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ON THE METRICS OF THE RJEMANNIAN 
MANIFOLDS WHICH ADMIT ISOMETRIC 

IMBEDDING INTO SPACE OF ANY 
CONSTANT CURVATURE* * *

B a i  Z h e n g  g t jo (&  sL  ® ) **

Abstract

In  this paper the term “Riemannian manifold” means that the fundamental quadratic 
differential form  may be indefinite. .

Theorem. I f  for any constant Ж the Riemannian manifold Mn (w>4) admits 
isometric imbedding into certain spaces S n+P(K ) of constant curvature K ,  and i f  the 
metric of Mn is analytic, then the metric is expressible either in the form

&2= jc+ 2 cm£m+-i«s+/(?/)j- aSe«(tto*)2>

or
ds2 =  {c+ 2  cmccm-h<p(z) }_i.S et (<$r*)2 (et= ± l) ,

where у='^1а ^ т, г = 2 е т (а;m)2, c, a, am, cm: eonsts., and f{y) and ip(z) are analytic 
functions of the arguments у and is respectively. The converse is true for any constant K , 
when w>5 and :

С£ета1)/(у)+ ^ау2 + (2етвтат)уфсог1$Ь'

or
{<р(я) + с} /V T  ф const.

1. I t  is well known that any Biemannian manifold Mn of n dimensions does 
not admit in  general isometric imbedding into an («+ 1 )-dimensional space $ n+1 of 
constant curvature. Although Ж” admits isometric imbedding into a space 8 n+1 of 
constant curvature K 0) yet it does not admit in general isometric imbedding into a 
space $"+1 of constant curvature К ^ Ф К о ) .  We denote, for simplicity, by 8 n+1 (K 0) 
an  (« + 1 )-dimensional space $n+1 of constant curvature K 0. In  a recent paperC13 we 
have proved for any Biemannian manifold with indefinite fundamental quadratic 
form that if M n (и > 4 ) admits isometrie imbedding both into 8 n+1 (K 0) and Sn+1 
(K i) , M n admits in  general isometric imbedding into space 8n+1 of any constant 
curvature. We have also shown that the space 8 n (К ) of constant curvature К
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admits isometric imbedding into space 8n+1 (K x) of any constant curvature K x. 
consequently, if M n admits isometric imbedding into any space 8 n+1(K )  of constant 
curvature K ,  it admits also isometric imbedding into space 8 n+p(K ) (p > 0 ), of any 
constant curvature K .  This class of Riemannian manifolds M n is a generalization of 
the class of Riemannian manifolds of constant curvature. In  this paper, we 
determine completely the Riem annian metrics of this class of manifolds Mn.

The Gauss equations of a hypersurface M” of the spaoe 8п+1(К 0) are
Rim= e (b№bji— + K 0 (дшдл—gag no), (1)

where e=  ± 1 , is the Riemannian metric of M n and R w  the Riemannian 
curvature. The metric of M n is ds2=egijdxidxi, where e—1 when the fundamental 
quadratic form giS dxi dxs is positive definite. In  this paper we assume that g^dx^xf
may be positive definite or not.
, We put .

Tmi (-KTo) =  R mi—Ко (g^gu—gag sic), (2)
(ITo) ^ g ilT уы(Ко), T ( K o) =  gilcT jlc = R + n (n —l ) K 0, (3)

1 R
d/‘~ ^ = 2  B ‘‘ ~  2 ( '» - l ) ( » - 2 )  (4)

Л=д%}, (6)
jD=gijDu. (6)

About this class of manifolds M n which we shall consider throughout this paper 
we have already established the following theorem1-1-1:

T heorem  A. I f  a Riemannian manifold Mn (n>4) admits isometric imbedding 
both into 8 n+1 (K o) and 8n+1 (K x), M n is conformally flat. Conversely, i f  any 
conformally flat Mn (»>4) admits isometric imbedding into 8 n+1 (AT0), and i f  for 
another constant K , the rank r o f the matrix (T im (К ))  is > 4 , T (K )  Ф0, M n admits 
also isometric imbedding into an 8n+1 (К ) and this class of Mn is characterized by the 
following conditions'.

Rm i= gadju+ gnfla—gafiji—giflih, (7)
(n 2) (p 4) Rjum ~  (n 2) 2 (djflim djmdti) -Ь (p A) (gagim gimgib • (8)

2. We establish the following theorems, which are useful in  the determination 
of the metrics of the Riemannian manifolds M n which admit isometric imbedding 
into space of any constant curvature.

T heorem  1. I f  M n ( « > 4 )  is a Riemannian manifold whose Riemanmm  
curvature Вцы satisfies the conditions (7) and (8) , then the metric o f Mn is expressible 
in  the form

ds2=&s<12  e^dx*)2 (et= ±  1), (9)
i=1

and there exist n+1 functions X, Xx, •••, X„ such that the function or is a solution of the
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following system o f partial differential equations
d2a да da — hjkj+eidiff (i , j —1, fi>). (10)

da? doc? da? da?
Conversely, i f  a  is any solution of (10) in which Ki, •••, ^n, A. are m+1 arbitrary 
fmctions, then the Riemannian manifold M n with the corresponding metric (9) satisfies 
the conditions (7) and (8).

From Theorem 1, it follows that the metric of any Riemannian manifold Mn 
which admits isometric imbedding into space of any constant curvature is expressible 
in  the form of (9) with a  in  the sense of the theorem.

