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ON THE METRICS OF THE RIEMANNIAN
MANIFOLDS WHICH ADMIT ISOMETRIC
IMBEDDING INTO SPACE OF ANY
CONSTANT CURVATURE*

EBAI ZHENG GUO (& £ ) **

Abstract

In this paper the term “Riemannian manifold” means that the fundamental quadratie
differential form may be indefinite. o
Theorem. If for any constant K the Riemannian manifold M» (n>4) admits
isometric imbedding into certain spaces S"+?(K) of constant curvature K, and if the
metric of M~ is analytic, then the metric is expressible either in the form
d32={c+2 o,,,;v’"+—%— az—l—f(y)}_e 3 e (det)?,

or
ds?={c+ Ecmw’”+¢(z)}"?,2 a(de*)? (e=2=1),

where y=2am, =3 e, (™%, ¢, a, G, cn: consts., and f(y) and p(2) are analytic
functions of the arguments y and # respecti'vely. The converse is true for any constant K,
when #>5 and ‘ ‘ ‘

S entn) f() +-—12— 02+ (= emCmttn) Yy const.

or

{p@)+ ¢}/N % #const.

1. It is well known that any Riemannian manifold M* of n dimensions does
not admib in general isometrio imbedding into an (n+1)-dimensional space S*** of
constant curvature. Although M* admits isometric imbedding into a space S** of
constant curvature Ko, yet it does not admit in general isometric imbedding into a
space S of constant curvature Ky(# K,). We denote, for simplicity, by §*+ (K,)
an (n-+1)-dimensional space §"* of constant curvature K. In a recent paper™ we
have proved for any Riemannian manifold with indefinite fundamental quadratic
form that if M* (n>4) admity isometrie imbeddihg both into §** (K,) and §**3
(Ky), M* admits in general isometric imbedding into space S§**' of any constant
curvature. We have also shown that the space §* (K) of constant curvature K
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admits isometric imbedding into spaée §**1 (K4) of any constant curvature Kj.
oQnsequently, if M" admits isometric imbedding into any space §***(K) of constant
curvature K, it admits also isometric imbedding into. space §***(K) (p>0), of any
constant curvature K. This class of Riemannian manifolds M* is a generalization of
the clags of Rismannian manifolds of constant curvature. In this paper, we
determine completely the Riemannian metrics of this class of manifolds M®, |
The Gauss equations of a hypersurface M* of the space S (K,) are
Ripu=e(bibgu—bubs) + K o(gugs— gudie) @)
where é=41, gy is the Riemannian metric of M® and Ry, the Riemannian
curvature.. The metfric of M" is ds®=egy; do‘da’, where e=1 when the fundamental
quadratic form g,;de’da’ is posmve definite. In this paper we assume that g, de’de’
may be positive definite or not.

We put .
Tia(Ko) = Riju— K o(gugn— gugn:) » )
Tw(Ko)=g"Tuym(Ko), T'(Ko)=¢"Ty=R+n(n—1)K,, 3)

Gy= n-1—2 B \2(n~—13;(n—2) Gt @)

- d=g¥dy, ’ 6))

D= g"dydy;, D=g"D;. . (6)

About this class of manifolds M* which we shall consider throughout this paper
we have already established the following theorem™:

Theorem A. If g Riemannian manifold M* (n>>4) admils isometric fz}mbedding
both into 8™ (K,) and \ 8™ (K;), M™ is conformally flat. Comversely, if any
conformally flat M® (n>4) admits isometric imbedding into 8™ (K,), and if for
another constant K, the rank v of the matriz (Tyy (K)) 4s >4, T(K)#0, M admits
also isometric ¢mbedding into an S (K) and this class of M™ is characterized by the
Jollowing conditions:

Riim—gzzdm"l‘gﬂodu G~ Girhiz, (7
(n—2) (P 4) By = (10— 2)*(dsichin — dinis) + (p— 4)*(g119im — GimGu) ®

2. We establish the following theorems, which are useful in the determination
of the metrics of the Riemannian manifolds M* which admit isometric imbedding
into space of any constant curvature.

Theorem 1. If M* (n>4) is a Riemannian manifold whose Riemanian
curvature R satisfies the conditions (7) and (8), then the metric of M" is empfresszble
in the form

—o" Sa(ds)? (a=+1), ©)

and, there ewist n-+1 functions A, Ay, +++, o such that the function o is @ solution of the
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' follow'mg system of partial differential equations

o505 00 0o Mv-i—e@”?» (3, j=1, +=-, n). (10)

Oonversely, if o is any solutton of (10) én which Ay, -+, Any A are n-+1 arbitrary
Sunctions, then the Riemannian mandfold M® with the corresponding metric (9) satisfies
the conditions (7) and (8).

From Theorem 1, it follows that the metric of any Riemannian manifold M*
which admits isometric imbedding into space of any constant curvature is expressible
in the form of (9) with o in the sense of the theorem.

We proceed 0 prove this theorem as follows.

