A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE OF ERROR PROBABILITY ESTIMATES IN K-NN DISCRIMINATION

SUN ZHIGANG (孙志刚)*

Abstract

Let (X, θ) be $R^d \times \{1, \dots, s\}$ valued random vector, (X_j, θ_j) , $j=1, \dots, n$, be its observed values, $\theta_{nj}^{(k)}$ be the K-nearest neighbor estimate of θ_j , $R^{(k)}$ be the limit of error probability and $\hat{R}_{nk} \triangleq \frac{1}{n} \sum_{j=1}^{n} I_{\{\theta_j \neq \theta_{nj}^{(k)}\}}$ be the error probability estimate. In this paper it is shown that $\forall s > 0$, \exists constants a > 0, $c < \infty$ such that

$$P(|\hat{R}_{nk} - R^{(k)}| > 8) < ce^{-an}$$

if add only if there is no unregular atom of (X, θ) defined below and the various convergences $\hat{R}_{nk} \rightarrow R^{(k)}$ are equivalent.

Let (X, θ) , (X_1, θ_1) ,..., (X_n, θ_n) be independent identically distributed random vectors from $\mathbb{R}^d \times \{1, \dots, s\}$, where $d \geqslant 1$, $s \geqslant 2$ and $\mathbb{Z}^n \triangleq \{(X_j, \theta_j), j=1, \dots, n\}$ are observed values of (X, θ) . Let μ be the probability measure of X and

$$P_i(x) \triangle P(\theta=i|X=x)$$
, for $x \in \mathbb{R}^d$, $i=1, \dots, s$.

The k-nearest neighbor estimate $\theta_n^{(k)}$ of θ , introduced by E. Fix and J. L. Hodges^[1], is defined as follows: arrange $||X_j - X||$, $j = 1, \dots, n$ in increasing order $||X_{R_1} - X|| \le \dots \le ||X_{R_n} - X||$, where $||X_j - X||$ is the usual Euclidean distance in R^d between X_j and X; put i < j when $||X_{R_i} - X|| = ||X_{R_j} - X||$ and $R_i < R_j$; set $\theta_n^{(k)}$ equal to the integer which has a majority vote among $\theta_{R_1}, \dots, \theta_{R_k}$; in the case of a voting tie, set $\theta_n^{(k)}$ equal, with same probability, to each integer which has a majority vote. We write the error probability $R_n^{(k)} \triangleq P(\theta_n^{(k)} \neq \theta)$ and the conditional error probability $L_n^{(k)} \triangleq P(\theta_n^{(k)} \neq \theta | Z^n)$.

It is known that there exists $R^{(k)} riangleq \lim_{n \to \infty} R^{(k)}$ and under some conditions there exists $\lim_{n \to \infty} L_n^{(k)} = R^{(k)}$ a. s. and $R^{(1)} = 1 - \sum_{i=1}^{s} EP_i^2(X)$ (See, for example, [2, 3] for k=1. The posterior error probability $L_n^{(k)}$ of $\theta_n^{(k)}$ for given Z^n is very interesting from a practical point of view, since one can only work with the "training sample" Z^n at his disposal. But it is impossible to get the exact probability distribution of $L_n^{(k)}$

Manuscript received October 21, 1983.

^{*} Department of Mathematics, Hangzhou Normal College, Hongzhou, China.

when that of (X, θ) is unknown. Many mathematicians have studied the convergence of the error probability estimate of $L_n^{(k)}$

$$\hat{R}_{nk} \triangleq \frac{1}{n} \sum_{j=1}^{n} I_{(\theta_j \neq \theta_{nj}^{(k)})},$$

where I_A is the indicator function of set A and $\theta_{nj}^{(k)}$ is the k-nearest neighbor estimate of θ_i based on $\{(X_i, \theta_i), i=1, \dots, n, i\neq j\}$. Recently, Doctor Bai Zhidong proved

Theorem. If μ is nonatomic, then $\forall s>0$, \exists constants a>0, $c<\infty$ independent of n such that

$$P(|\hat{R}_{nk}-R^{(k)}| \geqslant \varepsilon) < ce^{-an}$$

In this paper we introduce the following

Definition. A point $x \in \mathbb{R}^d$ is called a regular atom of (X, θ) if x is an atom of μ and there exists a nonempty subset $\{i_1, \dots, i_{g(x)}\}$ of set $\{1, \dots, s\}$ such that

$$P(\theta = i_m | X = x) = \frac{1}{g(x)} m = 1, \dots, g(x).$$

The goal of the present paper is to prove

Theorem 1. The following conditions are equivalent each to other:

- (i) there is no unregular atom in the distribution of (X, θ) ,
- (ii) $\forall s>0$, \exists constants a>0, $c<\infty$ independent of n such that

$$P(|\hat{R}_{nk}-R^{(k)}| \geqslant \varepsilon) < ce^{-an},$$

- (iii) $\hat{R}_{nk} \rightarrow R^{(k)}$ a. s. $(n \rightarrow \infty)$,
- (iv) $\forall \alpha > 0 \ R_{nk} \xrightarrow{L_{\alpha}} R^{(k)} (n \rightarrow \infty),$
- $(v) \exists \alpha > 0, \hat{R}_{nk} \xrightarrow{L_{\alpha}} R^{(k)} (n \rightarrow \infty),$
- (vi) $\widehat{R}_{nk} \xrightarrow{P} R^{(k)} (n \rightarrow \infty)$,
- (vii) \exists constant r such that $\hat{R}_{nk} \xrightarrow{F} r$.

In this paper we denote by a a positive constant and by c a finite constant. Both a and c are independent of n and take their own values in each formula. First we shall show the following

Lemma 1. Let X_1, \dots, X_n be iid R^d valued random vectors and $\rho > 0$. Then $\forall s > 0$, \exists constants a > 0, $c < \infty$ independent of n such that

$$P\left(\frac{1}{n} \# \{j \leqslant n : \|X_j - X_{nj}^{(k)}\| > \rho\} > \varepsilon\right) < ce^{-an},$$

where $X_{nj}^{(k)}$ is the k-th nearest neighbor of X_j among $\{X_i, i=1, \dots, n, i\neq j\}$.

Proof of Lemma 1. $\forall \varepsilon > 0$, \exists constant M > 0 such that $P(\|X_1\| > M) < \varepsilon/2$. Since

$$\frac{1}{n} \# \{j \leqslant n: \|X_{j} - X_{nj}^{(k)}\| > \rho\} = \frac{1}{n} \# \{j \leqslant n: \|X_{j} - X_{nj}^{(k)}\| > \rho, \|X_{j}\| > M\}
+ \frac{1}{n} \# \{j \leqslant n: \|X_{j} - X_{nj}^{(k)}\| > \rho, \|X_{j}\| \leqslant M\} \triangleq \sum_{1} + \sum_{2}, \quad (1)$$

where #A denotes the number of elements of set A, by Hoeffding's inequality, \exists constants a>0, $c<\infty$ independent of n such that

$$P(\Sigma_{1}>\varepsilon/2) \leqslant P\left(\frac{1}{n} \#\{j\leqslant n: \|X_{j}\|>M\}>\varepsilon/2\right)$$

$$\leqslant P\left(\left|\frac{1}{n} \#\{j\leqslant n: \|X_{j}\|>M\}-P(\|X_{j}\|>M)\right|$$

$$>\varepsilon/2-P(\|X_{j}\|>M)\right)< ce^{-an}.$$
(2)

To consider \sum_{i} we suppose that $j \leq n$, $||X_{j} - X_{nj}^{(k)}|| > \rho$ and $||X_{j}|| \leq M$. Write $B_{j} \triangleq \{x: ||x - X_{j}|| < \rho/2\}$. It is not difficult to see that each B_{j} intersects at most with k-1 of balls B_{i} , otherwise, it contradicts $||X_{j} - X_{nj}^{(k)}|| > \rho$. Thus $\forall x: ||x|| \leq M$, there are at most k of balls B_{j} containing x. Clearly, each $B_{j} \subset \{x: ||x|| \leq M + \rho/2\}$. So

$$\#\{B_{j}: j \leqslant n, \|X_{j} - X_{nj}^{(k)}\| > \rho, \|X_{j}\| \leqslant M\} \leqslant k \left[\left(\frac{M + \rho/2}{\rho/2} \right)^{d} \right]$$

and for sufficiently large n,

$$\sum_{2} \leqslant \varepsilon/2. \tag{3}$$

From (1)—(3) this lemma follows.

