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ON PRIMALITY OF THE COMBINATION OF
EXPONENTIAL FUNCTIONS

‘Soxe Guovoxe (R E#)*

Abstract

The author discusses in this paper the transcendental unsolvability of the functional
equatlon F(8)=fog(s) with f being meromorphlc and g entire, {for the function of the
form

(o) = ZQ,@er |

_where @,’s are rat10na1 P/’s are polynomials. The main results are:

a) F(g) is pseudo-prime, i. e. F'= fog has no transcendental solutions f and g;

b) If 0<my<mg<e:»<my, with n;=~deg P;, then F (2) is prime (i. e. F=fog implies
that either f or g is linear), unless there exists a nonlinear polynomial g(z) such that P,;=
2;(9), @;=q;(g) with p,’s bemg polynonuals and g,’s rational.

These results generalize some theorems due to Prokopovich and other authors.

_§ 1. Introduction

A meromorphlo function F(2) is said to be compomte if F(z) can be factorized as

F(2) = (fog) (2) (=F (9(2))), @

where f is meromorphic and g is entire (¢ may be meromorphic when f is Tational),
none of which is (fractional) linear.

F (%) is said to be prime (pseudo-prime) if 'every factorization of the form (1)
implies that either f is fractional linear or g is linear (either f is rational or ¢ is a
polynomial). Also, a transcendental meromorphic function F(z) is.said to be left
" (right) prime if every factorization of the form (1) implies that f is fractional linear
whenever ¢ is transcendental (g is linear whenever f is transcendental). Further;
two (or more) functions F and G are said to have a common right factor «, if there
exist functions f and g such that o '

| | F=foa and G=goa, -
where o i8 a non-linear entire function. _

When f in (1) is rational and g is restrioted to eﬁtir’e functions, or when F=fog

is entire, and f and g are restrioted to entire functions, it is called to be a factorization
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in entire sense.

The factorization theory of meromorphic functions has been developed in various
aspects. It is an interesting problem fo determine the primality. or pseudo-primality
of entire and meromorphic functions. Many results in this topic are known. In an
earlier paper™, Rosenbloom pointed out that the-function F(2) =2-¢° is prime. Baker
and Gross™ proved that the function

7 (z) —-e”+P(z)
is prime, where P(z) is a non-constant polynomial. Gol'dberg and Prokopovich™
generahzed these results. They consudered tho funotion |
' C F(2)=P(2)+Q(z)e*™, . :
where P, @, R are i&olynommls, P, Rs=const., Q0. Later on, Prokopovich™ dealt
with funotions of the form | o

F (&)= 2 Q;(z)e”"”’ F @ #0+Qu(2)e™®, @)

where Q;(2) and P;(2) are polynomlals, and O is a constant. He proved

Theorem A. Let P; and Q; be polynomials, and deg Py=n; with O<m<n2< o
<y, where Q;%0 for j=1,-+, m. Let F () be of the form (2). Then P is composzte
if and only if all Py and Q; have a common right Jactor. s

Recent Tesults of N, Steinmetz!® make the disoussion of the pseudo—pnmahty of
(2) much eagier. We shall in this note discuss the primality of functions of the form
(2) with all Q, being rational functions and without the restriotion thab F(z) <0+
Qa(2)¢™?. Here are the main resulis. - o -

Theorem 1, Let Pi(z), ,,.(z) be polynommls, and Qi(z), TR Q,,,(z) be
fmtwml Junctions. Then the functzon

F (Z) 2 Q; (z)e""" e ()
s pseudo—prime. . — o
' In the following theorems, _the faetorlzatlon is restncted in entire sense.: That is,
if F=fog and f is rational, then only entire factor g is considered. ‘
- ‘Theorem 2. Suppose that the hypotheses of Theorem 1 are satisfied, and that in
addition ny=deg P,>deg P;=mny for j=1, ««-; m—1 (m>2). Then the function (3)
with F(2) # 0+ Qa(2)e™® is loft prime.. ' s
Remark 1. The example ,
G(z) = 1+2@”-l-e“‘-—(1+e”)2
shows that the hypothesis n,>n;(j<m) cannot be omitted. e :
L Remark 2. The demand F(2) =04 Qqe” ’@ in Theorem 2 cannot' be canceled
either, ag is shown in the example bolow . n
H(2)=0+¢*, o
'since we have H =fog with f({) =0+? and g(z) et
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Theorem 3. Suppose that in aold'itiovb t0 the hypotheses Of Theorem 2, the fwrwtfi,on
F (2) of the form (3) satisfies 0Sny<mg< -+ <y Then F(z) is prime, unless wll P1,
P, and @1, +++, Qum have @ common right factor. - o