Contracting (7) by g* we obtain (4). Contracting (8) by ¢’ we have

(n—2) (p— 4) Ry= (n—2)*(Dy— 4dy) — (n—1) (p— 4)*¢u. IS
Contracting this equation again by g% we have
(n—2) (p—4) B= (n—2)*(D— £*) — (p— 4)*n(n~1). (12)
‘When (4) is contracted by ¢, we have
R=2(n.—1)A. (13)
When B is eliminated from (12) and (11), we get a quadzatio equation in p
e [~ (=2 p]=o, (14)

that is, the function p in (8) must be a root of this equation.

From the condition (7) it follows that M" (n>8) is conformally flat and its
metric is reducible to (9). Conversely, if the metric of M" is reducible to (9), the
condition (7) is satisfied. In this case

Gii =080y, §¥ =072y, (15)
where §;; denote the Kronecker deltas.

The components of the Riemannian curvature tensor Ry, of M" are obtained
from (15) by a direct computation as follows:

Buw=0 (h, 4, j, k#), (16)
Bup=ee® (o~ 0w0w), (h, i, b#), 1n)
Rm=e°"{es(anh—0%)-+ er(0u—0?) +6eenn§lemafn} (i#h), - (18)
where : ‘
o= .= TO
, o’ ox" Oa®
From (15)—(18) we have :
Ry=(n—2)(oy—0i0;) (i#]), (19)
By=(n—2)(04—07)+ 6D enommte(n—2) 3 enos, - (20)
- B=(n-1)¢*[23 tuCmm+ (n 2)en02]. \ (21)

From (4) and (19) we have
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d!kf‘o"ﬂo"o'io'k (k). (22)
From (4), (20) and (21) we have -
| diﬁ"""aﬁ"’o-?‘l‘%'ejzemdvzm ' (23)
From (18) and (21) we have
4 =6_20[2 0m0‘mm+—%-(n—-2)2 emo'gz]o ' (24)
From (8), (16) and (15) we have
djidlm — d!mdu =0 (.7 s Z, ’i” m+ )' ' (25)

From (8), (15) and (17) we have

(n—2) (p— A€ (Tsm— G10m) = (nv'—z)?'(dﬂ,d»im_djmdu) (3, §, m#). (26)

From (8) and (18) we have
(n—2)(p—4)* {e;,(o1n—03) +es(oy—0a}) + e;e;,Ze?,.afn}
= (n—2)2(d2, — dusd) — eiie®® (o— 4)®  (5%h). (27)
Henoce the conditions (7) and (8) are equivalent to (9) and (25)—(27).
From (25) we find that dj/dy, is independent of j and the n functions Ay, <+, Ay
can be chosen such that ' ’

| dp=—D (JEB). (28)
From (28), (22) and (26) become ‘
op—0o=—Mk; (j#k), ' (29)
and :
— (n—2) (p—A4) (66> Mhm = (n—2)2 (A2 + diy) Ajhm, (80)
Tespectively. ’ o
From (4) and (18) we have :
‘ .R”= (n—2)d;,+ Ag,-;. (31)

Then (11) reduces to
(n—2)2Dy— (n—2)%pdi;— (p— 4) [(n—1)p— 41 g;=0.

Hence
Dij=pdiy=—pMid; (E5). (82)

We have by definition for j+##%, \
D= 9" Ay, = §" iyl = g"d3y 850+ gl + l;}ﬂ!)"dudzm

Substituting (15), (23) and (28) in the above equation we have |
6" D= (X 6n0— 2 6mhiy -+ 00+ 0,051 — €07 + €M7
v ) +exom—ewor) (—Mh), (G#k). (33)
Comparing (82) with (83) we obtain. ’
06" =3 0,02, — 3 6nhZ + 602+ €0 33— 6,05+ EyAa-+ 6y0y — €402
Since the left-hand mem ber is indépendent of j and k%, it follows consequently that
exhit €0 — 40 =i + ey — €107, (84)

“and the equation becomes
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06° = 002 — 3, 02+ %-(2 PRLER EnO'sim ™ Zen07),
or - | é | )
| Pe”"“= }— [(0—2)S 6ol +2 S tnoun— (n~2)Sendi].  (85)
We have by definition | |
Dyy= g” Ay dhyy= g% (dyg)+ 2 gududu

ef(aﬂ—o':'*‘-flz'eizemoim) +E€'2”617vz?w'_f. S

or

2
2
_(2 emh) A — e,?»,—l—e;(e,cr” e,a,+ Ze,,,,am> o

: N
2"D,, = (2 emh )kz —esh} + e,(o‘,; - cr, -+ —1- e 3 emcrm)

By means of (34) we have

€i05;—¢ = -3;‘(2 em?"gn'l‘ 2 €nO mm — 2 3m0m> - 3;?\.2
Hence _ . -. _ _
Y
3201)!5 = (2 9m?\'§z)?"52"" 61'7\' + ei[ (2 Cmhmt+ 2 @mo'mm+ 5 —2 > em0'12n> - ei?“?]