Proof of Theorem 1. Clearly, (ii) \Rightarrow (iii), (iv) \Rightarrow (vi) \Rightarrow (vi) \Rightarrow (vii). Since $|\hat{R}_{nk}| \leq 1$, (iii) \Rightarrow (iv). Thus to complete the proof it remains to show that (i) \Rightarrow (ii) and (vii) \Rightarrow (i).

Step 1 (i) \Rightarrow (ii). For brevity of the proof, we may suppose k=1, without loss of generality, and this is to discuss [the nearest neighbor discrimination. We denote by A, B respectively the set of regular atoms of (X, θ) with g(x)=1 and g(x)>1. $H \triangle A \cup B$. Clearly, the set H is finite or denumerable. Write

$$A \triangle \{a_1, a_2, \cdots\}, B \triangle \{b_1, b_2, \cdots\} \text{ and } H \triangle \{h_1, h_2, \cdots\}.$$

Denote $P(X \in A)$, $P(X \in B)$, $P(X \in H)$ and P(X = b) respectively by P(A), P(B), P(H) and P(b).

It is easy to see that

$$\begin{split} R &\triangleq R^{(1)} = 1 - \sum_{i=1}^{s} \left(\int_{A} + \int_{B} + \int_{R^{d} \setminus H} \right) P_{i}^{2}(x) d\mu \\ &= 1 - P(A) - \sum_{m=1}^{\infty} \frac{P(b_{m})}{g(b_{m})} - \sum_{i=1}^{s} \int_{R^{d} \setminus H} P_{i}^{2}(x) d\mu, \end{split} \tag{4}$$

$$\hat{R}_{n} \triangleq \hat{R}_{n1} = \frac{1}{n} \left(\sum_{\alpha_{j} \in A} + \sum_{\alpha_{j} \in B} + \sum_{\alpha_{j} \in H} \right) I_{(\theta_{j} \neq \theta_{nj})} \triangleq \sum_{3} + \sum_{4} + \sum_{5}.$$
 (5)

From now on we denote $\sum_{i=1}^{n} by \sum_{i}$

In the case of $H = \emptyset$ Step 1 follows from Bai's theorem. So we may suppose $H \neq \emptyset$.

In the case of $A=\emptyset$, $\Sigma_3=0$. To consider Σ_3 , we may suppose that $A\neq\emptyset$. Then $\forall s>0$, \exists constant M such that $\sum_{m=M+1}^{\infty} P(X=a_m) < s/2$.

Thus

$$P(\sum_{3}>\varepsilon) \leqslant P\left(\frac{1}{n}\sum_{m=1}^{M}\sum_{x_{j}=a_{m}}I_{(\theta_{j}\neq\theta_{n}j)}>\varepsilon/2\right) + P\left(\frac{1}{n}\sum_{m=M+1}^{\infty}\sum_{x_{j}=a_{m}}1>\varepsilon/2\right)$$

$$\leqslant P\left(\frac{M}{n}>\varepsilon/2\right) + P\left\{\left|\frac{1}{n}\sum_{m=M+1}^{\infty}\sum_{x_{j}=a_{m}}1-\sum_{m=M+1}^{\infty}P(X=a_{m})\right|\right.$$

$$>\varepsilon/2 - \sum_{m=M+1}^{\infty}P(X=a_{m})\right\}.$$

The last inequality follows from the fact that by the definition of the regular atom of (X, θ) with $g(a_m) = 1 \ \forall m$

$$\sum_{\alpha_j=a_m} I_{(\theta_j \neq \theta_{nj})} \leqslant 1 \quad \text{a. s.}$$

So for sufficiently large n, $P\left(\frac{M}{n} > \frac{s}{2}\right) = 0$ and by Hoeffding's inequality $\forall s > 0$, \exists constants a > 0, $c < \infty$ independent of n such that

$$P(\sum_{\mathbf{s}} > \mathbf{s}) < ce^{-a\mathbf{n}}. \tag{6}$$

In the case of $B=\emptyset$, $\sum_{4}=0$. To consider \sum_{4} we may suppose that $B\neq\emptyset$. Similarly, $\forall s>0$, \exists constant M such that $\sum_{m=M+1}^{\infty}P(X=b_{m})< s/4$. By Borel's strong law of large numbers, $j(m) \triangleq \min\{j: X=b_{m}\}$ is defined with probability one. Now in the case of $X_{j}=b_{m}, j\neq j(m)$ we have $\theta_{nj}=\theta_{j(m)}$ and