Corollaxry. Let f be meromorphic and. g be entire such that (i) f and g are
nonlinear, (ii) F=fog is transcendental and of ﬁmte oa*derr, and (iii) F has only finitely
many poles. Then F has infinitely many ﬁw-pomts '
~ This is a slightly reﬁned form of a result in [5 'I‘heorem 1]

Theorem 4. Let ’ o |

| h(z)‘=0+Q(;'z)eP<”>, SRR

where Q(2) =0 s rational, and P(z) is w’mn—'cbnstant polynomial. Then Coe

(1) h(2) is right prime if and only if P and Q have no 60mmon mght fwctory',

(ii) h(2) is Zeft prime, unless Q(2) s of the form

ORTION

where B(z) is rational, and n is an integer with n>2.

Remark 3. From this. theorem, ,we conclude thaj; if the funetion (4) has a
factorization h=fo 9. then elther | L |

F(O) =0+* and g(z) s<z>e“”‘“’ with Q(z) BG)"

or

f (C) 0’+Q(C)e”“’
and g(z) is a Polynomial of degree >2 suoh that

, Q=) =9(g(2)) and P(2) =p(9())-
Throughout this note the standaid notatxon of Nevanlinna theory will be

employed without explanation. -
§ 2. Preli‘miha;ry fLemmas "

- Lemma 1.  Let h(z) be o tmnscendenml mefromorrphw funcmon swt@sfymg the
Uinear d@ﬁerentwl equwmon _
' _ WO+ @y (2Dt +wo(2)w a(z),
where a(2), ao(z) , o a,,_i(z) wq*e rational. Then h(z) is pseudo-pmme
Lemma 2. Let Pi(z), o, P (z) be polynomwls (m>1) such that Py— -P, is not
o constant for j#l, 1<j, Z<m (whén m= 1 no restriction arises for polynomwl
Py(z)). Let Qi(2), +--, Q,,.(z) be mt@onwl Then the functzon

P@)= E Q (Z)e”’“’

is identically zero only if Q;j(2) =0 for j=1, ses,
- This is an immediate consaquenoe of a result in [2, Theorem 1]
Lemma 3, Let g(z) be a transcendental meromorphic Sfunction such that
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N(r, 9)=0(T(r, g)) as #—>oo.
Let B(2) be a rational function of degree f and a(z) #C De a meromorphic function
satisfying the condition 7'(r, &) =o(T'(r, g)) as r—>co. Then

réER

1
N(fr -————~>
lim B =a) p 450 1)s 5
7o T(r,g9) ©.9, ®)

where mes H < oo,

Lemma & (Sce [4, Theorem 5.1]). Let F(2) be a transcendenial meromorphic
Sunction of finite order which has only a finite number of poles and zeros. Then ¢f F has
a factorization F=fog, where f is rational, then f must be of the form

JF() =a({-0)",

where n is an integer with |n|>2, and @, b are constants.

§3. Proofs of Theorems

Proof of Theorem 1 'Without loss of generality, we may assume that P;— Pl is
not a constant for j#1, 1<j, I<m, and that Q;%0 for j=1, -

We have ‘
F® (z) =121 Qr, i (2)e"4® 0<<bh<m—1 (6)
and v -
F™ (2) =,2 Qu, 1674, | : o
) =1
where : _
F(O) = F’ Q01 f = Q.’
and

