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RESONANCE PROBLEM FOR A CLASS
OF DUFFING’S EQUATIONS

D Toxowan (T 42)*  Dive WHIYum(T 4

Abstract

Consider the Duffing’s equation _ _
B+g@ =f ), )
where g€C(R, R) and fe P={f € C(R, R); f is w-periodic for some w>0}. The function
gis said to be resonant if there exists f € P such that eq. (1) has no bounded solutions on
[0, o). Using a generalized version' of the Poincare~Birkhoff fixed point-theorem, the
authors establish conditions on g which guarantee the following result holds: for any f € P
with period w, there éxists 5>0 such that eq. (1) has infinitely many kw-periodic solutions
for every integer k>%. In such a case, g is clearly non-resonant.

“In the work [1], the author studied the existence of infinitely many harmonie
solutions for Duffing’s equation ‘ R ‘

S s+g@=f®, O
where f, g€C(R, R) and f is w-periodic. In that ﬁuéiy the main tool is a generalized
Poincaré-Birkhofl theorem obtained recently: (see-[2; 8]). It is the aim of the present
note to study a resonance problem as well as thie existence of infinitely many Fkew—
periodic solutions for (1) by using the same tool.
S = o

 P={fCO(R, R): f is w-periodio for some c>0}.

Definition1. 4 funotwn gEO(R, R) is said to be resonant if there ecmsts feP
such that Bquation (1) has no bounded: solution.on [0, +o0).

By this definition any linear function. g(s)=a w+b (a>0) is vesonant, becauss
for F(@®) =cosat+b the equation &+ @+ b =cosat has no bounded solutlon,
However, there is.a large class:of nonlinear . functions which are not resonant. For
instance, if g satisfies the super- _linear condition: lim ™ g(w) .t oo as |w|-—>oo then
Equation (1) has mﬁmtely many harmonic solutions for any f & P, Thug g is “not
resonant. In this note we will restriot our: attentlon to a speclﬁc class of functions ¢
which satisfies the following conditions: o
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(a) Suppose g is locally Lipschitzian, i.e. there are constants ko, £1>0, such that

l9(z) —g (@) | <ho|w—y|+hy, Vw, yER;

(b) There are constants 4, M >0, such that

o lg(e)=>A for |o|>M.
If g€ O(R, R) satisfies.conditions (a) and (b) we will simply write g€ Q.

Remark. Condition (b) ig just (H ;) in [1]. But we replace (H,) in [1] by
condition (a). The hypothesis (H;) requiring that g€ O*(R, R) and |¢(»)|<
K (VsE€ER) is somewhat too strong. It is easy to check that all the results in [1]
remain true with (Hi) replaced by (a).

Now congider the “homogeneous” equation associated with Equation (1):

g =0. @)
We collect SOme basm faots concernmg Equatton (2) in the following Lemma!,

Lemma 1. Let gE Q be gwen Consider the equivalent system of Equation (2)

. S u=v, o=-—g(u), 3)
wkwh 8 an cmtonomous Hamiltonian system with the Hamiltonian functzon

H(fw, fv)—-—— -+ G (u),

where G (u) =rg (s)ds. For O € R, the set I o(H (u,v) =0)is a star-shaped (with respect to
[} . .

the origin) periodic orbit for every O=0o. The minimal period of this orbit is given by

T(c) \/-Q—du
%(0) = J mo VO—G(w)’

where h(c), k1 (¢) >0 are uniquely determined by G-(h(c)) =G (—hy(c))=0.
Lemma 8. FHor each g€ Q, v,(¢) ¢s bonnded on [O,, o).

; _
Proof We need only to show the boundedness of Ii=jz ? du/ ~/C — G() and
0 .
Ig='[ e )du/ O —G@Q (u) for large O. Note first that (a) and (b) imply the existence
—h(c . '

of constants oy, as, By, B2>>0 such that

ot — B <SG (u) S+ Bs,  VugR. ' @
Let u€ (0, h(c)) satisfy G'(u) =£27- and G (u) §G(’L_&) for € [0, u]. Then we have by
® o\ hin st |
' ot Pt - 1< 1 —
s @@+a) = (B om0 (1:>0).
Therefore, we have _

j \/0 G(u) I\/a dui= x/* usV27, - ®
Using (4) again, we find @ y3>0 such that : R v

Assuming O is so large that u=>M, we then have
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JM u _ J Mo 1 _ gwdu
i W/O—Gw) Ji 9w ~O-Gw)
1 (mo g(u)du

.cT-\/zo<ji (by®). RG]

From (5) and (7) we see Iy is bounded. Since we can pro vethe boundedness of I,
in the same way, the proof is complete.
Definition 2. g€ Q is said to be asymptotically resonant zﬁ hm 'vg(O’) exists.

