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A NECESSARY AND SUFFICIENT CONDITION
FOR CONVERGENCE OF ERROR
PROBABILITY ESTIMATES IN
~ K-NN DISCRIMINATION

Suxn Zmieane . (Fh&RD*

Abstract

Let(X, 0)be R¥X {1, +++; s}valued random vector, (X 6,), j=1, +-+, n, be its observed -
values, 0% be the K-nearest nelghbor estimate of §;, R‘® be the limit of error probability

and R,.,,=-—;I(o =05 be the error probability estimate. In this paper it is shown that

Ve>0, g constants a>0, c<eo such that

 P(Bp—BP|>8) <o
if add only if there is no unregular atom of (X ) deﬁned 'below and the various conver-
gences R~ R™ are equivalent: : : :

Let (X, 6), (X3, 191),-- (X s ;,) be independent identically distributed random
veotors from R%x {1, -+, s}, where d>1, s>2 and Z"A{(Xj, 0;), j=1, -, n} are
observed values of(X, 6). Let u be the probabllﬂsy meagure of X and

P(2)AP(0=i| X =), for s ERY, i=1,
The A~nearest neighbor estimate % of 0, introduced by E. F:x and J. L. Hodgesm
is defined as follows: arrange | X,—X|, =1, --:, n in increasing order | X g, —X|<

<|Xr,—X|, where | X,—X|is the usual Euclidean distance in R? between X,
and X; pu’o i< when | Xa— X=X &~ —X| and Ri<Rj; set 6 equal to the mteger
which has a ma30r1’oy vote among ‘O, ++*, Or,; in the case of a Votmg tie, set g% equal
with same probability, to each integer which has a majority vote. We write the error
probability R;péP(b;k')geO) and the conditidnai eTTOT 'I;r'c)babilityi ]j;@é?(é;bk) %
0125, AR = A

Tt is known that there. ex1sts R® Alim RP and: under some conditions there exists

i—roa

lim P =R™ a,s. and BP =1 2EP2(X ) (See, for example, [2, 8] for %=1, The

00

postemor error probabﬂlty I® of 0"” for glVGIl Z* iy very mterestmg fiom a
practioal point of view, since one can only work with the “training sample” Z"_
at his disposal. But it is impossible o get the exact probability distribution of L&
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when that of (X, §)is unknown. Many mathematicians have studied the cénvergenoe
of the error probability estimate of L

RnkA"" 2 I(e,*o‘k’

‘where I is the indicator function of set 4 and % is the h-nearest neighbor estimate
of 8; based on {(X, 6,), i=1, -+, n, ¢#4}. Recently, Doctor Bai Zhidong proved

Theorem. If p is nonatomic, then Ye>0, 3 constants a>0, c<oo. independent
of n such that

P(|By—R®|>8)<ce ™
" In this paper we introduce the following

Definition. A point « € R® is called a regular atom of (X, 8) if » is an atom of w

and there exists & nonempty subset {4y, +-; rzig(m)} of set {1, -, s} such that

P(= @,,,IX @)= () =1, g(®).

The goal of the present p.aper is to prove
Theorem 1. The following conditions are equivalent each to other:

(i) there is no unregular atom in the distribusion of (X, ),
(u) V&>0, 3 constants a>0, e< oo independent of n such that ;
' P(|Byy— B®|>8) <ce,

(i) BRu—>R® a.s. (n—>o0),

Ly
(iv) Va>0 Ry—> B® (n—>o0),
Le,
(v) Fa>0, By —> R® (n—>00),
B P .
(vi) B —> B® (n—>00),
F

(vii) 3 constant r such that By —> r.

In this paper we denote by a a positive constant and by ¢ a finite constant. Both
a and ¢ are independent of n and take their own values in each formula. First we shall
show the following

Lemma 1. Let Xy, .-+, X, be iid R valued random vectors and p>0. Then V&>0,
3 constants a>0, ¢< oo independent of n such that '

P (Lgp{jn: | Xy= XP|>p} >e ) <ee™,

where X is the l—th nearest neighbor of X; among {Xy, 4=1, o, m, G}
- Proof of Lemma 1. Vs>0 3 constant M>0 such that P(|X.|>M)<s/2.
Sinoce

S HUSE X=X >0} = (< = XG>, [X1> 1)

+ L i<l X XG|>p, IX A<M AZA T D
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where .4 denotes the number of elements of set A4, by Hoeffding’s inequality, 3
constants ¢>0, c< oo independent of » such that

P(Sy>8/2) <P (L4 {j<n:| X1 > My >o/2)
<P(|E#fj<m| x> My - P(I X} >10)]