$$\begin{split} P(|\Sigma_{4}-P'|>s) \leqslant & P\left(\left|\frac{1}{n}\sum_{m=1}^{M}\sum_{x_{j}=b_{m}}I_{(\theta_{j}\neq\theta_{nj})} - \sum_{m=1}^{M}\frac{g(b_{m})-1}{g(b_{m})}P(X=b_{m})\right|>s/2\right) \\ & + P\left(\frac{1}{n}\sum_{m=M+1}^{\infty}\sum_{x_{j}=b_{m}}1>s/4\right) \\ \leqslant & \sum_{m=1}^{M}P\left(\left|\frac{1}{n}\sum_{x_{j}=b_{m}}I_{(\theta_{j}\neq\theta_{j(m)})} - \frac{g(b_{m})-1}{g(b_{m})}P(X=b_{m})\right|>\frac{s}{4M}\right) \\ & + P\left(\frac{M}{n}>\frac{s}{4}\right) + P\left\{\left|\frac{1}{n}\sum_{m=M+1}\sum_{x_{j}=b_{m}}1 - \sum_{m=M+1}^{\infty}P(X=b_{m})\right| \\ > & \frac{s}{4} - \sum_{m=M+1}^{\infty}P(X=b_{m})\right\}, \end{split}$$

where $P' riangleq \sum_{m=1}^{\infty} \frac{g(b_m)-1}{g(b_m)} P(b_m)$. So for sufficiently large n, $P\left(\frac{M}{n} > \frac{s}{4}\right) = 0$ and by

Hoeffding's inequality $\forall s>0$, \exists constants a>0, $c<\infty$ independent of n such that

$$P(|\Sigma_{\epsilon} - P'| > \varepsilon) < ce^{-an}. \tag{7}$$

To consider Σ_5 , we write

*

$$X' riangleq \begin{cases} X, X \in H, \\ h_1, X \in H, \end{cases}$$
 and $X'_i riangleq \begin{cases} X_i, X_i \in H, \\ h_1, X_i \in H. \end{cases}$

Clearly, (X', θ) , (X'_1, θ_1) , ..., (X'_n, θ_n) are iid random vectors, and there is only one atom h_1 of X' and $P(X'=h_1)=P(H)$.

$$\sum_{5} = \frac{1}{n} \left(\sum_{\alpha' i \neq h_{1}, \alpha_{n, i} \neq h_{1}} + \sum_{\alpha' i \neq h_{1}, \alpha' h_{i} = h_{1}} \right) I_{(\theta_{i} \neq \theta_{n, i})} \triangleq \sum_{6} + \sum_{7}.$$
 (8)

By Lemma 1 of [4], there exists constant m independent of n such that

$$\sum_{7} \leqslant \frac{1}{n} \sum_{g_{i\neq h_1, g_{h_i}=h_1}} 1 \leqslant \frac{m}{n}. \tag{9}$$

To consider \sum_{6} we introduce random vectors (X'', θ'') , (X''_1, θ''_1) , ..., (X'_n, θ''_n) as follows: write $B(\rho) \triangleq \{x: ||x-h_1|| < \rho\}$. By continuity of probability $\forall \varepsilon > 0$, $\exists \rho > 0$ such that

$$P(X' \in B(\rho)) \leqslant P(X' \in B(2\rho)) < P(H) + \varepsilon/2. \tag{10}$$

Write $(X'', \theta'') = (X', \theta)$ when $X' \in B(\rho)$, otherwise $\theta'' = 1$ and X'' is uniformly distributed in $B(\rho/2)$ and $P(X'' \in B(\rho/2)) = P(X' \in B(\rho))$. Similarly, we can defined (X''_j, θ''_j) , $j=1, \dots, n$, based on (X'_j, θ_j) , $j=1, \dots, n$, such that (X'', θ'') , (X''_j, θ''_j) , $j=1,\dots, n$, are iid. Now there is no atom of X'' and $P(X'' \in B(\rho) \setminus B(\rho/2)) = 0$. Thus

$$\begin{split} |\sum_{6} - R + P'| \leqslant & \left| \sum_{6} -\frac{1}{n} \sum_{\|x_{j} - x_{h,j}^{\sigma}\| < \rho/2; x_{j}, x_{h,j}^{\sigma} \in B(\rho)} I_{(\theta_{j} + \theta_{h,j})} \right| + \left| \frac{1}{n} \sum_{j} I_{(\theta_{j} + \theta_{h,j})} - R + P' \right| \\ & + \frac{1}{n} \sum_{\|x_{j} - x_{h,j}^{\sigma}\| > \rho/2} 1 + \frac{1}{n} \sum_{\|x_{j} - x_{h,j}^{\sigma}\| < \rho/2; x_{j}, x_{h,j}^{\sigma} \in B(\rho)} I_{(\theta_{j} + \theta_{h,j})} \\ & = \sum_{8} + \sum_{9} + \sum_{10} + \sum_{11}. \end{split}$$