Now we can state our main theorem.

Theorem 1. Suppose g€ Q is not asymptotically resonant. Then, for any fEP,
there ewists k>0 such that Houation (1) has infinitely many kw—petmodw solutwns foa'
each k=% and it has at least one w-periodic solution.

Asa consequence of Theorem 1, we have: . ,

Corollary. Ifgc Q s resonant, then it is wsymptomcally Iresomnt

An open question is whether we can prove or- dlsprove the converse of the abo*Ve

o

corollary. : :
Before proving Theorem 1, let us give the statemenﬁ of the followmg generahzed
P01ncare—B1rkhoﬁ‘ theorem. _
Theorem A. Let A be an annular region in R? bounded by tw0 clzsjomt szmple
closed curves I'y and I's. Let D, denote the open set bounded by I, fz_, 1, 2, Assume that
0€ Dy Dy D,. Suppose T': A—T (A) =R\ {0} is an arewﬂorresemmg komeomorphzsm
which has the polar coordinate ewpression
r=f(r, 0), 6*=8+g(r,8), R )
where (r*, 8*) denotes the image of (r, 8) under T, and f and g are continuous and:
2@-periodic in 0. Assume
(1) I'yis star-shaped about the origin;
( 11) the “twist” condition:
. : g>0o0n I'y and g<0 on I'y S (9%
48 satisfied; : '
(iii) there ewists an area—preserving homeomomph@sm Ty: Do—>R2, such that T,| A
=T and 0€T1(D4). '
Then T' has at least two fiwed points in A.
Remark. For any integer m, the following L .

, r*=f(r, 0), @*=0+g(r,0)+2mu ‘ ' (8)’
is also a polar coordinate expression for the mapping T. For-this expressmn the
corresponding wish cond1t1on should be . ' ' - ‘

g> - —2maz on I'y;  g<—2mew on I’a. : L ,(9)5"*,
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If wo replace (9) in this theorem by
L ming—max g>2m; e ' 10)

we see that there is an integer m for which condition (9)' holds. Therefore, Theorem
A remaing true with (9) replaeed by (10). We note also that reversing all the

“inequalities in (9), (9)’ and (10) is permitted. -

Proof of Theorem 1. 00n31der the equlva,lent system for Equation (1):

b=y, g=—g(@)+ (). | (11)

Let (%, @, yo), y (3, wo, %0)). be the unique solution of (11) Wthh Sahsﬁes a:(O) =%y,
(0) =yj. For each $>0, define a mapping Ty R->R? by
Ty(w, v) =, 0, 1), 9, o, ).

Smce (11) 188 Ham:ltoman systeni, Tyisan area~preservmg homeomorphlsm It is

also clear that 1f k>0 is an mteger, then fixed points of Ty, correspond t0 ke-periodio

solutions of (11). Suppose A4 is an annular reglon in R? such that 0¢7,(4) for

$€ [0, hw]. Then there exist two functlons r(t fr, 0) and 9(5 T, 0) Whlch are

contmuous on [0 loa)] ><A and satlsfy o

U B, o, g) =7 (3, T, 8)cosB(E, T, 8),

{ (t z, y) = r(t r, 0)s1n0(t r, 8),

Wlth the initial condition: lr(O T, ) =r, 9(0 r, §)= 0 Moreover /r(t r, 0) and

0(t r, 0) —0 are 2m-periodio in’ 6. We will call (r, 9) the polar coordinate

expressmn for i;he solution (z, y) of (11) Using these two funotlons we obtam a

(té[o ko], (r, 6)€A)

polar coordmate expressmn for T,m as follows , |
| =7 (ho, 1, ), 0*=0+ [H(kco, r, -0, 12
By assumption, ¢ is not asymptotwally resonant I—Ience o
= hmm'g(O’) <11m 'vg(G) =b,