= -l-[(n-Z)Z et — 2, €0y — (n 2)2 emam] 7“1

2
+e; "—<2 em?"?n"i‘ 2 0m0'nvm+ 2 E,Gmam) o

From the equation (6) for-the definition of D we obtain -

4"D=—-[(n 2)20,,,?\,2 ZZemamm (n 2)26m0m] (Eem?\'rzn)

(5_‘. emhi 4+ e,,.amm—l— 2 2 emam>2

\a
(2 6m(rm/m‘i‘ 2 Eemo‘rzn)sw
If woput - - : : . , ] .
-A-— 2 em?"ﬁu B = Z emo'm; O= 2 €nOmm, . ) . (36)

m=1 ; :

Vwe can write the above equation and (24), (85) respectively as.follows:

Deto == 2l g Llo+2o 23), e
4do=04 752 B, o (38)
pe2"’=L-1—[(n—2)B+~2O"—-:(n-—2)A] (39)

We observe that (14) is an algebralc consequence of (87)— (39)
~From (84) we have. : < -
e:?»s—i—eson a0 ——(A+0 B) | o (40)
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In consequence of (23), (88)—(40) the equation (30) is satisfied identioally, Thus

we have proved that the equations (25) and (26) are an algebraic consequence of the

equations (29) and (40). Moreover, we can show that (27) is also an algebraic

consequence of (29) and (40). ' ’
From (88) and (89) we have

n—2 a n—2 :
| (p-—A)e”"r—--—T(A—i-O’-{— 5 B)o (41)
From (28), (40) and (89) we have ‘
6¢d¢5=650'¢g—3¢0'¢2+—;- B'—“—% (.A -+ O'—B) —6;7\4,;2’*"%— B .
1 a0 a -
= ——= (o= A)e ol | (42)

By a direct caloulation it is easy to show that both the left and right~hand members

of (27) are equal to ' .

—26* (p— 4)*— (n—2) (p— &)™ (e -+aihl),
in consequence of (28), (40) and (42). |

| If wo put

=1 4y0-B), | (48)

n
it is clearly that the system of equations (29) and (40) are equivalent to (10).,

We have shown that the conditions (7) and (8) are equivalent to the system of
equations (9), (25)—(27) which are equivalent to the system of equations (9), (29)
and (40). Hence the conditions (7) and (8) are equivalent to (9) and the system of
partial diﬁ'erential equations (10). Thus the first part of Theorem 1 is proved.
| Conversely, if ¢ is any solution of the system of partial differential equation

(10) corresponding to the n-+1 arbitrary funchions A, Ay, -+, Ay, by means of the

functions ¢ and Ay, --+, A,, we define 4, B, O by (86). From (10) we have A=
-;LT(A—}-C'—_B). Define 4 and p by (88) and (39). Define dj (j#4) and dy by (28)

and (28). From (9) we have g;=¢*e¢?dy. From the preceding considerations we have
shown that 4, p, d;; and the Riemannian curvature R formed with respect to gy
satisfy (7) and (8) identically.

Thus Theoi‘em, 1 is proved.

If we offeot the transformation e~ =u, (9) and (10) become

1

ds'=—y B o(da'), (a= 1), @
and S S _ _
"'?f'ib—' =uw(Mhs—edih) (4, =1, -m). o (107

__ 02 0%
" '8, Inorder to defermine the solutions of the system of partial differential
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equations (10") or (10), we put
y= él-amm’” (%_———consts,, m=1, -, n),
o=@’ | )
and prove the following :
Theorem 2. Any analytic solution w of the sysiem of partial differential
equations (10") is reducible either to the form '
‘ p=c+Zear"taz+f(y), (45)
or to the form o
w=c+ e 2™+ p(2), ‘ ‘ o (48)
where ¢, ¢4, =, ¢y and @& are arbitrary constants, f and ¢ are arbitrary analytic

Junctions of the arguments y and % respectively.
It is easy to show that both (45) and (46) are solutlons of (10'). Since we have

for (45)
, |
m=‘5£1"=cs+2ae¢w‘+f’ (y)a,

amiawj =f" (?J)ai“i ('I;%j),
. 2w
- 20017 (),

1 .
we see thal u satisfies (10") for 2\.;=,\/ —f—;’y—l a, and 7\,='-—-g'j—; Since we have for

(46)
=i+’ (2)2e", ;=" (2)4e0,0'’
=" (2)4(a")*+2¢/ (e,

we geo that w satisfies (10’) for M= ~/ ?”(2) 209 and ?»—-7; "(z)

(=9,

Now we prove that any analytic soluino,n of (10") is expressible either to (45) or
to (46).
‘We prove first a series of lemmas.
Lemma 1. A necessary and suﬁicwnt condztfwn that Ay=aa; is that
AyAp—Aydp=0 (4, 4,1, k=1, -, m; ¢, 4,1, b). 47
Since from (47) it follows that A,/ A4y is independent of ¢ and 4,; is symmei;rie
with respect to the subscripts, we can choose » functions a, -+, a, such that 4;;=aa,
(4, j=1, -, n) ' ‘
Lemma 2. Iy Ai,—w,a,, B,;;-—b,b, and A,,+B¢,=c;o, (8, j=1, =+, m; j#4), we
have b;=aa,.
Since
(@@j+ bid;) (@ + by, ) — (cm,-l— bzb;) (aza;a-l— bibi) =0 (4, 4, b, b+ ),
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we have o
(akb, a,bk) (aib;—_a,bg) =0,