We proceed to prove this theorem as follows.
Contracting (7) by gil we obtain (4). Contracting (8) by g}m we have

( » - 2) ( p - A)RU= (чъ-Ъ У ф и-М и) -  (n -1 )  ( p - J ) a0«. (И )
Contracting this equation again by gli we have

(n -2 )  ( p - A ) B - ( n - 2 f f ( D - A 2) -  (р-А)*чь(п-1). (12)
When (4) is contracted by g we have

R ~ 2 (n -1 )A .  (13)
W hen R  is eliminated from (12) and (11), we get a quadratic equation in  p

p2- — Ар + - Л 7-Г2Р — =0,  n n ~ 1 L № J (14)

that is, the function p in  (8) must be a root of this equation.
From the condition (7) it follows that M n (№> 3) is conformally flat and its 

metric is reducible to (9). Conversely, if the metric of Mn is reducible to (9), the 
condition (7) is satisfied. In  this case

д11~еф-*°Ъц, (15)
where 8W denote the Kronecker deltas.

The components of the Riemannian curvature tensor R ms of Mn are obtained 
from (15) by a direct computation as follows:

Rhijk—0 (fi, i, j, Теф),
Выл= вф2и ( с »  -  «TftO-fc), (h, i , Ь ф ),

R Jiuh==eaa\ei(o-u-crl)+  eh(au-  <7?) +<% 2  ena2A  
L m = l  J

where

(ii*h ),

(16)
(17)

(18)

da d2a
' * * -  da? 3 Gm~  da?da? '

From (1*5)—(18) we have
Rij= ( n - 2 ) ( a lj- a laj) ( i+ j) ,

Ru= { n -2 )  (an—o f)+et 2  emamm+ (w -  2) 2  ema  
R = ( n - 1) e~2a [2 2  emamm + (№ -2 )2  <W7„] 

From (4) and (19) we have

(19)
(20) 
(21)
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djk= a}u~criC>k (зФЬ). 
From (4), (20) and (21) we have

djj= <Xjj -  o-f+ ~  e} 2  em<x\,2m*

(22)

(23)

From  (13) and (21) we have

A -  e~2a [2  emcrmm+ - j  ( n - 2) 2  . (24)

From (8), (16) and (15) we have
djidim—djmdu=0 (j, l, г, т ф ). (25)

From (8), (15) and (17) we have
( n - 2 ) (p -A )e ie2o'(<xjm-<rjam) =  ( n - 2 ) 2(djidim~ d 3mdii) (i, j, т Ф ). (26) 

From (8) and (18) we have
( n - 2) (p—A)e2<7{ei(am- o f ) + e h(cru--o-i)+eieh'2lemcrll}

=  (й- 2 ) 3№ - 4 4 ) - ^ ( г 4 )2 («** ).' (27)
Henoe the conditions (7) and (8) are equivalent to (9) and (25)—(27).
From (25) we find that dSi/d Jm is independent of j  and the n functions hlt •••, К  

can be chosen such that
d j ^ —'kjK (ЗФЪ)-  (28)

From (28), (22) and (26) beoome
crjlt-<x}crle'= -'k j'kk (j¥=&), (29)

and
' -  ( n - 2 ) ( p - А) ( е Л ^ т = (n-  2)2( ^ + ci(i)X3l m (30)

respectively.
From (4) and (13) we have

B y — (n~%)dy+Agij. (31)
Then (11) reduces to

(n-2)*D i : ( n - 2 y Pdi3- ( p - A )  £ (п -1 )р -А ]д ц- 0 .
Henoe

Dij~pdy— p'kÔ j (i Ф] ) . (32)
We have by definition for ЦфЬ, >

9lpdi3dpk=glldi3dik=gsld3jdjk+gudjkdKfi+  23 9lldudikc
l*j,k

Substituting (15), (23) and (28) in  the above equation we have 
ePaD ]k =  ( 2  вт<?т~~ 2  +  ei°'И ~  в)У  +

+  efccrfcj!—ей(г1)( —X^fc), (j Ф h) . (33)
Comparing (32) with (33) we obtain

pe2a =  2  втРт ~  2  е? Д т +  jj — в3СГ2 +  вкКк+  вк(Хйй — вйСГй.

Since the left-hand member is independent of j  and h, it follows consequently that
бй^1+бйс йй— -\-ei(Tu~ fyof, (34)

and the equation becomes
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. . . . .  . о ■ ■
. ““ 2  втРт 20i»̂ 'ind ( 2  б»ДтгЬ2 2  ®mPm) t№ •

or
pe?°=— l(n -2 )% e mG%+2'2em<rmm- ( n - 2 ) '£ e m‘k2m], (35)

71 . ..
We have by definition

Dii‘=glldijdl)=gis(duy + '2 i g4 iidl) r
: ' . .. 1Ф1- ■ - ■ .  ̂ ■ ..

=  e~2<r е̂ <тн ~(г21 + ~ е ^  em<rlj ,

ейаВ и= (2  -  е3Ц+е^<ги +  emo i )

=  ( 2 e OT̂ ) ^ - e ŷ + 6 ^ e ior//- 6 jcrJ+-i-2 e«lcr  ̂) .

By means of (34) we have

&}Cf jj 0j(Xj = -(2  2  2  &mPrn)П
Hence

е2оД * =  ( 2  е»Лт) X2 -  0}Kj+ез\~{^ 2.вяЛ«+ 2  emcrmm+ - ^ ~ -  2  eCTcr^ -  e^2 J 

^ “Г [Xй -  2) 2  em/\,2 -  2 2  -  (re -  2) 2  emorl] X)
7b , ‘ . . .

