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RESONANCE PROBLEM FOR A CLASS 
OF DUFFING’S EQUATIONS

Ding Tongben(T  ^ J £ 0 * * * Ding Weiyu.e ( T $  •&) * *

Abstract

Consider the DufSng's equation
x+g{%) = f ( t ) ,  (1)

where gE.C(R, R) and /  6 P =  { f  6 C(R, R ); /  is w-periodic for some cd> 0}. The function 
g is said to be resonant if  there exists /  e P  such that eq. (1) has no bounded solutions on 
[0, oo). Using a generalized version' of the Poincare-Birkhoff fixed point theorem, the 
authors establish conditions on g which guarantee the following result holds: for any /  € P  
with period o>, there exists Ъ> 0  such that eq. (1) has infinitely many ftw-periodic solutions 
for every integer к>Ъ. In such a case, g is clearly non-resonant.

In the work [1], the. author studied the existence of infinitely many harmonic 
solutions for Puffing’s equation , , , ,

x+g(a>) = /0 0 , (1)
where / ,  g^ O (R } R) and /  is co-periodic. In that study the main tool is a generalized 
Poincar6-Birkhofl theorem obtained recently (see [2,; 3 ] ) 'It is the aim of the present 
note to study a resonance problem as well as the existence of infinitely many Jcoo- 
periodic solutions for (1) by using the same tool.- ., . ;. . . . . .

Bet ( .
P  = { f£ C (R ,  R): /  is co-periodic for some co>0}.

D efinition 1. A function g £ 0 (R ,  R) is said to be resonant i f  there exists f £ P  
such that Equation (1) has no bounded solution on [0, +  oo).

By this definition any linear function (ж) =  a \  +b (a>0); is rosonant, because 
for f  (t) =  cos at +  b the equation x +  azx +  b =  cos at has no bounded solution. 
However, there is-a large class of nonlinear functipns which are not resonant. For 
instance, if  ̂satisfies the super-linear condition: lim arh/(ж) = +  oo as | x | —>оо, then 
Equation (1) has infinitely many harmonic solutions for any /  (jj Р ш. Thus g is not 
resonant. In this note we will restrict opr attention to a specific class of functions g 
which satisfies the following conditions:
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(a) Suppose g is locally Lipsohitzian, i.e. there are constants ho, hi>0, such that

!K 0)-£(2/)!< & o|®-2/|+& i, V®, 2/£R;
(h) There are constants A, M > 0, such that

• 0~1g(cc)>A for |аз|>Ж.
If g£G (R , R) satisfies-oonditions (a) and (b) we will simply write g£Q.

Remark. Condition (b) is just (H 2) in [1]. But we replace (U*) in  [1] by 
condition (a). The hypothesis (H i) requiring that g£G 1(R, R) and \g'(cc) | <  
JT(V®GR) is somewhat too strong. It is easy to check that all the results in [1] 
remain true with (H i) replaced by (a).

Now, consider the “homogeneous” equation associated with Equation (1):
. u+g(u)=* 0. (2)

We collect some basic facts concerning Equation (2) in the following Lemmatl]. 
Lemma. 1. Let g £ Q  be given. Consider the equivalent system of Equation (2)

". '® - - £ ( « ) ,  (3)
which is an autonomous Hamiltonian system with the Hamiltonian function

H ( u , v ) ~ f v 2+ G (u ),

where G(u) =  j* g(s)ds.For OCR ,the set Г 0(Н (u,v) =  G)isasta/r-shaped(with respect to 

the origin) periodic orbit for every G>O0. The minimal period of this orbit is given by

~ fn\ =  fft(0>
л  ; J-мл s jG -G (u )  ’

where h(c), hi(c)> 0  are uniquely determined by G(h(c)) = G (—hi(c))=G .
Lemma 2. Eor each gG.Q, rg(c) is bounded on [G0/ °o).

fft(o) __________
Proof We need only to show the boundedness of Ii=J du/ v  О — G(u) and

J2= f du/ s/O —G(u) for large O. Note first that (a) and (b) imply the existence
J -M(e) : '

of constants «i, «a, /Si, j82> 0  such that
aiu2—0 i < G ( u ) ^ a 2u 2+ ^ 2, VwG R. (4)

Let (0, h(c)) satisfy G (w )= y  and G (u )<G (u)  for u£  [0, w]. Then we have by

(4)

«1
Therefore, we have

£
du

s/G —G(u)

Using (4) again, we find а у a> 0 such that
u>-yas f c .