Lemma 8. If P5(s, =1, -, n; k=1, 2, - 67) are homogeneous polynomials
in the o's of the k—th order, P§=P}, and if ki PY is @ convergent power series in the
o's and - '

Z‘ Piy(@) =9:(@)gs(2), Pif}(2) =k(2)ki(0),
| Py=fi(@)f (@), PitPi =)
and k() —ocfg(a:)

- Proof. From f} P’§,=g¢(m) g,(m) and Lemma 1.we have

<2P¢I)<Z-Plk) <2PU><EP§E =0 (@;‘.7.: ;: k%), .
for any values of the x’s, and consequently =
PyPy,— P};P5,=0,
P r+1 +PlkPr+1 PuPr+1 P{kP’r;l-l______O'
By the assumptlon we have ' |

we have

1 1
P:']+ Pr+1 Pl+ Pr+1

(Py+Py) (sz—l‘Pr“) (Py+Pyt) (Pm—f-szc“) 0.
By Lemma 1 there exist functions hg(m) and %;(2) such that
Py+P ff“—he(‘”)hi(m) _ : :

Smce P’+1 k,(w)k,(w) and P4,P,,c P,ij 0, we have Pj=f,(2)f;(z). By Lemma 2
there is a function « such that k() =a«fi(). {

Lemma 4. If u ds any solution of (10'), then w= u+c+2 6m®™+a 2 e (a™)? for
any arbitrary constants ¢, ¢, --. o, and a are also solutions of (10').

Proof Putting o o

Hence

; V=0t Cnt™ -+ “2 em(w’@:)vﬂ’ s
we have
v,=2ae0", vu=2ae, v;=0, (i+#j),
where

1}¢=-—-————awi ) V a ‘a ’, 6130.

The notatmns sueh a9 =2t 66‘3 . will be used frequently throughout this
paper, if no ambiguity would arise. S : L

From (10') ,u,,,—i\,m,y, (6%#37). Hence w”-,wi,-l— m,—M\.,/.a If we put

..Jﬂi Ay

we have . w,-,—?um} .
Also from (10') - o
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cou= ,u,u-i- zm— (7\.5 —e,?\.) y,+ 2ae;-—7\,2}1. e;(?\.y, 2a) (M -—eﬁ\.’ )co,
where A/ ———(?«.y. 2a)
Lemma 6. In order that @ power serrfies of the form
| W= c+20,,.w"‘+—— 2 @y m’+—-— 2 aw,m‘m’m”—}— .

be a solution of (10'), the constanis c1,+-+, ¢, and ¢ may be ahosen a,q’bfbtma"y, but the terms

of the second order X aya's’ must have the form

o Zaphd=aSen(d")+ (Dane™)® (48)

Proof Let the ooefﬁclents of the power series ai, mm, B , aive symmetric with
‘respect to their subsoripts. We have - '

"c‘+2 “”“’L{‘ 2“"”w’mk+ ( TR
. 'Mu—"lu*l-z “ukw"'*' , (4 7’*1),
,l-bu==w«+2 wupm"l' .

If p i3 a solution of (10’ ), we have ,u,;,-—m.,p, for 4 j By Lemma. 1 11i is necessary
and sufficient that » i ‘

l"ull'm F’llll'm =0 ('b: j ) b k # )
: H'ence _ o
%“m - wu%k =0.

By Lemma 1 there are n congtants ay, -, a, such that
_ ay=aw; (i *7) v
From py =My, it is seen that A;+/ 7 must take the form

M= (w‘ +Z‘ pakw"+ )7‘r

On the other hand, from (10’ ) » L
Mu—“u-l‘z wnpw’ + . =7t¢ w— 64?\.,11, w,; +2mek e “’ei}\,,u,,

that is . R : R
(au-—a?) +§<Gg@—z)§p)w”+ cor -—6;?\:/1:,
consequently o (ay—a;) =a and |
pmet Zowh 45 gt
=+ X Cpna™ +— 2 wm(’v’")2+ “2 wewdw'w"*‘ .
=c+20mw"'+-——2amm(w'")“‘+ [(Ewmw’”) Ewm(w’”)“H .

==o+§_‘,c,,.w"‘+-—— (zz,,,,,. ,w,,,)(w’")"—l— (Ew,,.w”‘)2+ o

=gt 0™ +-2—aezm(m”‘)9+-2—('2~amw'”)’+"';."‘ R
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- Lemma 6. If u(a', -, ") =u(w) is a solution of (10'), then (@46, oo, at+

") =u(w+c) for arbitrary constanis ¢, -+, ¢® is also a solution of (10).

Lemma 6 follows from the fact that the metric (9") is invariant wunder the
transformations

| w=a"—c (i=1, -, n),

for arbitrary values of the ¢’s.

We prc')ceed‘now to prove Theorem 2.