! 1 /  №_2 \ 2
' ~h ̂  "^~(2 ̂ rô 'm’h 2  GmG'mm'i t~cji— 2 J  • .

From the equation (6) for the definition of D, we obtain

е4°-1)=— [(n -2 )2 6 m̂ - 2 2 e mcrmm-  (ra-2)2emcr2] »(2еД т) ',. .
71 : _ ■ . . „ : . . . ' " . :

1 / 71_2 \ 2 .
_b"̂ ‘̂ 2 ®т̂<»г“Ь2 2 2  ®mPmj

=  - ^ ^ ( 2 e m̂ )a+ —(2бт<Гшп+ -^ ^ -2 б вдСГ2).^(ft (ft \  ^ /
If  we put n
• . . ’ ' П П n " ‘

No. 4 Bai, Z . G. ON METRICS OF RIEMANNIAN MANIFOLDS

А ш  2 е Л ,  B =  2 > mo i,  (7= 2 v e , (36)
• m — 1 m = l  . m = i  ■ .,

we can write the above equation and (24), (35) respectively as follows:

Deia= J.2 +  —(<7 +  - ^ - - В ) 2, (37)

. Ле2* = < 7 + ^ р Д  (38)

, pe^ =  i  [ (n _  2) B+2C7 -  ( n -  2 )^ ]. (39)

We observe that (14) is an algebraic consequence of (3.7)—(39). r
• From (34) we have > ' ’ Д  ■■■•,'■■

4-ei<x«—6{0"i= —(A + C  B). (40)' ' . " - ■■ ■ • ' . n . . .  . . • ■ '.v , .



In  consequence of (23), (38)—(40) the equation (30) is satisfied identically. Thus 
we have proved that the equations (25) and (26) are an algebraic consequence of the 
equations (29) and (40). Moreover, we can show that (27) is also an algebraic 
consequence of (29) and (40).

From (38) and (39) we have

(p- b ). (41)

.From (23), (40) and (39) we have '

Sidu—в ^ a—Qi<s\ +  - i  В = — (A  -j- (?—B) — В. А П .. A

----- (4 2 )

By a direct calculation it is easy to show that both the left and right-hand members 
of (27) are equal to

-  2e4er (p -  A)2- (ft—2) (p—A)e2a(еД?+ ehl t ) , 
in  consequence of (28), (40) and (42).

If we put

l= ± - ( A + 0 - B ) ,  , (43)

it  is clearly that the system of equations (29) and (40) are equivalent to (10).
We have shown tha t the conditions (7) and (8) are equivalent to the system of 

equations (9), (25)—(27) which are equivalent to the system of equations (9), (29) 
and (40). Hence the conditions (7) and (8) are equivalent to (9) and the system of 
partial differential equations (10). Thus the first part of Theorem 1 is proved.

Conversely, if a  is any solution of the system of partial differential equation
(10) corresponding to th e .n + l  arbitrary functions X, Д*, •••, by means of th© 
functions a  and Kn, we define А, В, О by (36). From (10) we have % —

—(A + G —B ). Define A and p by (38) and (39). Define di1c ( j фJo) and d# by (28) n
and (23). From (9) we have дц=е2ае£ц. From the preceding considerations we have 
shown that A, p, di} and the Riemannian curvature B m  formed with respect to дц 
satisfy (7) and (8) identically.

Thus Theorem 1 is proved.
If we effect the transformation e~a= p , (9) and (10) become 

. ds2= - \ - S e {(da5i)a, (e{= ± l ) ,  (9')/# <=i
and

- К  М<~ «АА) ( i J - l ,  (10')

3. In  order to determine the solutions of the system of partial differential

414 CHIN. ANN. о*1 MATH. Vol. 6 Sor„ В
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equations (10') or (10), we put
П .

S  (aOT==consts., m== 1, •••, n),
n

«i=i
(44)

and prove the following
T heorem  2. Any analytic solution уь of the system of partial differential 

equations (10') is redmible either to the form  ,
' /4=c+Scm»ffl+ e 2 + /(i/) , . (45)

or to the form
/*=с + Х е ^ + ^ г ) ,  (4b)

where c, Cj_, •••, cB and a are arbitrary constants, f  and (p are arbitrary analytic 
functions o f the arguments у and й respectively.

I t is easy to show that both (45) and (46) are solutions of (10'). Since we have 
for (45)

phi= - |^ r = Cj+ 2ае^ + / '  (y)ab

82u, . .

/*й =  - ^ Г = 2ве4+/"(2/)а42,

v a4 and ------ ; Since we have for

(46)
/Л(=С{+9>'(й)2ег(с4, 4е^аАс*
Jq<i= ?>''(g)4(^)2+ 2g)'(g)ei, ,

we see that po satisfies (10') for 2eia)1' and ?u= —— <p"(z).

Now we prove that any analytic solution of (10') is expressible either to (45) or 
to (46).

We prove first a series of lemmas.
L em m a 1. A  necessary and sufficient condition that A{j c=alaj is that

АцА1к-А ц А ш=0 (i, j ,  l, i - 1 ,  —, n; i, j , l, Ъф). (47)
Since from (47) it follows that A iS/A ilc is independent of i  and At} is symmetric 

with respect to the subscripts, we can choose n functions a1} •••, an such that Aij=alaj 
( M - l ,  —, n ) .  1

L em m a 2. J f  А ц—а&}, B(}=bibj and Ац-\-Вц=С{С} (i, j —i ,  •••, щ j  Фу), we 
have; 54= аа4.

