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INTEGRAL FORMULAS FOR SUBMANIFOLDS IN
EUCLIDEAN SPACE AND THEIR APPLICATIONS
| TO UNIQUENESS THEOREM

LiAsMixn (F4R)*

Abstract

In this paper, the author derives some integral formulas for a pair of submanifolds in
Euclidean Space E**?, and applies these formulas to generalize the Christoffel theorem and
the Hilbert Liebmann-Hsiung theorem. '

§1. A Generalization of the Christoffel Theorem

Let 2, X' be two n-dimensional compact submanifolds (without boundary) in
Erto f: 55 be a diffcomorphism such that 3 and 3’ have parallel tangent spaces at
e € 2 and o' =f(w), i. e. they have the same Gauss image. Choose a local frame field w,
€1, ***y €ny Cnyds**y Casp OVOT 2 such that ey, -+, ¢, are tangent to X. Then it ig also a
local frame field over X’ and ey, , en are tangent to X', -

Throughout this paper we shall agree on the indices of the following ranges:

14, j,+, <m, n+-1<a, B, -, <n+p, 1<4, B, -+, <n-+p.
Let w, be the field of dual frames, the structure equations of E**? are given by
do=1w4es, des=1W4zes,
d'l;A = 'EEB A aBA, ";AB = ’ZZBA, (1 -1)
, AW a3 =W 49 \ Wo3.
Restrioting them to X and X', we have ‘
' do=wie, . do’ =wle,,
we=0, w,=0,
Wia=PuojWy, Wi =hiaj W}, ' (1.2)
dawyy = Wy N Wi+ Ry, dawly=wje A why -+ iy,
Qyy=Wja NWaj, Q%y=Wjo \ Wy
We introduce the differential forms . :
D=3 Qut, A\ o+ ARy, N, A2t AWty Nl N2+ Ay (1.8)
r $
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Cfgs= 851“3333"94,1. AREA ios ANWigyya AWy N oo AW, A ’wimﬂ Aee A ’wé..f
. ol 1N o
r—1 S8
Cr-1,6=07 1,80,
where e=even, r+s=n—c¢."
Consider the deformation” of 3 ,
Zp op=(1+8)w, 1€(~s, 8), €3

dwy= (1-+8)dw=(1+5)wie,
we see that ey, ¢5, *, ¢, are tangent to 2, and

Since

Let
‘Dfs(t) = 82“-":.:”0'111 /\ i /\ ‘Qie«n‘a /\ Wigiy (t) /\ e /\'w‘éﬁ(t‘) A w:sw)}x A nee 'l\ ’w;”.

It is a differential form containing the parameter # on 2. From (1.4) we have
Dy (2) = (1+8)"Diy ’ |

oD, (t) —rD
2Dul) | —rDy s
NQW we compute D) | i another way. Woe consider ¥ and X’ to be two

. ot le=o
imbeddihgs _
' 2 ot M—>Ev,
2 o M—>E", .
where M is a compact manifold and 2'=fox. Then a’ can' be ‘considered to be an

immersion ' . :
g M X(—¢,8)>E?, -

Pulling w, back to M x (—s, 8), we have (ses[5, 6])

ow,;

ot

@’A=dw¢~eA=dmm,-eA+ cesdt=wy-Fwoesdts -
Noting w,=0, we have

'27)’4 (t) ='w,(t) +§U¢dt, B

o (8) =t (1.6)

Wap(t) =wap,
where w,;, w,p do not contain df, and
L By=@ey,
Let | T
Dry(8) =88ty A+ N tysty AW (8) A v+ Ay, (8) AWl Avee At (1.7)

It can be written as o S ,
Dy, (8) = D,s() +dt A pes(t), | | (1.8)

where '
¢"3 (t) = 76?:”9‘31‘:/\ e /\'Qiﬁgiewia%+ /\ w‘aﬂ (t) /\ oo A w‘m- (t) /\ ’w;ei-rn /\ et /\ wén'

- 'We choose es, 65, -, €, such that wy|,=0 for a fixed point #€2. We write the

. operator d on Mx (—e, 8) as d=dyp +dtA —a%— (see[5]) Taking the exterior derivative
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of (1.7), we get _ '
V dﬁfs<t> = ’}’S‘L gy 'Q‘l:‘la /\ A‘Qie 18e /\ @@(t) /\7’558+1,a(t)

/\ wi&*” (t> /\ /\ w°e+r(t) /\ ’w@ewﬂ /\ /\ w’l,. . o ' B '.‘\
On the other hand, we have . _

0D, () = dye Do (8) -+t A 2DrsE) 3])’8“) —at N (8.
Equating the terms involving df and setting t==0, we geb
()| 7 .
'—37‘— t-0 dMqus 'rwaor—-l,s (1 9)

Gomparmg (1.9) with (1.5) and integrating over M, we get the following 1ntegral
formulas

f D+, 0%y =0. © O (1.10)
‘Similarly, we have - v ,
J’-Drs‘*‘waaohjf s—l - 0. _ (1 '11)