Let the power series

p(2) =0+X 05" + wZem(w'”)’+ (2 ™)
3, D gt +—4—?'— D aypnteiatal 4o (49)
be a solution of (10’). Let the coefficients @y, @um, -+, Which are to be determined,
be symmetric with respect to their subseripts. In what follows we use the ordinary
summation convention, if no ambiguity would arise.
From (49) we have

w(z+c)=c +cmw”'+—21-'— wﬂw’w’—}--él— alviete’ +-41— Qg1 m’w"m oo (50)
where
ay =-%— @601yt Wi+ Gyj,0° +% @13pCPCT+++ e, (61)
iy = Gijp-t+ Gigpac?-+- % Bijpgr0TC" 2, (52)
Biypq = Bigpg+ BuperC' 2 (88)
From (50) we have '
| m,<m+c>='a;,-+a;,pmv+—2%_azmww+---. | (54)

By Lemma 1 and pb;,—-?\.;?\.,pb('b #4), we have
o — pst=0 (4, §, 1, k*) (85)
By Lemma 6, (55) is satisfied for any set of constants (¢). Hence
gty — @150, =0, (56)
and then aj;=a;aj. It is possible to choose (¢) such that ay;=0 (¢, j=1, -, n; §=9).
In fact, then n constants ¢4, +++, ¢, are subjected to only n—1 conditions and therefore
at least one of the ¢’s is arbitrary. In this case (51) becomes
—~ Q4= QP+, (#4).
By the analogeous equatmns (86) for ay;, we have
(Gutyting — gt ()2 =0,
It follows from Lemma 1 that
QugpC® = Dby
[f aia;+0, appling Lemma 3 to (51) we have
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b0 =ale)ma;.
Hence by =olo)ady

Qy4gC° = (2 ro6?) tiay,
or

Qigy = iTyT g
Since ayy, is symmetric with respect to ¢, § and p, we have
|  rp=aa,
for ¢, j, p#. Therefore
Oyp=o0dsty (4, J, P=1, o=y m; 45£7), (67)

and ay (¢=1, -+, n) is to be determined. ‘

If a;=0 (4, j=1, -, ; 4+7), but there is at least a set of indices 4, §, p such
that ay;, %0, we can prove by the analogeous process that w,,,,=db¢b,b,, that iS‘, the
relations (57) hold for any case. ‘

If (57) is substituted in (51) we obtain

aiy= (1+a2wma”‘)a4w,+~12‘— 13940707 +—31'— BiiggrCCI + o0 (%]). (58)_‘

If we choose () such that 1+ 3 @.c™=0, (58) becomes
G‘j = -—%— dgqucpcq -ece,

Since n—1 of the ¢’s are arbitrary, we have from (56)

Gu19g0"0" = p(0) bibs = (X Bye0”0?) bibye
Substitute these relations in (61) we have

ly = sy -+ (S ™ty + %-(z Boud) bibyt-eee,

From (56) and by making use of Lemma 3 or by direot computation we see that
b.b; must be proportional 10 @@ OF Gy =Y.

When 4, §, », ¢, we have | _

o “¢?m=79§2‘6“!=76!“9“q:

that is, Ypq= pa%. | | o N “

From w;,,,=7,,d;w,=—7,;,w4a,,=pwga,d§, wo have 7,=pat. Honoo aiym,= paaa,a,
(é%9), and auy is to be determined.
" In like manner wo obtain

Wijoqe = VOHGiGety, >, (B ).

Hence if there are @ dnd_a, (¢%4) such that @0, the solution w in power

series (49) of (10’) must take the form

w=0-+3 cp™ +—g— p) 3m(wﬁ)2+“2%‘(2 Gut™)?
S @ B (S ) - B 0]

2= 3 G (0) (S 0me™) ~ Zah(am) D + -
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It follows that -
Moty == Q-+ B(Z w,_,,m’f‘)ﬁw;w,—-{- %— (2 ™)yt oo
From (10") py=AMu (4%j5). We have

M = [a+,8 > a,,.w"‘—i— b4 (Z wmw"‘)’ ] @ - (59)
Also from (10)
m,—-=ae;+aw?+ﬁwmw‘-j¢ ,3(2 wmw'”)a; Bw;m 4 =2\.;p, e,hp,
Henoe I .
—~Mw=ae-+ B(au— wi)w droee == —e;?\;w,
that is, 64,8 (wm-—a‘)m‘ is 1ndependent of ¢ and consequently wm—m.
' Slmllarly we have o,y =at, «

Hence we have:

If among the a’s in the term (2 a,,,w'")" of the second order of u there exist at
least two of .the a's, say @ and a,, Whlch are different from zero, that is, ;%0
(i#+4), or otherwise, if @;=0(3, j= ‘1 sy M G _7) but there is at leagh one of the ay
(¢#4) which is not zero, then any solutlon ,u, in . power serios of (10') is expressnble'
as follows: '

p=0+ 3 0"+ 4 S on (0" L (S lima™)

o B A S, (60)

where &, B, 7, -+ at® arbitrary constants, but in the later case we have a=0.
From (54) we have

Mg = Gyt wupwp“"é:'l" “sfnd‘v”wq’F_é:L— “mqrw”wqm'+ 2, o (61)