Since
(aittj-hbibf)(a4afc+  b f i f ) -  ( a ^ +  bib}) (а4ай+ Ьфк) =0 (i, j, t, кФ ),
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we have

we have
(a*6/ --ajbj»)(alb|—«&) — 0.

Lem m a 3. I f  P%(i, j = l ,  •••,.№; %>=> 1 /2 , •••; a=£j) are homogeneous polynomials
oo

in the cs’s o f the Ts-th order, P%=P%, and i f  S  P% is a convergent power series in the
■ ■ • fc=r

oo’s and

n - / . (»)/<(»),
and й4(а?) =afi(a)).

oo
Proof. From  2  ■f>«==Sf<(a5)5,Kaj) arL<̂  Lemma l.we have

■ ' fc=r • • ■

1 ' 7 S n ) ( s h , ) - ( s i % ) ( 2 n ) - d  V
\ t » r  /  \tf=r /  \ t= r  /  \t-r /  ,

for any values of the x’s, and consequently
P r p r  __ p r  p r  __A .ij+Vc (

P r p r + l i  p r  p r + 1_ p r  p r + 1 __ p r  p r + 1_Л
_ ij* to “Г *  to* ij _ *  is* tic * . to* Sr ~~

By the assumption we have
P r + 1 p r + 1 __ p r+ 1  p r + 1 __Aij * № x  Ij * ik _ w< . .

Hence
(РЧ+ Р 1П  (Pffc+ P ^ )  -  (P&+P&+1) (P ^+ P lf1) =  o.

By Lemma 1 there exist functions Лг(ж) and hs(x) such that 
, Р у + Р |,/*г1=Л{(ж)Л/(ж).

Since P if1 ==Tci(se;)]Cj(cc) and PyP[fc—PyP]fc =  0, we have Py ==/<(»)//£). By Lemma 2 
there is a function a such that Jofx) =afi(co).

Lem m a 4. I f  ft is any solution Of (10'), Йега <a=jU.+c+2cm^m+ffi2e»!(ajm)a/o r 
any arbitrary constants c, ci, •••_. and a are also solutions of (10').

Proof Putting
v=c4-2cm«m+ a E e m(a5w)a, : .

we have 

where
v{=2ae{a}i) vn=2aeh viS=Q, (0*3),

_ 8v _ ■ . *
Vii~ W d t f  ’ et0*

The notations such as will be used frequently throughout this

paper, if no ambiguity would arise.
From (10') /Jbij=hiXj/i, (i¥=j). Hence ahi=Pn+vy—hfaiib. I f  we put

У со 1
we have й>̂ =А'Дус*>.
Also from (10') : ■ ■
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con—/ли+ vu =  (fa—6jX) [&+2aet= fap,—0i (XjA—2a) =» (Xf — е{к') со,

where V = —(Xju,-2a).<o
Lem m a S. In  order that a power series o f the form

/A~c+S<W»w+ J r  2  s  в|*а?Уа5й+  •••*» 41 i,f О l «,M , . , jif . '. ,
be a, solution of (10'), the constants c v ,  c„ and о may be chosen arbftTafy, but the terms 
o f the second order 2йу®У must have the form  . T

2 a « ® y = e 2 ^ ( ic m)2+(2«m®m)2- / (48)
Proof Let the coefficients of the power series ay, a(№, •••, are symmetric with 

respect to their subscripts. Wo have : . .
1, - ,... . Pi-Ci+Jjjj а у а ^ + ^  З.аулжУ-Ь*"', 5 ^  ;-  : ;

» • ' ' 
o>ir\~lPi аул®®+’**. ......  -

If  fi is a solution of (10'), we have fjbi]=fafafjb for i=£j. By Lemma 1 it is necessary 
and sufficient that

ftoiftiii—fJbiifitk"■ 0 (i, j , l, &¥■)•
Hence ..

ayâ fc— = 0.‘ .
By Lemma 1 there are n constants a*, • • • , a„ such that

а^^ща} ( i # j ) .
From it is seen that fa s //л must take the form. ,

fas''ft =  (at + 2  ®ifc®s+  • * • ) ,
. 4.v ' ; • .. • _ • • ft ■ . ' vv: ■ -,•• • ■ . .■; .

On the other hand, from (10')
/ли = % + 2 я « ^ + , , ,= ^ - е Д / А = « « + 2 в ^ + <'*''

■ ' P - ■ , ■ • :" ■; ' Si

that is . .
(aH -  af) + S  («и»~ Pip/ +  * ** “  ~  e<bf*>

consequently a«(a«-«?)== a and ( •) ' ;

■ • ■ ' " -■ i • ■ •.............., . ■ - ■
(Jh = C+'SiCm<Bm 2  «y®V+,,e -

= c +  S c m®m Е а Пш(®от)2+ 4 2 « ^ ® <̂ +£ _ - лад . \ .