_ Qi s =Qu-1,sP+ Qio-1,5 for 1<<g, h<m. N '
By Lemma 2, the set of functions Qse™, ++-, Q.e? is linear independent over complex
numbers. Therefore, the Wrongkian of @™, -, QueP»

| det (Qx,s) exp <§ P :)

is not identically zero, and det (Qk,,) is not either, Solving the system of linear
equations (6) for functions e, -, ¢P, we see that each of these functions can be
expressed by the linear combinations of FP(z), j=0, -, m—1, with rational
functions as coefficients. Substituting all these expressions of ¢™, «--, ¢’ into (7), we
conclude that F (%) satisfies a linear differential equation |
] W 4 a1 (2) W™D - --+ao(z)fw=a(z), »

where a(2), ao (z), *+, @y-1(2) are rational functions. By Lemma 1, F (2) is therefore
pseudo-prime as is claimed in the theorem. '

Proof of Theorem 2 By Theorem -1, F(z) is pseudo-prime. Suppose that F=
Rog,when R({) is a rational funotion of degree 4, and g is entire. Apparently, g is of
order n,, since F is. Let
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a(d) =3 D,

Clearly, T.(fr, o) =o(T (fr', 9)) as r—>o0, Hence, by Lemma 8, there exists a sequence
74—>00 (n—>o0) such that

Mm% e )> (=140 T (ry, ) (n—>09).

But, this can hold only if k=1, namely, R is fractional llnear so that F(z) is left
prime. The theorem follows.

Proof of Theorem 8 By Theorem 2 it suffices to eon&der the case When F=fog
with g being a polynomial of degree=>2. In 'bhlS case, we want to show that ¢ is a
common right factor of all P; and Q.

Indeed, since F has only finitely many poles, so does f. Hence, we can write

°=f1°9
Sog Bog?

where f; is entire and B a polynomial. Let
Fi(z)=F()R(g(2)). .

Then F,(2) is entire and
RAO =§-Qd (2)e™9,.

where

v = (R°9>Qi; j=1, ¢, m. 7 o . (8)
It is clear that @, -+, @, have to be polynomials. Now that

‘ Fy= (f 'R) °9,
by Theorem A, there exist polynomials q; and p; such that

Ql=§i°g and P5=‘-piog, j=1, SO S . L (9)
From (8) and (9) we obtain ) -

Q;=q;09 and P;j=psog,
91=§J/R) j=1; "" m

where

And this is what we needed.
' Proof of OOIrollwrfy If F had only finitely many fix—points, then by the
assumption, we would have
F(2) —2=Q(2)e’®, ,
where Q(z) is ratlonal and P(7) is a polynomial. This means that the function
F(2) =2+Q(2)e"™
would be composite, which violates the conclusion of Theorem 3.
Proof of Theorem 4 By Theorem 1, h(z) is pseudo—-pmme Suppose that A=fog,
We deal with two cases.
Case 1 g is a polynomial of degres > 2. Assume first that 0+0. Put

h(2) =g(2)h(2) =Cy(z) +Q (2) ¥,
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where

GG =g@Q).

‘From the proof of Theorem 8, we see that g(z) is a common right factor of § and P,

Hence §=¢ 0 g, where g is rational. We thus obtain
Q(2) =Q(2)/9(2) = (g°9) (@),
where g({) = q 70 / { is ratlonal Therefore, g(z) is a common right factor of P and Q.
In the case when 0'=0, by setiing
hy(2) =1-+h(2) _
and to hy(2) applying the result just proved we can easily reach the same conclusion.
Case 2 f is rational of degree > 2. Assume ﬁrst that 0=0. By Lemma 4, Jisof
the form

J(O) =a(l~ b)”

where n is an 1nteger with [n|>2, and we may take @ = 1 Then we have

Q(z)eP® = [9(2) -b]"
Q) =[(9(e) ~b)e ¥ r

B(z) = [g(2)~ ble “HEO
Then 8(z) must be rational and '

Hence

Let

Q(2) =B(2)". (10)
For the case when O'#0, we set ‘ B
hy(2) =Q(2)e"®.
Then hy=fi0g, where f1=f—C is a ratlonal function of degree >2. So we also deduce
(10). The theorem is complete.

The author is very grateful to Professor W. Fuchs.and Dr. 0 a. Yang for their
going over the manuscript and valuable comments.
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