From (1.10), (1.11) it follows that | ‘
- J‘va0¢—1s maor,s—1\=0- A (1 12)

The formulag (1.10), (1.11), (1.12) are generahzatmns of the formulas (17) in [1].
In particular, we have

e+1 2¢/2p,)

where Ry, are the Riemannian curvature tensors of 2. The formula (1.18) can be

J‘D,o+ma0¢_1,o=o.' : (1.18)
Let ‘
e/2 1
I = ( 1)2e /2('"1' e> 661 5eR'MaJ' e’ '-R‘e-xieh-xle’
e/2 — i
( 1> <‘nj i 1) 8;1 ;:::'Rhiahf 2"’ .Rie—xéeje—x.feh’ieﬂ;“f e Caty

written as v
f(13+m. H )os A+ Aon=0, @14
thig is the integral formula (19) in [2]. '

Suppose that there exighs a unit normal vector field e,4, over 3 (it is also a unit
normal vector field over Z’) such that the second fundamental forms of both 2 and ¥’
ab €44y are positive definite symmetric matrices. Leb

hig: =hi,n9.5, h;j: =h2,n+p,j ’
K =det(hy;), K'=det(hy),
H= '3-? hiaiea) H' = l‘ h(ii.aea,

M) =)™, (Ny) = ( )
P,— (n—r—s)! Slarirss 9,

!
! T ML P 'Mﬂ' r?“éruj 1 h"ﬂs’ﬂa °
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Theorem 1. Let 3, 3’ be two closed n-dimensional submanifolds in H**?, f: S
2 be a diffeomorphism such that 2 and 2’ hawe paraliel tangent spaces ot € 2 and »' =
JF(@). suppose that there ewists @ unit normal vector field ey., over 2 and %' such that
 the second, fundamental SJorms of both 2 and Z'ab eps, are posq,tfwe If K=K' and H=
H', then f is & translation.
Proof From (1.10) it follows that

JDi, n-11 wao(g,n-l =0,

J-Dm o+ @.05_1,0=0.
From these we obtain

I(Di,»—i - Dn.o) + wa(O%‘,,;_i— 0:—1&) =0,

"According to our choice of the frame fields over X and 2’, we have
’ . Wig = 'wim
8ince wy=MyWj,ntp, Wi =AW} n1p=NyWj,nep, W6 have
D:l.n—:l = 85‘.:}3”’60;, A 'wels, Ao A 'wf: = S?IIZ”M. éz,fg‘ * 'M,,j',, Winip AN Wi+

1 '
= nl 831 ifnhhﬁ?\‘ia!a "'A’Enj” 'wim+p/\"'/\wnm+p’=P1,n—1st

where AV =wq,pip A > A fw,.,,,H,:
Similarly, we have

-Dm0=Pm0dV
Ooyn-1=0Wia AWl A\ +++ AW, =3 Wisa AWl N\ ++ A\ 20,06
7

=H’fw1/\m/\'wn—— g, av,

Ortro=-2. dV.

Hence we getb
J.<P1’ﬂ-—1 Pno)dV'i'Jm' ""‘—"'— '—'—)dV 0

where dv=’wi,n+p/\ * AW, ptpe
From the hypotheses K =K', H=H’, we get

J' (Ps,p_1~ Puo)dV =0,

Since Pgy= Iil" = -I]'(—=P,.o, by Garding’s inequality we get

Pi,p1=Pro.

The equality sign holds only if Ay=pli;. Since Pg,= P, we have p=1. Hence 2 and -
2 differ from each other by a translation. |

Theorem 2. Let 3, 3’ be two submanifolds desorrbed in Theorem 1, and dim(Z)

—dim(¥) =2, If L

N then f is a translation.
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Proof From (1.10) it follows that
Dyy+w+Cpy =0,

Dyg+3:C1p=0,

D11+{D' ‘01() =0,

PDos 4-2'+01=0.
From these we get ‘ |

| j (2D13— Do — Do) = j (5—a') (Cro—Cus)s
Tt can be written as

J(zpn—Poz"Pso)dV J. (w—a')- ( TR >dV.

!

From the hypothesis —% —% , we have

J(2P11—P02— Pgo)dV_=0e

On the other hand we have
2P13— Pog— Pao= (Maahss -+ Aaghiis — Aahbs — Aathis)
— (Nighoo — Ni2ho1) — (hizhaa — haohen)
= A1z —At1) (Moo —Aon) + (Aaa—Ag2)?

= =L [t han) = Ot M) T2 (g = )®

+—1—(7‘:22 — Ab2)?+ (Mg — Me2)?.

H'

Since =~ =T

we have (7‘:11'*‘?\:22) (7\.11—}'%,22) =0. Hence

2Py —Poa—Py>0.
The equality sign holds only if Ay=A»Aj;.