- c + 2 c M®m +  - 2 ^ ( ® m)3] +  •••

- c + 2 c mo>m + - |  2 ( в * - ^ ( ^ ) Ч | ( ^ ) * + " -  

-  c+ 2  cw«w +  -i- ae 2  m(®m) 2 +  у  ( h v m)a + • • •«
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Lemma 6. I f  •••, »")=/*(аз) is a solution of (10'), then ^(o f+ o1, • ••, озп+  
At'(®+°) /«w* arbitrary constants c1, o’* as a?so a solution o f (10').
Lemma 6 follows from the fact that the metrio (9') is invariant under the 

transformations
j сс*=сон—с* ( i= 1, •••, n),

for arb itrary  values of the o’s.
We proceed now to prove Theorem 2.
Let the power series

i \a_i_x /'v n ~т\аfjb(a>) = c +  2  cmxm +  - L  a 2  em(xm)a+ -^-  (2  amxm)s 

+-^~  2 атхУ хк + ~  2 •  • • (49)

be a solution of (10'). Let the coefficients aijlt) a^i, • which are to be determined, 
be symmetric with respect to their subscripts. In  what follows we use the ordinary 
summation convention, if no ambiguity would arise.

From (49) we have

ц (аз+c) =  o' + c’ma>m+ ~  а!тх1х?оаь +  -jj- a'm xia>}xll(cl+ •••, (50)

where
a'ij— ацрС* +  <*ĵ acf’c9+  • •

From (50) we have

бул= ацр+ ацп с9-\--£ ai}paro9cr+  • ••,

a'ljpq = %рд+ «JipgrCr+  • * •.

(0 ■+ c) — *4+ ауразр+ а'ш  вРФ 4- • • •.

(51)

(52)

(53)

(54)

(55)
By Lemma 1 and р у= Я ^/л (»^  j ) ,  we have

(i, j , 1,ТсФ)>
By Lemma 6, (55) is satisfied for any set of constants (o). Hence

a'ija'uc—а'ца'ы—0, (56)
and then а\}=а[а). I t  is possible to choose (c) such that Яу=0 (i, j = l ,  «••, re; i*£j). 
In  fact, then n constants cj, •••, c„ are subjected to only re-1 conditions and therefore 
at least one of the c's is arbitrary. In  this case (61) becomes

- a ij=aijpcp+ “') (гФэ).
By the analogeous equations (56) for alh we have

(aijpaikp -  aiipailcp) (cp)a=0.

It follows from Lemma 1 that
allpcp=bib).

If а&}ф0, appling Lemma 3 to (51) we have , -
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6{6/=а(е)д;,Я/.
Henoe

%pcp-»(2  rsf?)a{ah 
or

&ijp =  <Zi&jf p*
Since йцр is symmetric w ith respect to i, j  and p, we hay©

Гр = т р
for i } j, рф . Therefore

<%*,«= ««,«/№„ (e,jf, p = l ,  •••, щ 1ф$), (57)
and аш (®==1, •••, га) is to be determined.

If  0 (&, j = l ,  • ••, n; ъф^), bu t there is a t least a set of indices i ,  j ,  p  such 
that ацрФО, we can prove by the analogeous process that aljl,=abib1b9) that is, the 
relations (67) hold for any case.

If  (57) is substituted in  (61) we obtain

( l + « 2 <*»effl) M l+ -| '  ЯурдСРсР +  -щ- OnipifffP&ff +  ••• (J/ФЗ)» (68)

If  we choose (c) such that l+ a '£ a mcm=Q, (58) becomes

Since гг—1 of the c’s are arbitrary, we have from (56)
«УцдС’С9 =  p (c) bibj =  ( 2  i8feCp0e) 6,6/.

Substitute these relations in  (51) we have

OJy=0,1(1}+ a (2  amcm)alaj+ у  (2  /S^cV) 6,6/+ •••»

From (56) and by making use of Lemma 3 or by direct computation we see that 
6,6/ must be proportional to »,«/ or й,/м ='ур5а,й/.

When i, j, p, дФ, we have
. • ; . 1 ■ '

aUn ~  Ума1а] ~  Уч%̂ й>
that is, y n —papaq.

From Ощр= yppOiO}—у ^ а р = /oa,a/«p, we have y ^ —paj, Henoe а,/м ==рй,№/(гРвв 
(ъФЗ), and a,,,, is to be determined.

In  like m anner we obtain

am r==y aiaiaPaQart (ъФЗ)'
Henoe if there are e, and % (i¥=j) such that the solution p> in  power

series (49) of (10') must take the form

j* « o + 2 <w>s“ + f



I t  follows that

lh}=mia,s+fi(J£ ama5m)a ^ + -^ - (2  af̂ cm)2a1%Jr ” %

From (10') (гф$). We have
. . . . i  .

Я^ч//* -  [« + £  2  ««,»” + ( 2  атаГ)а+ •••] al0 (59)

Also from (10') . .
Pu= aei+ аа%+/3ашя*± jS( 2  dmwm)<*«2 -  /Sa43 ®4+  -  h*p -  еД/л„

Hence . .
ДОц —Л2/л = йб{+Д(йш—0{)а;<+ ," =  —в\кр,

that is, еф(аш—аТ)а£ is independent of £ and consequently аш=а*.
Similarly we have %«=»<, •••.
Hence we have: ...................\ . .. . • .
If among the a 's in  the term (2«m*m)2 of the second order of p  there exist at 

least two of the a's, say at and ah which are different from zero,; that is, щщФ0 
or otherwise, if aiS= 0(i, j = 1, •••, щ ъф$) bu t there is at least one of the am 

(ъф§) which is not zero, then any solution p  in  power series of (10') is expressible 
as follows: '

p~c~>r 2  cmxn +  -|-a 2  (жт)2 +  -i- a(2  amxm)2 ......