Since $\{j \le n: \|X_j'' - X_{nj}''\| < \rho/2; \ X_j'', \ X_{nj}'' \in B(\rho)\} \supset \{j \le n: \|X_j' - X_{nj}'\| < \rho/2; \ X_j', \ X_{nj}' \in B(\rho)\}$ by Lemma 1 (for k=1) and Hoeffding's inequality $\forall s > 0$, \exists constants a > 0, $c < \infty$ independent of n such that

$$P(\sum_{8} < \varepsilon) \leq P\left(\frac{1}{n} \sum_{\|x_{j}' - x_{h,j}\| > \rho/2} 1 > \frac{\varepsilon}{2}\right) + P\left(\frac{1}{n} \sum_{x_{j} \in B(2\rho) \setminus \{h_{1}\}} 1 > \varepsilon/2\right)$$

$$\leq P\left(\frac{1}{n} \sum_{\|x_{j}' - x_{h,j}\| > \rho/2} 1 > \varepsilon/2\right) + P\left\{\left|\frac{1}{n} \sum_{x_{j} \in B(2\rho) \setminus \{h_{1}\}} 1 - P(X' \in B(2\rho) \setminus \{h_{1}\})\right| \right\}$$

$$\geq \frac{\varepsilon}{2} - P(X' \in B(2\rho) \setminus \{h_{1}\}) \leq ce^{-an}. \tag{12}$$

Write $X' \sim \mu'$, $X'' \sim \mu''$. $R'' \triangleq 1 - \sum_{i=1}^{3} EP^2(\theta'' = i \mid X'')$. Then

$$\begin{split} |R''-R+P'| &= \left|1 - \sum_{i=1}^{s} \left(\int_{B(\rho)} + \int_{R^{d} \setminus B(\rho)} \right) P^{2}(\theta'' = i \mid X'' = x) d\mu'' - R + P' \right| \\ &= \left|1 - P(X'' \in B(\rho)) - \sum_{i=1}^{s} \int_{R^{d} \setminus B(\rho)} P^{2}(\theta = i \mid X' = x) d\mu' - R + P' \right| \\ &\leq \left|1 - P(H) - \sum_{i=1}^{s} \int_{R^{d} \setminus H} P_{i}^{2}(x) d\mu - R + P' \right| \\ &+ |P(H) - P(X'' \in B(\rho))| + P(X' \in B(\rho) \setminus \{h_{1}\}) < \varepsilon. \end{split}$$

Thus by Bai's theorem $\forall s>0$, \exists constants a>0, $c<\infty$ independent of n such that

$$P(\Sigma_{9} > \varepsilon) \leq P\left(\left|\frac{1}{n}\sum_{j}I_{(\theta j \neq \theta k j)} - R''\right| > \varepsilon - |R'' - R + P'|\right) < ce^{-6n}.$$
 (13)

By Lemma 1 $\forall s>0$, \exists constants a>0, $c<\infty$ independent of n such that

$$P(\sum_{10} > \varepsilon) < ce^{-an}. \tag{14}$$

Since $P(X'' \in B(\rho) \setminus B(\rho/2)) = 0$ and in the case of X''_j , $X''_{nj} \in B(\rho/2)$, we have

$$\theta_i'' = \theta_{ni}'' = 1, \sum_{i=1}^{n} 1 = 0$$
 a. s. (15)

By (5)—(9) and (11)—(15), taking the largest number c and the smallest

number a, we have $P(|\hat{R}_n - R| > 10s) < ce^{-an}$. This terminates the proof of Step 1. Step 2 (vii) \Rightarrow (i). By contradiction.