We have shown above that if a;=0 ('1, j 1 oy 1 b=9) but there is am,('b % y) which
is not zero, any solution y in power seties of (10’) is expressible in the form (60)
with &=0. If a,,—O am,——O (¢ # J, ¢, 4, p= 1, -, m), ibis ewdently that the fanction
‘ W in (60) with a=B=0is also a solution of (10’ ). However in the later case we |
show that there exist other solutions of (10’) which can not be reduced 150 the form
(60). ‘

In fact, When m;——O, %,,-—-0 (’Hﬁj), we have from (61) and (55)

Ewg,k,w”w =aa; D, awet (w,;a,ﬁéO) -

for any values of the os. If there i @y 70 (4, ], k, I#), we cah show by an
analogeous process that a;;m—pw¢w,aka; and ay is o be determined. But by (10') uy=
Alw— e, and it follows that.au=pa;. Henoe in this case any gnalytlc solution w
which ig expressiblé’iﬁ a':pdwéi"series (49) is reducible to "the form (60).

If all of the aiyu but ay; aze zero, we have '
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e -% S @™ e = a0’
From (56) we have
aecﬂdtzm'-dtziﬂeckk“-’(’ (% Js l, 7‘7*)
There are akk(k=1 e, n) such that - “

) gy =utlgs, - (b ).
From (49) we have :

,w c+2 cm¢ +——w26m(w’")" az(w"‘)2 -
+—— ) wmmm(w’”)3 2 w,qpq(w’)a(w“)2+°" - g .' :' . | -’ o
'-=c+2 Cn™ +—- av,Ee,,.(w"‘)2 2(a;")2 |
+ 3 2 G (w"')"—!— -—- 2 wm,;,,,,,,.(wmy
{[2 wmm(w’”)2]9 2 amm(m'”)4}+
p,; o= c;+ ae;m + w,%Smw"—}——flz— um(w‘)”
+5 [a;m ai] (w‘)s +—— [2 amm(w’”)”] a¢¢w‘+ I

| [bw-—-—23—- w,ia,,w w’—}— ('b #j).

‘Hence

M 1 = o %a;,m‘4;°'-,
it ==aei+ 020 -+ @it +- (wm,— ay) (a¥)? '
3 [2 afmm(mm)g]wu+ %(wi)z—i-' -—7& ,w Z?\.,u,.‘ ,
'We have e | | )

& (ae;+ wk&k) = b,_ 6y = 0,
o ey =d, ee(aﬂu ’»‘-!ﬁ;) =0,
that is, b=a, a3 =0, ay=ed, ayy=d*. Henoce

w= c+20mm"'+-—a26m(m’")2 d2[2em(w'")232+ ..

If d#0, we can prove in like manner that the terms of the ﬁfth order of M are
ZeT0, and the terms of the sixth order take the form b*[3en(a™)?]3, - . -Since in this

m=%d%¢w‘w‘+’"- (i),
by Lemma 8 the second term in the rlght—hand members must be proportlona,l tm

: e;e,az‘w’ and the proportlonal faotor 1s a constant mul’olple of 2 em ({z;"‘)2

1o ? .
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In fact, by Lemma 8 the torm of the third order in the right-hand member of
iy must have the form (3] a,2?)eea's’, that is, all of the gy but gy, are zero, Butb
» .

if p#4, among auuy,'s only Gy, may be not zero, and it is impossible, unless @ =0
(i#4). Similarly we can prove that ay;=0. Hence ay.,=0 (4#4). But in this case
we can prove by (10"), @uu=0 (¢=1, -+, n)and hence @y, =0. The term of the third
order in the right-hand is zero. The term of the fourth order must take the form
(= d,,qm”wq)ege,w‘w’, that is, all of the a@igges bub @y, axe zero. But, if p#¢, among the
@ijipd’s Only the a's of the form aye,; may be not zero, that is, p=¢, g=j or p=¢. In
other words, all of the @y, butb Gijijgp ATO ZOTO. Since auyyipp= €604 and the left~hand
member is symmetric with Tespect to ¢, §, p, we have a,,= ke, or w“,,,,,,—ke;e,e, and the
term considered takes the form
' kL ln(a™) ] ei00°,
i‘.hat is, the terms of the sixth order of w take the form

b 3 eiese,(2)2 (') (0%)* = b2 [2 o (™).

Qontinuing this process and by Lemmr 4, we see that in addition to (60) there
exist other analytic solutmns W in power semes of (10") which are reducible to the
form

p=c+2 cna™ +— o 9m(w’")”+ - b [Zem(w’”)”PJr — b [ em(a™)*]%+ =<+ (62)

In summary, we have shown tha’o any analytio solutlon w of (10') is expressible
in power series either to (60) or fo (62). In other words, any analytic solution w of
(10’) is expressible either to (45) or to (46).

Thus Theorem 2 is Proved. '

By certain. transformationg

o/t =o' ¢! ('b oo, M),
we can show that both the types of solutions (45) and (46) are in fact contained in a
~more general type as follows:

p=0+ X ont™+ 3 4 Sen(e)+1 (1), (63)
where v
Y=b+ 3 @@ +a X o (a™)?, _ ' (64)
a, b, ¢, @, >, G, C1, **>, C4, aTe arbitrary constants and f(y) is any analytio
function of y.