; +•—- /3(2 GW»"*)3 + - j f  у ( '2 а тптУ+  (60)

where a, /?, y , ••• are1 arbitrary constants, b u t in  the later case we have «=0.
- From (54) we have . ... •

Pij= +%!>**’ +  -^y 4—~  ai]mr%vccq%r+ ‘°‘Q (61)

We have shown above that if % = 0  (i, j —1, •••, w; e ^ j )  but there is ацР(ъФ§) which 
is not zero, any solution p  in  power series of (Ю') is expressible in  the form (60) 
with a= 0 . If  Щ)=0, aijp= 0 (i¥=j, i, j ,  p —1, •••, n), it is evidently that the function 
p  in (60) with a = /8= 0  is also a solution of (10'). However, in  the later case we 
show that there exist other solutions of (10') which can not be reduced to the form 
(60). . . : '

In  fact, when ay=0, = 0  we have from (61) and (55)
2  a>№̂ ®1= 2  % Л ; (щщф 0)

for any values of the a?'s. If  there is am Ф0 h, 1ф), we cah show by an 
analogeous process that ат =ра^а^сн and am is to be determined. But by (10') p a — 
T^p—efrp, and it follows.that в4{«=рй«. Hence in  this case any analytic solution p  
which is expressible in  a power series (49) is reducible to the form (60).

If a ll of the % ^ (but %y are zero, we have .
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• : ... :

From (66) we have
; ЩщО>ит ~  Щиаиш ̂  03 (i, j , h ## )•

There are a№(b ==1> •••,.») such that

, ( ^ i ) »
From (49) we have . ,

^ = c + 2 c ma;m+ - i - a 2 e m(a)m)a+-i- aa(# )a

4 ^ 2 a m « m ( ^ ) 4 ^ 2 « w ( a!,,) a(®e)8+'-* 

« С + 2  omxm +  A  e 2  em(a?m)a+ - i  йа( ^ ) а

4* -g- 2  Ййипт(®т)8-Ь "J2" 2  ®mmmm(®m)4

+ ^ { ( 2 a ^ P - 2 C ( < « * ) 4} + » v

/ii=Cj+aefa!i +  а^о ^Ч —  «шС^)3 .

+-^- [»««-««] (я4)3 + y  C2amm(xmy ia ua>t+ ‘°°t
* v * ■■ о

^ = ^ а“а^аг<̂ + " '  ( ^ i ) «

Hence

^(V7^ -  ̂ /~ йи^Ч- <3 ~и~ ‘ ■
ДО« = йб{ +  ttfc8{fc+ ««{£»*+ (й«« — й«) (ж4)2

+ -g-[2  йти1 (of1)2] й« +  й«(**)2Ч- *•" =X f̂Jb—liXfJi.

We have
ej(aei+aa8en;) =  6, в{йш=0,

... e^u=d,ei (aim -<&)=* 0, v
that is, b—ttyCtiic—O, аы=еЛ, ацц=<Р. Hence

^ ^ c + 2 c ma5“ + Y a 2 ^ ( a 5 w)a+ ^  й2[2 в и(а;то)а] а+--..

If  d Ф0, we can prove in  like m anner that the terms of the fifth order of до are- 
zero, and the terms of the sixth order take the form b2[2em(«;m)2] 3, •••. Since in  this 
case ' ; ' ' . • «. .....x

: доу= у  d%ej{cW+>- ■

by Lemma 8 the second term in  the right-hand members must be proportional to» 
е(е3-а)^, and the proportional factor is a constant multiple of 2  em(a?m)a. /
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In  fact, by Lemma 3 the term of the th ird  order in  the right-hand member of 
fiy must have the form ( 2  a,^')eiejxiod, that is, all of the а^т  but %</, are zero. Butp ■
if  рФг, among aW2/s only %  may be not zero, and it is impossible, unless

Similarly we can prove that a«y=0. Hence %№=0 (гф$). But in  this case 
we can prove by (10'), <hia= 0  (£=1, ft) and hence aiSpir= 0. The term of the third
order in  the right-hand is zero. The term of the fourth order must take the form 
{ 2 a J,aa5%fl)e4eJajV, that is, .all of the a^ma bu t aw „g are zero. But, among the
GnnijaS only the a's of the form аШй1} may be not zero, that is, p = i, q= j or p= q. In  
other words, all of the anims but 0WWw, are zero. Since й«у3,2)= е ^ а и, and the left-hand 
member is symmetric with respect to i, j , p, we have app= kep or a«Wpj,= and the 
term considered takes the form

A [ 2 1т(оотУ \ в ф ^ ,
that is, the terms of the sixth order of p, take the form

&a2 w „ ( ^ ) a( ^ ) a( ^ ) 9=6a C2em( ^ ) 2] 3.
Continuing this process and by Lemmr 4, we see that in  addition to (60) there 

exist other analytic solutions p, in  power series of (10') which are reducible to the 
form

6 [2 e « (^ )a] a+ -^ -^ [2 e w(»M)a] 8+ ” -. (62)

In  summary, we have shown that any analytic solution p, of (10') is expressible 
in  power series either to (60) of to (62). In  other words, any analytic solution p, of 
(10') is expressible either to (45) or to (46). . .

Thus Theorem 2 is proved.
By certain transformations

as'*—aj'+ c* (£=1, ft),
we can show that both the types of solutions (45) and (46) are in  fact contained in  a 
more general type as follows: ,

ju --c + 2  a2<?m(0w) a+ /( j /) , (63)

where
2 /= & + 2am®m+ « 2 e m(*m)a, (64)

<o, Ь, с, в*, •••, an, Ci, ••■>, on, are arb itrary  constants and f ( y )  is any analytic 
function of y.

