss of generality we can suppose Vi, m;=>1.
As in [8], Lemma 1, we can verify the following equality

Ry (Ew(é+[al)) =& in’—"&)w (§+[al) - 2 o, ;BE)w (4 [a]), - (2.2)
where mf=(my, -+, m~—1, - m,.) Therefore
ERRE, (E(€+[a])) = §””RE o (€+[a]) 2 o, E1 R Yo €+ [a]),

where £7=£,E%, |78 ={7a| -1, [72[+1=]m![.
From the induction hypothesis, V¢



we have
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o, EARED0 (¢ + [o] € T (m).
So, because R{™, is a linear operator, what we need to prove. is

Vi, e, R0 (€4 [a]) € M(m).
And then it follows that

ERRE Eo(§-+101)) = EPREL (¢ D)o + [a))
3 RE0 ¢+ [o]) € H(m),

For the assertion we have

o, 7RG (§+ [a]) = o, EHRII(E+ [a]) — a4, 67 ‘z_‘il‘_‘lj?
: (—ai) M1 o 40ee RN ML o 0ue o PMn
lﬂl=2m4-1 :8' -R—-a, R-—m—; R—Gtﬂ R,._“”G) (‘5+ Ea])’

- (2.3)
and then apply the induction hypothesis t0 each term on the right hand of (2.3).

(ii) 71%#0, 72=0.
The hypothesis on 74 1mplles V'b my=>1. Therefore
(é+ [a]) "REw(E-+[0]) = (¢4 [a]) "RE (E+ [e]) s €+ [a]))
+ s+ )P RER0E+a) ,  (2.9)

and then the induction hypotheéis can be applied to each term on the right hand of
2.4). |

(i) 150, va%0.

In this case by repeatedly applymg formulas (2.4), (2.2) and (2. 3) we reduce
the assertion to the induction hypothesis and to the cases mentioned above.

A corollary to the theorem and [7], Theroem 1 is as follows.

Corollary 1. Let Q€ 0~ (BX\{0}), homogencous of degree 0, LEZ, y, € ZK, =

1,2, 0<|71|<:11n‘in{m¢}, and BE Z%, I,Bi<1=>js Q(y)y*do(y) =0. Then for |m|<
<i<n . K-1
l4+n and

TR(f, a) (@)= V.[IT Pue, 2,90 ,§<”y|£2,f<y>dy,

167083 (a, 87F) [e<O|F 1] V™als,

~ where {po, s, ¢} satwsﬁes index condition. (1), C=0(K, n, m, I, Q, p,, p,;) ws o

const(mt . A

The correspondmg conclusions for the cases K =n= 1, 71=0 or 72——0 were
obtained by Calderén, A. P. in [1]. Though the conditions upon 2 were weaker ones
in the paper, the complex method used there can not be easily extended to the cage
K>1, n>1. | |
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§ 3. The Second Kind of Indexes

At first we prove the following proposition.
Propos1t10n1 Suppose mE Z", o€ M™ o€ Og(RE) svoh that supp- gDC’_'{y
1<Iyl<2} and §#0= 2 9(277€) =1. Demote w;(§) =92 )0 (§), K=}, g;(w,9)
([I P, (&, @, y))K ,(w y) and GN(w y) = Zg,(a; y). Then Gy satisfies the fol

lowing condition - '
[ |Gn(o, 9)~Gu(a, 90) [d0<0, YE B, 1),
WEB Yoy 28) ; . .

where the constant O is indepfudent of N and ¢, B(yo, t) is the ball of center yo and
radius t, B'(yo, 2t) = RE\ B(y,, 2t).

Proof Because w; € M'™ with the uniform constants Os, we have, for f— [-%{—]
+1, o
z—m‘J‘ 2 l2“‘9'35'*'“(0;]2d§<02-2m"”"'“'. (3 1)
RE |B|<ko
From the Parseval equation it follows that
JRx (1+22"|w|2)"°|m“K,(m) l”deO’ZKQM"”"'l“\”. . (32)

Applying the Héler inequality, since 2ko> K, we obtain

. 1o lass(], oo ) [ g )

<Oimi=iaD | (3.8)
Similarly, for j: 2/4>1, ,
iK 1/2 N
J' Iw“K (m) ldw< O(J‘ (1—(—222;151;[2)"" m) <0(21t)(Ir—mm)/ﬁzi(lml—lacl)°
@]1>% el >¢
| (3.4)
Since [#]'*'<O X! |o?|, there exists
Bl=lal - "
[ 12l Ky(0) [do<oppim=1o, (3.5)
and for j: 2%>1 we deduce ‘ |
J (wl la! ' K’ (w) ]dm<0(2jt) (K-—Qko)/égj(lml-lml). (3 6) :
l@l1>%