Assume that there exists an unregular atom $x_0 \in R^d$ of (X, θ) , i_1 , i_2 such that $P(\theta \neq i_1 | X = x_0) > P(\theta \neq i_2 | X = x_0) > 0$ and (vii) holds. Then

$$\hat{R}_{nk} = \frac{1}{n} \left(\sum_{X_1 = x_0} + \sum_{X_2 \neq x_0} \right) I_{(\theta_2 \neq \theta_{nj}^{(k)})} = \sum_{12} + \sum_{13}.$$
 (16)

Let $A_l \triangleq \{(X_j, \theta_j) = (x_0, i_l), j=1, \dots, k\}, l=1, 2$. Clearly,

$$P(A_1) = \prod_{j=1}^{k} P(X_j = x_0) P(\theta_j \neq i_1 | X_j = x_0)$$

$$> \prod_{j=1}^{k} P(X_j = x_0) P(\theta_j \neq i_2 | X_j = x_0) = P(A_2) > 0.$$

Let

$$\delta \triangle P(X=x_0) \{ P(\theta \neq i_1 | X=x_0) - P(\theta \neq i_2 | X=x_0) \} > 0.$$

By (vii), there exists a constant r such that $\hat{R}_{nk} \xrightarrow{F} r$. Thus there exists a subsequence $\hat{R}_{nmk} \rightarrow r$ a. s. Since $\theta_{nj}^{(k)} = i_l$ on A_l , when $X_j = x_0$, j > k. So by Borel's strong law of large numbers the corresponding subsequence $\sum_{12} \rightarrow P(X = x_0) P(\theta \neq i_l | X = x_0)$ a. s. Thus $\sum_{13} \rightarrow r - P(X = x_0) P(\theta \neq i_l | X = x_0)$ a. s. (l=1, 2). (17)

Denote $B \triangleq \{x: \Delta > \|x - x_0\| > 0\}$. Clearly, $\exists \Delta > 0$ such that $P(X \in B) < \frac{\delta}{3}$. We have

$$\sum_{13} = \frac{1}{n} \left(\sum_{X_j \in B} + \sum_{X_j \neq x_0, X_j \in B} \right) I_{(\theta_j \neq \theta_{nj}^{(k)})} \triangleq \sum_{14} + \sum_{15}, \tag{18}$$

$$\sum_{14} \leqslant \frac{1}{n} \sum_{X_j \in B} 1 \rightarrow P(X \in B) \quad \text{a. s. } (n \rightarrow \infty), \tag{19}$$

$$\sum_{15} = \frac{1}{n} \left(\sum_{X_j \neq \alpha_0, X_j \in B, ||X_j - X_{nj}^{(k)}|| \geq \Delta} + \sum_{X_j \neq \alpha_0, X_j \in B, ||X_j - X_{nj}^{(k)}|| < \Delta} \right) I_{(\theta_j \neq \theta_{nj}^{(k)})} \triangleq \sum_{16} + \sum_{17}.$$
 (20)

By Lemma 1
$$\sum_{16} \leqslant \frac{1}{n} \sum_{||X_j - X_{jk}^{(k)}|| > A} 1 \leqslant \frac{\delta}{3}$$
 a. s. for *n* sufficiently large. (21)

For
$$(X_j, \theta_j) = (x_0, i_1), j = 1, \dots, k$$
, we denote $g_{ln}(X_{k+1}, \dots, X_n; \theta_{k+1}, \dots, \theta_n) \triangleq \sum_{17} (l=1, 2)$. Since $X_{nj}^{(k)} \neq x_0$ for $X_j \neq x_0, X_j \in B$, $||X_j - X_{nj}^{(k)}|| < \Delta$, $g_{1n} = g_{2n}$. (22)

By (18)—(22) the difference of values of \sum_{13} on A_1 and A_2 is less than $\frac{2\delta}{3}$ a. s. for *n* sufficiently large. This contradicts (17). Thus Step 2 is proved and the proof of Theorem 1 is completed.

References

- [1] Fix, E. & Hodges, J. L., Discriminatory Analysis, Nonparametric Discrimination, Consistency Properties, Project 21-49-004, Report No. 4, School of Aviation Medicine, Randolph Field, Texas.
- [2] Dtvroye, L., On the asymptotic probability of error in nonparametric discrimination, Ann. Statist., 9(1981), 1320—1327.
- [3] Wagner, T. J., Convergence of the nearest neighbor rule, IEEE Trans. Inform. Theory, 17, 566-571.
- [4] Bai Zhidong (白志东), The strong Consistency of Error Probabilty Estimates in K-NN Discrimination, Chin. Ann. of Math., 6B: 3(1985), 299—308.