Since when 0=0  (63) is equivalent to (45), when аФ0 we can reduce am=0 
•••, ft) by a transformation x,i—a>l+o,(b=2) •••, ft) for certain c's. It follows 

th a t the analytic metric of any Riemannian manifold which admits isometrio 
Imbedding into space of any constant curvature is expressible in  the form (9'), 
where p, is a function of the form (63).

"We now consider the converse problem, that is, to find out what conditions
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should he subjected to the solutions of (10') or to the function f ( y ) of (63) so that 
the corresponding metric (9') defines a Riemannian manifold Mn whioh admits 
isometric imbedding into space of any constant curvature.

When M n is a hypersurface of the space S n+i(Ko), the Gauss equation is given 
by the equation (1)

Him—eibiicbji—bubji^ + K  о (gikffn ~ ffudsic), (1)
and bn is expressed by the equation (22) in  the paper [1], namely

__________P jlhh____________ .bu­ r nv  e{2P щ-hjcTliK o)—P  mmP (P"o))
If Mn admits isometric imbedding into two spaces $n+1(IT) and S n+i(K o), we 

have by the equation (66) of the paper [1]

Pnm n _ 2 { ( n 2)A#+£(» 2 )K q + Q.1

iH<N

-{ (»-2)> ,u  +  ^ | - [ ( « - 2  ) K 0
+  n (66)

■ Vb (67)
where

From the equation (66) of the paper [1] we have 

2Ръ#мТ&(Ко)~Ръ1етТ(Ко)

Aft

n- (68)

If (66)—(68) are substituted in  (66) we have in  8 n+1(K 0)

_  ^ + ( ^ о + т Ы г ) (
h

ffil

where

( XT. _j 2(A-- p) \|4 0  *1 n—2 /

/  J£\ _ 2(A-~ 9) )1 JA-0 1 n - -2 /
Theorem  3. I f  /л is any solution o f the system of partial differential equations 

(10') corresponding to the functions A, Ai, A„(n>5), and i f
^ е т̂ т+2К^+КоФ О} (71)

the Riemannian manifold Mn with the metric (9') admits isometric imbedding into a 
space 8п+1( К 0).

For Ж4, i f  in addition to the condition (71) i t  also satisfies the following condition
2  OmPm-P 2%p? -  JL42 2  ^ 0  ̂  0, (72)

Mn admits isometric imbedding into 8 5(K<)).
Proof From  the equations (10) and (36)
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we have . . .
C z~~ втО"mm === В  A. "P Tl'Xi •

From (38) and (39) we have
Ae2<T ——.4-1-- -̂ В-\-пХ, pe2tr — ~4.-l-.B-l-2X<>

From (42) we have ,
. d« s=*̂ ‘ 6j(jB+2X) — hf.

From (28), (74), (76) and (69) we have -
Qe2<res8ji

where

Since f i—e~ayMjre have

, V-(
Q zsK o +  (JB+2?L)e~2<7.

(73)

(74)

(T5)

(76)

(77)

В  =  2  V m  — —̂ 2 Q =  2<W«-m+ 2fyb2+  jK'o*

From the condition (71), that is, Q^O, we can choose e==±l suoh that —eQ>0. 
Hence in  this case Ъц is real and finite. The existence of the set of functions Ъц means 
that if in  addition to the Gauss equation (1) we have for Mn also the Oodazzi 
equations, then Mn admits isometric imbedding into $n+1 (Ко). Moreover, i t  is well 
known that if the rank of (ТцЫ (К о)) is > 4 , the Oodazzi equations are an algebraic 
consequence of the Gauss equation (1) . But it  is also known that the rank of 
(Тцы(Ко)) is equal to the rank  of (Ъц). Hence if the rank of (Ъц) is >4 , M n admits 
isometric imbedding: into Sn+1( K 0) and the theorem is proved. .
' We now proceed to estimate the rank of (Ъц). From (76) we have ч

• -v* ■. — кзЛ» V

— AaXj - — ' k \ ~ \ r Q ,
Ъц-

IQI
(78)

A(i> 3, k, l)

, —AjA/ ■ — KiKjt — AjAj
A2+eje2<rQ — АД*; ~  АД/

— AftAy. —- A2+  e ^ Q ~  AfcAj
— AjAj — АД*, e ^ Q

(79)

\  — ..........  — ••• —Я2+е„е2%) /
We have in  (Ъц) the minor determ inant of the fourth order of the following form

— X2+ e$c2<TQ

— АД»
—-AftAj 

--AjAj

I t  is easy to show that . Д  , ' /  ’
A(i, j , k, e)= elejekei(eanQ)z(e2aQ - e i t f - e jt f - e kX l-e lt f)

.... (i, 3> &=1, •••■» n> Ь 3> h  I f ) -  . .
- ' W hen w=4, ; ■ • '
ч T: det (Ъц) =,4(1, 2, 3, 4) = w 3e4( ^ Q ) 3(ea" Q - g a f ) .

If the conditions (71) and (72) are satisfied, 4( 1, 2, 3, 4) =^0, the rank of 
det (Ъц) = 4, and the theorem is proved for this case.