Oos
Lot & be any integer such that
b (= —%)>4. o (13)
Lot {0y} and {Ca;} be two sequences such that Oyj, Ozy>>0y, Oyy—>+00, Oy—>-+00,
and 7,(045)—>a, 7,(Ca)—b as j—>-+oco, By Lemma 1, I'y,, and I, are star-shaped
periodic orbits of (8). Let 4; be the annular region bounded by Iy, and Iy, (O4y<
0y). We are going to prove the restriction on A; of T, satisfies the assumptions of

Theorem A, for each sufficiently large j. Hence Ty, has at least two fized points in

each A;. It follows that system (11), thus Equation (1), has infinitely many kew—
‘periodic solutions. The following comparison lemma is crucial for our aim™.
Lemma 8. < Let (w(%, uo, vo); v(t, Us, vo)) -be the solution .of (8) which satisfies
%(0) =1, v(0) =v,. Let (p(t, p, @), (3, p, @)) bé the polar coordinate ewpression of
this solution. Given to>0 and: >0, there are R=R(ty) and K =K (4, 8) such that
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. : l'r(t r, 0)y— p(t ”, 0)l<R VtE [0, to], o (14)
fo'r all (fr, 9) €Tl and O=K; and - ‘ ST T
|0(t Ty 0) ‘p(t r; 9) Igs; MAS [0 tO]; ." o (15}

for all (fr, HETl,, and O=K, :

To apply Theorem A4 to the mapping TkwlA,, wo notice that condltlon (1) of
Theorem A is satisfied by Lemma 1. It is easy to see from (14) of Lemma 3 that (iii)
of Theorem A is also satisfied for large j such that 4,CR*\ Bg, where Bp={(®, y) €
R?: o+ ¢2<R%}. It romains to prove that condition (i1) is sa,msﬁed By the Remark
following Theorern ‘4, we need only to show = : : '

 mind(r,8) - maxa('r a)>2w, N ¢ )

. _ T T
'where 8(r,0) =8(ko, v, 8) —0 (by(12)). - :

- Now let @('r ) =g (ko, r, 8) 0. Wo see from (15) of Lemma 8 tha,t (16) W111
hold for lazge j a8 s00n a5 we have the followmg Lemma,

Lemma 4. For sufficiently large §, we have

min & —max @>8m.
Loy Ty

Proof Since I, is a periodio orbit of (3) with mmlmal period 7,(0) foz.° 0=0,,
we have
o (t+,(e), r, ) = —2m:+5(t, fr, ), (r, ) €I, a€n
Let ' ‘
kw=myyv,(C1y) +E15=ma57,(OCo5) +Eos, (18)
where m,; are non-negative integers, 0§y <7,(Cy), ¢=1, 2. By (17) and (18), we
have _
¢ (kw, r, 0) =@(m1y7,(C1s) +&15y 7, 0) = —2mym+@ &y, 1, 8), (r, 0) €Ly, (19)
It is clear that
0—-2m<p(&y, 7, 0)<H.
From (18) and (19) we derive

P ko, 1, 0) = = 20 (o ——E )5 (6, 7, )

7y(Cs)
2akw
— 2w +0
< 7 (Oii) 2w+
~20k0 | om0-+ey, () €T, (20)
where g;;—0 as j—>-}-co. In a sim11ar way, we obtain
p ko, 1, 0)> =22 2010+ 5y, (r, 8)€ L, (21)

where 5—>0 a3 j—>00.Thus, for j large enough, we have by (20), (21) and (18)

min @ —max @>2wkw<—% - %—) — 4wt 8oy — 814> 4w+ 895 — 815=>3m.

T, £ T} T, Y]

This proves Lemma 4,
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Sinve all the assumptions of Theorem A are fulfilled, we conclude that equation
(1) hag infinitely many kw—periedic solutions for any % satisfying (18).

Next, since every solution of the system (11) is continuable on [0, oo) due to
condition (a) , and since we have obtained bounded solutions for this system, we can
apply a theorem of Massera [4] to obtain at least one w—periodic solution.

The proof of Theorem 1 is complete, '
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