Assuming G is so large that u > M , we then have

(6)

(6)
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•ад du Г Wo) 1 g(u)du
в s / 0 —Q (u) = Ju g(u) ’ v a -(?(«)

Au

1_
Alt

fWe) g(u)du „ „ 44
■J. V 0 = 1 W  (Ьу(ъ))

ч/2"
A/y2 (Ьу(6)). < 7)

From (б) and (7), we see Jx is bounded. Since we can pro vethe boundedness of Z2 
in the same way, the proof is complete.

Definition 2. g £  Q is said to be asymptotically resonant iff lim xg(G) exists.

Now we can state our main theorem.
Theorem 1. Suppose g € Q is  not asymptotically resonant. Then, for any f £ P ,  

there exists &>0 such that Equation (X) has infinitely many Ьоа-periodic solutions for 
each and it has at least one со-periodic solution. .

A sa consequence of Theorem 1, we have: . ......,.
Corollary. I f  g(zQ is resonant, then it is asymptotically resonant. .......,
An open question is whether we can prove or disprove the converse of the above 

corollary. J
Before proving Theorem 1, let us give the statement of the following generalized

Ротсагё-Birkhoff theorem. .........
Theorem A. Let A be an annular region in R2 bounded by two disjoint simple 

closed our yes Г% and JT2. Let Д  denote the open set bounded by Г i  = 1, 2. Assume that 
O^DiCDiCDa. Suppose T: A->T(A.) c R 2\{0} is an area-preserving homeomorphism 
which has the polar coordinate expression

r‘ = /( r ,  9), 9в- 9 + д ( г ,  9), - (8>
where (г*, 9*) denotes the image of (r, 9) under T , and f  and g are continuous andZ 
2zt-periodic in 9. Assume

( i ) Г -x is star-shaped about the origin;
( ii ) the “twist” condition:

g > 0  on jTi and g< 0 on ZV (9 |
is satisfied; , i

(iii) there exists an area-preserving homeomorphism T%\ D2.-»R2, such that T% | A

*=T and 0£ T i (Di).
Then T has at least two fixed points in A. .
Remark. For any integer m, the following ;

. r* = f(r .,9 ) , 9*=9+g(r, 9)+2m n  (8)'
is also a polar coordinat e expression for the mapping T. For this expression,  ̂ the 
corresponding twist condition should be ::

g > —2m%  o n  Г%; g <  — 2m%  o n  ZV (9)?-
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If we replace (9) in this theorem by
m in#—max g>2ov, (10)
Гх Г, .

we see that there is an integer m for which condition (9)' holds. Therefore, Theorem 
A remains true with (9) replaced by (10). We note also that reversing all the 
inequalities in (9), (9)7 and (10) is permitted.

Proof of Theorem 1 Consider'the equivalent system for Equation (1):

0=2/, # = - # ( 0 ) + / ( O -  , (11)
Let (x(t, ссо, Уо), y(f, %, 2/o)) be the unique solution of (11) which satisfies x (0 )= x0> 
g/(0) =2/o- For each 2>0, define a mapping Tt: Ra->Ra by

Ttfa, y) =  (x(t, x, y), y(t, x ,y )) .
Since (11) is a Hamiltonian system, Tt is an area-preserving homeomorphism. It is 
also clear that if &>0 is an integer, then fixed points of Т̂ ш correspond to йсе-periodio 
solutions of (11). Suppose A is an annular region in R2 such that 0£ T t(A) for 
2£ [О, &»]. Then there exist two functions r ( t , г, 0) and 0(2, r, 0) which are
-continuous on [0, foe] X A and satisfy

r %(t, oo, y) = r ( t ,  r, 0)cos 0(2, r, 0), 
1 2 /(2, a?, 2/ ) = f  (2, r, 0)sin0(2, r, 0),

(2G[0, fco>], (r, 0)GA)

with the initial condition: r(0, r, 9 ) —r, 0(0, r, 0 )= 0. Moreover, r(t, r, 0) and 
0(2, r, 0) — 0 are 2si?-periodio in' 9lsl. We will call (r, 0) the polar coordinate 
expression for the solution (so, y) of (11). Using these two functions we obtain a
polar coordinate expression for ТЪш as follows