(80)
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W hen ?г>5, we have in  (by) the minor determinant A(i, j , Jc, l, h) of the fifth 
orber which takes the analogeons form as A(i, j , h ,l) .  We have

A (i, j, k, h h) =  (e2aQ)4(e2aQ -  вЛ? -  efil] -  e ^ l  -  etXf -  ehKf) . (81)
If the rank of (bi}) is < 4 , all of the A(i, j , Jo, l) =0, A(i, j , h, l, h) =0, that is 

ea<rQ—e$| — егА| =0,
' е ^ 0 , - е ^ —е}Ц - е ьХ1—еДг2-в Д != 0

for £, j ,  й, ?, A = l, •••, и; i, j, #, l, Ьф. Hence Лг= 0  ( i= 1, •••, w), Q =  0. I t is a 
contradiction. Therefore the rank of (6y) is > 4 . Thus the theorem is proved.

I t  should he observed that the condition Т ( К о)Ф0  stated in  Theorem A is 
immaterial for the present case, since When Q Ф 0 the set of functions Ъц exist so 
that the condition T ( K 0) Ф0 is unnecessary (Of. Lemma 8, [1]).

Corollary 1. I f  fM is any solution o f the system of partial differential equations 
(10') with the functions %, %i, ••*, %n (» > 6 ), and if

2 e m/*m+2fybaWconst., (82)
the Riemannian manifolds Mn with the metric (9') admit isometric imbedding into a 
space Sn+1( K 0) o f any constant curvature К 0.

For M 4, i f  in addition to (82) it  satisfies also
2  emfx,l+ 2X[F -  p f  2  & A  ф const., (83)

M4 admits isometric imbedding into S 5 (Ко) of any constant K 0.
Corollary 2. I f  ii is any solution o f the system of partial differential equations 

(10'), any Riemannian manifold Mn (n">4) with the metric (9') admits isometric 
imbedding into a space 8 п4'1(К )  of constant curvature K , where the values of К  may be 
chosen in infinitly many ways.

5. From Theorems 1—3 we can determine completely the metrics of the 
Eiemannian manifolds Mn ( n > 4 )  which admit isometric imbedding into a space 
S"*1 (K )  of any constant curvature K .

Theorem 4. I f  the Riemannian manifold Mn (n> 4) admits isometric imbedding 
into spaces 8 n+1(K )  o f any constant curvature К , and i f  the metric o f Ma is analytic; 
then the metric is expressible either in the form

ds2=\LC+Hcmxm+ ~ a 'S lem(xm) 2+ f(y )^  2  efdx1)2, (84)

or in the form  . ' ; . '
d ^ ^ lc + 'E c mafn+ p ( z ) r ^ e i(dxiy ,  (85)

where .
z = 2 e m(a?m)2, (86)

c, a, Ci, •••, c„ are constants, f ( y )  and <p(z) are analytic functions of the arguments у
m d  z respectively.

Conversely, when /i>6, (£) fo r any constants c, a, oj, •••, c„ and any analytic 
function f ( y )  but •
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( 2  VmUrn)f (jf) “Ь C2 ®тРтР1гп)У COnSt.

the metric (84) defines a Riemannian manifold Mn whih admits isometric imbedding 
into spaces Sn+1(K )  o f any constant curvature К ; ( ii)  fo r any constants с, с%, •••, с» 
and any analytic function q>(z) but .

lq>{&)+ c ] / V ¥  Ф const.
the metric (85) defines a Riemannian manifold Mn which admits isometric imbedding 
into spaces 8n+1 (К ) of any constant curvature K .

- Proof The first part of the theorem follows from Theorems 1—3 directly.
In  order to prove the converse part of the theorem, we estimate the values of Q 

for both the cases (84) and (85). .
For (84), we have ,

A£,=sc+ 2  a ’SiCm(afn')s+ f(y ) , .

fAi’=ci+aeta>ir\-f,(y)a{} i h ^ f n{y)aKas (i¥>j),
Ki**/f& ■=*s/f"ai, iJbu—aei-\-f"(jy')a^, %p,— —a> .

Hence
Q= (2 e m«m) LfX y)Y + 2‘(ay+ '£emcman)f'(y )  ,

-  2af(y)  +  ( 2  emcfn -  2ac+K 0) .
A necessary and sufficient condition that Qf* 0 (for any Ко) is

(2e«fl&) I f  (y )y + 2 (a y + J l6mcmam)f'(y )--2 a f (у)ф const.
or ' ' ■ ' • ■

[ ( 2  e««&)/' (y )+ ay+'^lemcmam'] f  ' ф 0. , ,
W hen f n = 0, Mn is of constant curvature. Hence the required condition reduces feo

(%ema2m)f'(y)+ ay+ )2,emcmam=hQ
or ’ '' " '

Х2,вта 1 Ж у)  + Y e2/a+ ( 2 e mCm«m)2/^const.

For (85), we have /i=c+2c«i»"+?>(2),
. fii=c{+q>,(z)2eiosi, fjbi)=4eieja}W<p''(z) (i¥*j),

^is/p>—̂ \ / p n(ji)eim\iJbii^2eip\z)+4p'[{z)fa)iy ) Xp,= —2p,{z)>
Hence Q=4z O '(я)]2 -  4 [c+ р(я)] <p' (й) +  2  ITo. ■............
A necessary and sufficient condition that Q=£0 (for any K 0) is

- \2zp'(z)-*c—9>(г)19>"(й) ^ 0 .
W hen q>"(z) —0, Mn is of constant curvature. Hence the required condition reduces to,; 

2zp'{z) — c—<p(z) Ф0 or ф const. ?

Thus Theorem 4 is proved. .
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