To prove the assertion we estimate the integral

Jocmouan (9360 =01, 0)1da,

and this reduces to the estimates of the following two integrals
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Ii= GEB Wer 38) H—Pm,(ai, @, g)-sz(“l; @, y) sz(wl: @, yo))
+(IL, PrCa, @, 90)) K (o—30) | 3.7)
and
L={ I Pu(a, o, (3.8)
To see I, applying the equation
VyPn(a, o, y) = W(g G yj)D;) V“i(i’/) (8.9)
and the estimate '
led(ai) &, y)’ Mgy
lw—g|™ <O|"™i | oy (8.10)
we conclude '
PP RL IS N IFTR —_
L<O|, oo lo=0] ™y —go] | K (o—g) |do
<otjm lo—y (™| K ,(o—g) | do<02t, (3.11)
where the last inequality is obtained in terms of (3.5) for |a|=|m| —
For I,, firstly we have v
L:<0|, 10|™ | K;(2) K (a—7) |do - (3.12)
where =y —g, [7] <. | |
Write .
K (o)~ Ko=) =0[ _(1=e")wy(@)e de.
When 29<1, since |
(L= (&) | <Otcm-ims,
we derive \
2 [ S |08t (1 -6 )y (§) | <OmAIW-WD,  (3.13)
BE |B|<ke ) »
and

[ ro|o(mm]on(K (o) ~ K (o)) [*dosCiigicm-engms,
Then, with a method similar to that used in getting (3.5), we obtain
[ lo1™ | K@)~ K (o-7) |do<0,

where the constant O is independent of j, and 2%<<1.
When 2%>1, because .

J e E Pt 3, 9 Es(5=9)

it leads to

do<0f o~ o1 K (a—y) s

je—yl>t
<O (2~’t) (K-2lo)/9’
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Lemw 2”|9':'(97, y) —9;(w, Yo) |dw<0(2jt)(x*2k>/2, (3.15)
Then (8.11), (3.14) and (8.15) give

[ vnsy |58, 9) =G (@, 40) [ do<0 3 min{2t, (21) -7}

<0<2 ot S (2.7t)(K—2k)/2)<0;

—e lo+1

where 2%~ 1. The proof is thus finished. ‘
The following theorem is obtained.

Theorem 8. If 1, 72 € Z%, I is an integer, |71|+172I+l—|m| =1, O0<<| 74 <
min{m} and w € M*, then for py: 1<po<<co there emisis

1<i<n
|87 T 2w (@, 87F) |2 <O|f | 4| V"0,
where C=C(K, n, m, Og, o, 7:) 8 @ constant.
For the proof, the following theorems are needed.
Theorem B. ([6], Theorem 8)
If a linear oprator T satisfies the fbllowing conditions:

(1) JE03(B), nEsupp f=>T(f) @) = K (@, )/ @)dy;

(ii) FELP(RE)=|T(H)a<C|fls, O i3 @ constant;
(i) the kernel K satisfies

Joenianan K (0 =K @, 90)de<0, y€ By, 1),

where O is a constant independent of ¢; then for T there are the inequalities of strong
type (p, p), 1<p<oo.

Theorem C. ([4], Theorem 35)

If o€ MO, |B| =1, mEZ" and |m| =1, then for the operator T;aR(_,,,,,@.,.EGJ,(w o)
there ewists the inequality of strong fype (2, 2). :

Remark. The original form of the theorem is for K =n=1. In this more
general situation it holds too.

Proof of Theorem 8 Choose @i, -+, @r€C"(R*\{0}) such that Vj, ¢; is
homogencous of degoee 0, l=g@+-++@x on RF\{0}, and ¢;(§) «0=>[&]>

-;—SHP(I&I, wev, |€x]). We write &(§) =w1(§)++++wx(§) with ;(€) =w(§)e;(€)

=¢,07(€). Now suppose @ € M2, and then it follows that &/ € M°. We will prove that
the conclusion holds in the case of |I| =|m|=1, y1=72=0. Then by using the same
" method as in the proof of Theorem 2, we derive the desired Tesults in the extended
-~ cases [71|+ | ya| +1=|m|=

From the decomposition of w mentioned above, we can restrict ourself to the

ocase of w=¢;,®, where » € M°. Let o 2 wj, where w; aTe obtamed from o as in
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Proposition 1. _-
Denote T'(f) (#) =Trm wiey(@, F) (@) =T rmuirron (@, F) (@) and Tx(f) (2) =
T rem wrey (@, f) (). From the equality
, Tu(f) =Tt rem® g1t (@, ) =T apsoriesean(@, ), - (8.18)
where 4o satisfies m,,=1, by applying Theorem C to the first term and Mihlin
multiplier theorem t0 the second term on the right hand of (8.16), we obtain
| |75 () 1a<Clfls, (3.17)
where the constant O is independent of IV,
Resorting to [8], Theorem 1, we have > = . . -

To(f) (@)= 6o, ) f@)dy, (3.18)
where Gy is introduced from  as in Proposition 1. Then the Proposition can be
applied to T'y. From Fatou’s Lemma we conclude the inequality

IT(ND1<O|fls, 1<p<eo.
By virtue of linearity of T'(a, f) in ai, the constant O=0|V"a].. where 0y=C,(K,
n, m, Cp, p) is another constant. |
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