Since when =0 (68) is eqmvalent to (45), when a4+#0 we can reduce =0
(m=1, -, n) by a transformation o'*= -0' (=2, -, n) for certain ¢’s. It follows
that the analytic metric of any Riemannian maﬁifold which admits isometrie
{mbedding into space of any constant curvature is expressible in the form (9'),
where w is a function of the form (63).

We now consider the converse problem, that is, to find out what conditions
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should be subjected to the solutions of (10’) or o the function f(y) of (63) so that
the corresponding metric (9') defines a Riemannian manifold M* which admits
isometric imbedding info space of any constant curvature.

‘When M" is a hypersurface of the space S***(K,), the Gauss equation is glven
by the equation (1)

Ria=e(bubsn—bubs) + Ko(gagn— gugim), 1y
and by is expressed by the equation (22) in the paper [1], namely
Py :
i B TR )~ P TCE)) , (>

If M* admits isometrie imbedding into ¥wo spaces §"*(X) and §"**(K,), we

have by the equation (55) of the paper [1]

Pim= 2:2 {(n—-2)7\,ﬂ+[(n—2)K0 +_2_<ﬁ"_j2_ A—p]gﬂ}
-2 2 [(n 9K+ 20D arolgul,  0)
where : _
M=y — A Gise (87)

From the equation (56) of the paper [1] we have
2P TE( K o) ~ PraT (Ko)

~ =8 (2 Ko+ 204 )} {(n= D

-— ) 2(n—38 a
2L -2 Ko + 2028 o] g | (68)
If (66)—(68) are substituted in (65) we have in 8" (K,)

4— )
i+ ( Ko+ Tg‘)gn
bu= (69)

gy
where '
e= —sgn <Ko+ 2(nA 2‘0)) (70)

Theorem 8. If u is any solution of the system of partial differential equations
(10’) corresponding to the functions A, Ay, +++, An(n>B), and if
S lmped+ 20pP 4 Ko %0, _ (1)
the Riemannian manifold M® with the metric (9') admits isometric imbedding into @
space 8™+ (K ). .
For M*, if in addition to the condition (T1) ¢t also satisfies the following condition
et 20P = p? D eph2+ Ko#0, (12)
M* admits isometrio imbedding into 85(Ko).
Proof From the equations (10) and (86)
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Wéhave N o ’
' c=26m0'm=B-—A+n?\,.l : S - (718)
From (38) and (89) we have A - :
- Ae”"——A+-§- B-£1id, p6® = -—A+B+27«., . (74)
From (42) we have o ( '
. d“ -—'-— 6; (.B+ 27‘;) Az . l v (75)
From (28), (74), (75) and (69) we have - | | |
g —hhtQe¥edy o ~
b i 108 6
Gy ®
‘where L o
Q=Ko+ (B+2?\.)e"2" R : (D

Since u= e"’, we have . ‘_ ) :
= 2 3m0'm =— 2 (’m,ulm, Q 2 6m,u'm+ 27\«,UP+ Ko

From the condition (71), that 1s, Q#:O We can- ohoose ¢=+1 such that —eQ>0.,
Hence in this case by is real and finite. The existenice of the cet of functions by, means
that: if in addition to the Gauss equation’ (1). we have for M® also the Codazzi
equations, then M" admits isometrio 1mbedd1ng into 8+ (K 0)e Moreover, it is well
known that if the rank of (Tyu (K o)) is. >4 the Oodazm equatlons are an algebralc
consequence of the Gauss equation @. But it is also known that the rank of
(Tum(K o)) is equal to the rank of (b;;). Hence if the ra.nk of (by)is >4, M" admits
isometric 1mbedd1ng into S”“(K 0) and the theorem is proved.

“We now proceed }o estimate the rank 'of (b;,) ‘From (76) we have

’*7‘4?_,+610?‘{Q C '.—7\,12\.2 SREERC LI EENEERE S V) WA
L —dah - —MEFeae®Q e —Agh
pymL | TR Hac ol s
,QI’E soes oo 0 oo‘oo‘o .........
-MM S haba e — AR eae™Q
We have in (b)) the minor determinant of the fourth order of the following form
*}‘42+3 QQUQ - —)4},; IR —?\4?&7, — A
. MM j+3192°Q —Mhy =My |
A("’) j:'kf l).= P : 2 o : (79)
LT MM —Mhl ‘_."?"k,"*" ee’Q  —My ’
FMM _> ' —M: o | —.M?\qa C —Mtee™Q|
It 1s oasy to show that ' ' . |
) A(’I/, 9, k, e) eie,ekel(ez”Q)a(eg"Q e¢h2~'—e,),2-—ek?\,k—e,7\,2)
('7' j:k Z 1 '.;”'y "").7:]" l%) . (80)

' Whenn =4,
Lo det (b;,) A(l 2,8, 4)——61626364(620Q) <e"’"Q ZeN)