>8/2=P(| X,| > M)) <o @

To consider Xy we suppose that j<n, [X;—X®|>p and |X,|<M. Write B;A
{w:|o— X;| <p/2}. It is not difficult o see that each B; intersects at most with k—1
of balls B,, otherwise, it contradiots |X;,—X®|>p. Thus Va:|z|<M, there are
at most % of balls B; containing w. Olearly, each B, {w:]a]<M+p/2}. So

, M 2\?
#H{B;j<n, | X;—XP|>p, |IX,H<M}<70[< :}g/ )J

and for sufficiently large n, .
‘ . ae/2. , 6
From (1)— (8) this lemma follows. ' ‘
Proof of Theorem 1. Olearly, (ii)=>(iii), (1V)==>(V)=>(v1)=>(v11) Since| B |
<1, (iii)=>(iv). Thus to complete the proof it remains to show that (i)=>(ii) and
(vii)=>(4). | |
Step 1 (i)=>(ii). For brevity of the proof, we may suppose k=1, without loss
- of generelity, and this is to discuss [the nearest neighbor discrimination. We denote
by A, B respectively the set of regular atoms of (X, ) with g(#)=1 and g(s)>1.
H A AU B. Olearly, the set H is finite or denumerable. Write .
AL{ay, ag, -}, BA{by, bs, -} and H ALk, hoy-+}.
" Denote P(X € 4), P(XEB), P(XEH) and P(X =b) respectively by P(A), P(B),
P(H) and P(d).
It is easy to see that

RéR<1>=1—5:(L+L+de\ )P @)

§=1

—1 — Df. _ S P(bm) 2 -
=1-P(4)-J R 2 [ P, @
R Aﬁﬂi——( 2 + 2+ 2D Lo, 223+ 2ut+ 5. (®)

@;€A w;€B w;6H
From now on we denote 2 by >
=R

In the case of H =@ Step 1 follows from Bai's theorem. So we may suppose
H 0. |
In the case of A=@, Js=0. To consider X3, we may suppose that A=@. Then

V&>0, 3 constant M such that g+-1P(X =a,)<s/2.
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Thug

PS>0 <P (32 B Towan>o/2) P (3 3, 3 1>002)

m+M=10;=am

<P(£>s/2)+1>{! 3 Si- S P(X =aw)

n m=M+1 25=0m m=M+1

>e/2- 31 P(X= a,,,,)}
The last inequality follows from the fact that by the definition of the regular atom
| 2 I(93#6n1)<1 Qe S.

&3=Cm

So for sufficiently large n, P (% >—§-) =0 and by Hoeffding’s inequality Vs>0, 3

~ constants >0, c<co independent of n such that

P(Xs>8) <ce ™. (6)
In the case of B=@, X4=0. To consider X. we may suppose that Baé¢ S1m11ar1y,

Vs>0, 3 constant M such that 2 P(X =b,)<s/4. By Borel’s strong law of large

m=M+1
numbers, j(m) Amin{j: X =b,} is defined with probability one. Now in the case of
X;=bm, j#j(m) we have 0,,,-=0;(,,,) and :

P2-P1>)<P (|23 3 Lo 2L P(X-b0)|>5/2)

+P(1 S z,1>s/4)

N m=M+1 @;=bm

S p (|1 9(bm) 1
<'§1P (I -n—wj;zb I(oj*oi(m)) —WP (X bm) 4M>
M & 1
+P (5> g)+P { Tt o2 3 P(x=- bm>|

> ps P(X=b,,,)},
m=M+1 :
Where P' A 2_1: ﬁ(_b([}Tl

Hoeffding’s mequahty Y&>0, 3 constants 4>0, e<oo independent of n such that
P(|Za—P'| >8)<ce™. ¢

P(by). So for sufficiently large =, P<—imj-l—>—z-¥>=0 and by

To consider X5, we write
ol XEH, . 4 (X6 XEH,
o hi; XGH: = ) XJEH

Olearly, (X', 8), (X4, 61), «=, (X}, 64) are iid random vectors, and there ig

only one atom by of X’ and P(X'=hy)=P(H).

5-——( > ) )I(oﬁ#enj)=26+27 (8

T &l @yl tlr"g*hx hy=h

By Lemma 1 0f[4], there exists constant m independent of n such that
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m<l = 1<_—°;’f. ) 9

T g, @hs=h
To consider ¥ we introduce random vectors (X", 6" ), (X 67), -, (X!, 0

as follows: write B(p) A{w: |&—hs| <p}. By continuity of probability Ye>0, Jp>0
such that . ,
| P(X'€B(p))<P(X'€B(20))<P(H)+s/2. (10)
Write (X", §")=(X’, §) when X’'E B(p), otherwise §”’=1 and X” is uniformly
distributed in B(p/2) and P(X"€B(p/2)) = P(X'€B(p)). Similarly, we can
defined (X7, 07), j=1, -+, », based on (X}, 4,), j=1, -, n, such that (X", 6"),
(X7, ), 3—1, ., n, are iid. Now there is no atom of X" and P(X”GB(p)\B(p/2))
=0. Thus ' ' -
|So—B+P'| <l S~ S T