§ 2. Some Generalizations of the Hilbert-
Liebmann-Hsiung theorem

Definition. Let e, be a unit normal vecior field over 2. 2 is called convew with

respect 10 eqyp If, for each e €2, 2 is contained in one of the closed half spaces
| H={yc ™" (y—o)+ensp(2)>0}

H; ={o€ E"?:(y— ) -6a4,(2) <O}.
If 2.is convew with respect t0 €44y and

ZN{ye B (y—o) 'en+p(m) 0} {w}s

and
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then 2 {s said to be sirictly convew with respect 10 ey.y. This definition is a generalization
of the convewity of hypersurface. It is easy to prove that if 2 is strictlyconver with
7€SPeCt 10 €y, then (umips) 98 definitee and when we choose the origin 0E 3, e eqy,(2)
are of the same sign over 2. : N |

In the following we assume ‘

A. There exist P unit normal vector \ﬁelds-e,;,;i, €ns2, **'s Cnip OVOT X such that 3
is umbilical with respect to 6, (#=n-1, +-+, n4+-p—1), and J is strictly convex with
rospect 10 €4p. ' | _ . 4

Denote the principal curvature at e, by C,(s), the principal ourvatures at e,
DY Ay Aay ooy A We pub o | o

8=t 5 adahr S ()

(7
Theorem 3. If J satisfies assnmption A and I,=const. for & fiwed even e, ace<n,

Atken 2 is @ sphere.
Proof From the integaal formulas (1.14) it follows that

J'clm+'[m..?dm=0,
J' Iédm'f'j' -‘g.dméov (dm =y A+ Aa).

Sinoce I,=oconst., we get

| @H- B)wdm=o. (2.2)
Let '
0%o)="3 (),
, byt =g,
h = —(ﬁ'—%ﬂ' 832142, (0 Bus B rasfougs) *++ (O BtagerBtats PteasortPes ) Mrss o
‘Then. "

111= (0n+1; 0»4-1"', Oﬂ+p-—1, Si),
£1= (Oﬂ+1-ze: °*% 0@4-,)-113, hg.{.i)a
From (2.2) we got '

| I.(Lsi— B Vs dm =0, | | (2.8)
where- L
8 Dpip=1Cn15{®@).
Bince - : ’

J;= '(—V_b-q_b—-T.e)—!— 831;::?;3(028‘1f18315; + h‘dl) vire (casis-da-.;&'aia—" h‘a—xlm.h‘c!e)

=’ 62/2 (6/2>Szr0.872r)- T | . .. : (2‘4)

120\ \p
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' ) ¢/2 ._6_.
h = 2 Sgr.l.iae-_gr,
e+l *4+0
. 7 . i s
.we get : '
el/2 6/2 - o
8% j(szrsi Sirs)onss O =0, (2:6)

Since: (hy). is positive definite, we haVe
‘ Sgrﬁgi SQ;.{.;[%O f01‘ 0<’l“<-—2-
The equality sign holds only if Ay=As=++-="A,. Hence 5 is also umbilical with respect

) Catpe Therefore % is & sphere (see[8, 4]). i .
Theorem 4. I f 2 saitisfies assumption 4, and there emst two evens e, 7:, 2<'v <&
<n, such that —I{- const. =a, then % is a spere. o
v
P/roof From . 14) it follows that

m-( H -aH )dm-— -j(Ie—aL,)dm—-o '

e+1
or .
( h1 —a h )‘”n+pdm“0 R (2.7>
The following mequahty is Vahd o
Teadye, t
‘ ' e+l TS
In fact from (2 5), (2. 6) We have B o )
/2 72 e L\ [ = ; =2 [v/2
s 333 )()S T
v+l =07=0 s ‘? AN

T/2 1/2‘14—1 'D' .’F_
I h =221 2 Szuiszioz(ﬁw'” + Z 2 1884507 %,

Hence

' L _l® 1+1 ) —7,4—1 "'7 .
_ SEARAY: Y .,

| , 2 : |
. 02(7-}-1—1—!) -+ 2 (7/ ) (5'214-1}5’7-{-2 = S2187+3>07—2j

Since

B e

and
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Su  Su g
_— or
Saisa S S Ssj+1 _ ’b<'7’
it is easy to obfain
I;v+2 h —'Is h =0,
741 z+3
Thus .
| Lo Lo .. Lo
h SR OSTUS g
v+l 7+3 e+l
Since .

h —ah ==-—-(I h —I, h )<O,
7+

e+l 741

from (2.7) we get h1 —-a h1 =0, whmh is possnble only when Ay=Ay=+:+=A,. Hence
e+ T+

2 i8 a sphere. )

In the following we further assume

B. O (#)+ -+ 02, ,1(2) =0%() =const.

Under hypothesis B we can derive the following integral formulas by induction

J(1+:§: ) B2+ (0048041 dma =0, (2.8)

Using (2.8) We can prove the following
 Theorem 5. I f 2 satisfies A, B and S,=const., then 2 is @ sphere.

Theorem 6. If 3 satisfies A, B and 8./8S.=const. for two evens v and e, then 5 s
@ sphere (v+#e).

When X ig a strictly convex hypersurface in §"**, 3 satisfies A and B auto-

matically Hence 3 is a sphere if §,=const. for a fixed even ¢ (or igl =const. for two
. K2

evens ¢ and fu, Sr<es )
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