If the conditions ('71) and (72) are samsﬁed A(l 2 3 4) an the rank of
det(by;) =4, and the theorem is proved for this case,
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When n>>5, we have in (by;) the minor determinant 4(¢, j, &, I, 2) of the fifth
orber which takes the analogeous form as 4(¢, j, 4, 1). We have ' ’
4(i, 4, k, 1, h) ——eiejekeleh(ez"Q)%e"‘"’Q e\ — ejAI —ehi— e} —ex\]). (81)
If the rank of (by) is <4, all of the A(4, j, k, 1) =0, 4(4, 4, k, I, h) =0, that is
6°Q— e\; — e;AT — ep)n - ehi=0, ’
_ €2 Q— e\; — e} — ephi— o] — ephi =0
for 4,4, %, 1, h=1, -, m: 4,4, k1, he=. Hence M=0 (=1, +-, n), @=0. It is a
contradiction. Therefore the rank of (b;;) is =4. Thus the theorem is proved.

It should be observed that the condition 7' (K,) #0 stated in Theorem A is
immaterial for the present case, since when Q0 the set of functions b; exist so
that the condition T'(K,) #0 is unnecessary (Of. Lemma 8, [1]).

Corollary 1. If u is any solution of the system of partial differential equations
(10') with the functions A, Ay, -+, A, (n=>8), and if

' S 2, 2\u? # const. (82)
the Riemannian manifolds M* with the metric (9") admit isometric imbedding into a
space 8"*(Ko) of any constant curvature. Ko. '

For M4 if in addition to (82) it satisfies also

S e+ 20— u? X el aéconst B (83)
M* admits isometric $mbedding into 8° (K,) of any constan K,. |

Gorollary R. If p is any solution of the system of partial differential equwtzons
(10"), any Riemannian manifold M" (n=>4) with the metric (9') admits ésometric
imbedding into a space S*(K ) of consmnt owrfthwre K, where the values of K may Be
chosen in infinttly many ways.

5. From Theorems 1—3 we can determine oompletely the metrics of the
Riemannian ma,mfolds M (n=4) Whlch admlt mometrlc 1mbedd1ng 1nto a space
8™ (K) of any constant curvature K. ’

Theorem 4. If the Riemannian mwmfold M* (n>4) admits isometric imbedding
4nto spaces St 1(K ) of any constant curvature K, and if the metric of M" is wmlytfw,
then the metric is expressible either in the form

= [c+2cmwm+-azem<wm>2+f<y>] Se(ad, (80
or in the form . : - : SR S
ds?= [c+20mw'”+q)(Z)]““’Ze.:(dw’)”, (85)_
where : , _ SR
y=3ana", t=Zen(a™)?, - (86)

0, @, C1, *++, Cn e constants, f(y) and p(z) are analytic funstions of the arguments y

and z respectively.
- Conversely, when n=>5, (i) for any constants ¢, a, 61, **, cs and any. analyiic
function f(y) but ' ‘
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(B eman)f ) +-— ay’+ (2 emcmwm)y + comist.

the mitric (84) defines a szlemamnwn mamfold M” whih admits isometric cfmbeddmg
into spaces S*1(K) of any constant curvature K; (%) Sor any constants e, ¢y, -, C,
and any analytic functcon o(2z) but _
[o(2) +6l/ \/—— % const.
the metric (8b) defines @ Riemannian mamfold M® fwhfwh adfmcts isometric tmbedding
into spaces 8™ (K) of any constant curvature K.
- Proof The first part of the theorem follows from Theorers 1—8 directly;
In order to prove the cohvel;se part of the theorem, we estimate the values of @
for both the cases (84) and (85).
For (84), we have o I :
p=ot S et 5 aSon(@ @),
mi=citaed' +F (@) a, py=f"Qaa; (i+]),
M = = aet+f" (y)ak, Mu=~a.
Q= (S enar) [f’(y)]2+2(“y+ Eemcmam)f (f’/)
— 2af () + (2 emn~ 2ac+K,). '
A necessary and suffi¢ient condition that Q+0 (for any Ko) is
- Senan) LS’ (y)] 2+ 2(ay+ 3 emcmwm)f "(9) —2af (y) #const.
| - (S emat)f () +ay-+ = encnan] f* #0 ,
When f’ ! —0 M " is of constant curvature. Hemnce the requlred condltlon reduces to -
= emwm)f’(y)+wy+26mcmwm%0 .

Hence

or .

or
(2 emam)f (y) + 5 ay + (2 c,,,c,,.w,,,)y %const

For (85) we have W= c+20,,.a;”’+¢p(z), |
: pu=ci-+9'(2) 200, py=4eep'd’e”(2) (i+4),
Mx/ e = 2~/¢”(Z)e¢w, pu=20,9' () +49" (2)(4")?, Apu= —2¢'(2).
Hence Q -4z[g' (2)]2— 4[c+¢(z)]q) (2) + = mnt+ Ko
A necessary and sufﬁclent condﬂnon that Q+0 (for any K,)is
| [2e9'(2) = e—p()Tg" () #0.
When ¢"(2) =0, M" is of constant curvature Hence the requ1red condition reduces to:

°

qu) (z) c—p(z)#0 or Y/)ic aéconst
Thus Theorem 4is prOVed
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