W» llws—2isl<e/2;2f08 ;8 Blp)

1 141

" lof—wigll>0l2 N foj~oksll<pl2:@)0%5€ B(p)
- =g+ Do+ Do+ Dt ’ o
Since {j<n:|Xj—X7,|<p/2; X}, X4 EB(p)y2{j<n:| X)~X'y|<p/2 X,
X,;€B(p)} by Lemma 1 (for k=1) and Hoeffding’s inequality Ve>0, 3 consta,nts
a>0, c<co independent of n such that
P(Zs<e)<P (L 1L < 1>2)+P (1 S 1>e/2)

W w-ahgi>er2 2 N w3e BOM\hi)

+ l‘,l; $I<of4=ém“R+P'

I Oty

1 ) : ’ '
B(2
<F <nm—w§>p/21> /2>+P{’ nwseﬁ;p)\(h,)l ;P'(X € B20)\{h})
>-%—P(X’€B(2p)\{h;})<ae~m. | a2
Write X'~ !, X"~ u". R" A1~ EP*(8" =4| X"). Then
. é=1 i
"_ . < s 2| ¥ — "__ ’
|R"~R+P'|=|1 g(jm+ IR‘\B@)P (8"=3| X" =u)dy" ~ R+ P ’

=|1-P(X"€B(p)) -3 LM'B(P)P”(0="q:|X’=w)du’—R+'P"

§=1

< __ — < 2 . D’
<|1 P(.H) ‘=21 s P}(z)du—R+P

+|P(H)~P(X"€B(p)) | +P(X'€B(p)\ {mu})<s.
Thus by Bai’s theorem Ve>0, 3 constants >0, ¢<oo independent of n such that

P(2°>6)<P(H{ 2 Lopronp—B" | >&— B =R+ P |)<ce“"‘. o (13)
J
By Lemma 1 V&>>0, 3 constants >0, c<co independent of » such that ~ -~ -

‘ P(Sho> ) <oe™. I €2
Since P(X”EB(p)\B(p/Z)) =0 and in the case of X, X,€ B(p/2), we'h'ave
0l =0r;=1, 311=0 a.s. : ‘ (15)

By (5) —(9) and (11)—(15), takmg the largest number ¢ and the smallegt
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number @, we have P(|R,~— R|>10s)<ce . This terminates the proof of Step 1.
Step 2 (vii)=>(i). By contradiction. '
Assume that there exists an unregular atom @, € RS of (X, 0), ¢3, ¢a such that

- P(0i1| X =a0)>P (0 13| X =29) >0 and (vii) holds. Then

B k———-—( 2 + 2 )I(e,*e;,k,’) =Zia+2us. (16)

X=m

Let L, A{(X;, 6;) = (@, ), =1, =+, B}, I=1, 2- Olearly,

k
P(43) =£IIP(XJ=%)P(33#’51|Xﬁ“’o)

% ' |
>£_£P(X,-=wo)P(35#fig|X;=wo) =P (45)>0.
Let SAP(X =wo){P(0#i1| X =wo) — P (0 #4a| X =20)} >0.

By (vii), there exists a constant ¢ such that I’é,.,,l—)fr. Thus there exists a subsequence
R, x> a. 8. Since 6% =4, on A;, when X;=m, j>Fk. So by Borel’s strong law of
large numbers the corresponding subsequence io~>P (X =) P (_0%?3,[ X =wm) a.s.
Thus Sis—>r—P(X =wy)P(0 4| X =) a.s (I=1, 2). amn

‘Denote BA{w: 4> |&—w,| >0}. Olearly, 34>0 such that P(X € B) <-§-.., We have

2:13—--;{( x%& x,*z.,z.:'r - ) o099 A Sta+ 215, (18) |
214\-—— D 1->P(XEB) a.s. (n—>oo), , (19)
‘ N X,eB o .
215=l( > + > oot &5+ S (20)
T\ Z00X,28, 11X~ X154 x,*wo.xjéB,ux,—X‘?H«
By Lemma 1 216\1 > 1<-§- a. s.-for n sufﬁmenﬂy 1arge (21)
. || X~XEN >4
For (X;, 6;) =(wo, ?;1), j 1, *y k, we denote gln(Xk+1y soey X”; 070.;.1, °ooy 0,.)é217 ;
(Z=1 2) Since X"‘)aéwo for .X;#ﬂ?o, XjéB, "X;““X(E)”<A FJin=0sn- (22)
By (18)—(22) the difference of values of Js on A; and A, is less than —2:9?- a. 8.

for n sufficiently large. This contradicts (17). Thus Step 2 is proved and the proof of
Theorem 1 is completed. '
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