^  r*=r(Jm, r, 0), 0*=0+[0(b> , r ,V )-0 ] . (12)
By assumption, g is not asymptotically resonant. Hence

a = limrff(0 )< lim  v/(7)=& ,.......  ' ‘ ' ©-*■» '
Let к be any integer such that

(13)

Let {Оц} and { 0 2j} be two sequences such that 0 1S, O2j>O 0, oo, C2j->+oo,
and Tfg(01})-^a, rg(0 2i)-*b as oo. By Lemma 1, Г 0ч a n d P GaJ are star-shaped 
periodic orbits of (3). Let Aj be the annular region bounded by Г 0и and P 0tj (01}<  
•02j). We are going to prove the restriction on A} of Тцш satisfies-the assumptions of 
Theorem A, for each sufficiently large j. .Hence Тй(д> has at least two fixed points in 
each Aj. It follows that system (11), thus Equation (1), has infinitely many koo- 
periodic solutions. The following comparison lemma is crucial for our aim03.
• Lemma 3. Let (ад (2, щ, щ), v(i, щ, vf)) be the solution of (3) which satisfies 
u(0) =ад0, v(0) = v0. Let (p(t, p, ф), <p(t, p, <p)) be the polar coordinate expression of 
4his solution. Given 2o>0 and e>0, there are L t=R(tf) and К —К (fa, s) such that
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|r(t, 9 ) - p { t ,  r, 9 ) \< B , \ /t£  [0;h i, (14)
for all (r , 9) £• Г 0! and O^K-, and : '
i- \9(t,r, 8 ) - p i t ,  d ) [ < s , W £  [0,io], . (16)
for all ( r ,9 ) ^ F e, and O ^ K .  . ■:

To apply Theorem A  to the mapping Тцш | Aj, we notice that condition (i) of 
Theorem A is satisfied by Lemma 1. It is easy to see from (14) of Lemma 3 that (iii) 
of Theorem A  is also satisfied for large j  such that l }c E 3\5 ft where Дв={(®, у) G 
R2: aja+ 2/2<jB2}. It remains to prove that condition (ii) is satisfied. By the Remark 
following Theorem A, we need only to show ’

. min#(r, в) —max#(r, 9)>2я,  , (16)
( Гоу
where d(r, 0) =  $(#<*>, г, в) —в (by(12)). ,

Now let Ф(г, в) =<р(1са>, г, в) —0. We see from (16) of Lemma 3 that (16) will 
hold for large j  as soon as we have the following Lemma,

Lemma 4. For sufficiently large j, we have
min Ф—max Ф> Зяг.

Гоц
Proof Since Г g is a periodic orbit of (3) with minimal period vg(0) for O>O0s

we have

p(t-hrff(c), r, 9) = -2n+<p(t, r, 9), (г, 9 )£ Г в, (17)
Let •

= nbijlig (Oij) + £ l i  =  m2fig(G2j) -\-g2j, (18)
where my are non-negative integers, 0< £y< v3(C^), i = l ,  2. By (17) and (18), we 
have

<р(Ъа>, г, в) =<p(mijrg(0 1}) + g ih r, 9) =  - 2 m lj7v+q>(£ij, г, 9), (г, 9 ) £ Г 0и. (19) 
It is clear that

9 — 2tjv<<p(gij, r, 9)<y9.
From (18) and (19) we derive

« t o ,  2 .  r, 9)

< — ? £ ^ L + 2  ov+ 9

2<wftct>
a ■ 2яг-\'9-\~ 8ijy (u, 9) £  Fa4>

where >0 as y->+oo. In a similar way, we obtain
2 reTccaq>(Jca>y r , 0 )>- 2<m+9+ 82j, (r, 9) £  Fo,Jf

(20)

(21)

where s2j-*0 as j->oo.Thns, for j  large enough, we have by (20), (21) and (13)

min Ф—max Ф'>2<кЪа>(— rCtj r0lj \  a
This proves Lemma 4.

— 4я?+ Ssj — Sii > 4 ct? +  8щ — 8u>3rt.
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Since all the assumptions of Theorem A are fulfilled, we conclude that equation
(1) has infinitely many foo-periedic solutions for any Jc satisfying (13).

Next, since every solution of the system (11) is continuahle on [0, с о )  due to 
condition (a), and since we have obtained bounded solutions for this system, we can 
apply a theorem of Massera [4] to obtain at least one «-periodic solution.

The proof of Theorem 1 is complete.
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