TORSION THEORIES AND PRIMARY DECOMPOSITION OF MODULES

ZHANG BINLONG (张滨龙)

Abstract

In this paper, the author obtains the following result: If R is a left semi-artinian max ring, then the primary decomposition theorem holds for all R-modules if and only if Ext $(S_1, S_2) = 0$ for any non-isomorphic simple modules S_1 and S_2 . By means of the primary decomposition of modules, the author proves: All torsion theories of $_{B}\mu$ are simple type if and only if R is a left semi-artinian max ring and Ext $(S_1, S_2) = 0$ for any non-isomorphic simple modules S_1, S_2 .

It is well known that many torsion-theoretic results are obtained for hereditary torsion theories. Thus it is desirable to characterize ring R such that all torsion theories of $_{R}\mu$, the category of unitary left R-modules, are hereditary. K. Ohtake⁽¹⁾ has given an answer to this problem in the case of commutative rings. We shall answer the question in the case of left semi-artinian rings, and characterize ring R such that every torsion theory of $_{R}\mu$ is simple type. In §2 we establish a primary decomposition therem, which is a generalization of Bronowitz and Teply's result^[2]. It will be of interest in other situations.

§1. Preliminaries

Throughout this paper, R denotes an associative ring with identity and $_{R}\mu$ the category of unitary left R-modules.

In [3], Dickson defined a torsion theory on $_{B}\mu$ to be pair (\mathscr{T}, \mathscr{F}) of classes of modules such that:

(1) $\mathcal{T} \cap \mathcal{F} = 0;$

(2) $N \subseteq M$ and $M \in \mathscr{T}$ imply $M/N \in \mathscr{T}$;

(3) $N \subseteq M$ and $M \in \mathscr{F}$ imply $N \in \mathscr{F}$:

(4) For each $M \in_{\mathbb{R}} \mu$, there exists a unique submodule M_t of M such that $M_t \in \mathscr{T}$ and $M/M_t \in \mathscr{F}$.

The class \mathcal{T} is called the torsion class and \mathcal{F} the torsionfree class. M_t is called

10

* Institute of Scientific Research, Chang ShaRailway Institute, Chang Sha, China.

Manuscript received September 28, 1983.

the \mathcal{T} -torsion submodule of M. A torsion class \mathcal{T} , and the associated torsion theory $(\mathcal{T}, \mathcal{F})$, is called hereditary if \mathcal{T} is closed under submodules.

Let φ be a complete set of representatives of the non-isomorphic simple *R*-modules. A torsion theory $(\mathcal{T}, \mathcal{F})$ is said to be simple type if \mathcal{T} is generated by a subset of $\varphi^{[2,4]}$. For each $S \in \varphi$, we say that the *R*-modulet *M* is *S*-primary, if each non-zero homomorphic image of *M* contains an isomorphic copy of *S*. A ring *R* is said to have primary decomposition^[5,6] if, for each $M \in \mathcal{T}_{\varphi}$, the torsion class generated by φ , $M = \bigoplus_{s \in \varphi} M_s$, where M_s is the *S*-primary submodule of *M*.

Goldie's torsion class \mathscr{Y} for $_{R}\mu$ ^[7,8] is the smallest torsion class containing all modules M/N, where N is an essential submodule of M. The torsionfree class \mathscr{N} associated with \mathscr{Y} is precisely the class of non-singular modules. (\mathscr{Y} , \mathscr{N}) is called Goldie's torsion theory.

A ring R is called left semi-artinian ^[9] if non-zero R-modules have non-zero soscles. In this case $\mathcal{T}_{\varphi} = {}_{R}\mu$. A ring R is said to be a left max ring if every left module has a maximal submodule.

§ 2. The Primary Decomposition

Lemma 2.1.¹⁵³ A ring R has u primary decomposition if and only if, for any *R*-module M and simple R-module $S_0 \in \varphi$, the extension of the form

$$0 \rightarrow \sum M_s \rightarrow X \rightarrow S_0 \rightarrow 0$$

is split exactly.

In this section, our main result is the following

Theorem 2.2. Let Rcea left semiartinian max ring, then R has a primary decomposition if and only Extfor any non-isomorphic simple modules and S_2 .

To prove the theorem, the following two lemmas will be needed.

Lemma 2.3. Let R be a ring, $X \in_{\mathbb{R}}\mu$ and $I = \bigcap (L \subseteq X : L \neq 0, X/L \in \mathscr{Y})$. Then $I \in \mathcal{N}$. Here $(\mathscr{Y}, \mathcal{N})$ is the Goldie's torsion theory for $_{\mathbb{R}}\mu$,

Proof By Zorn's lemma, there exists a submodule J of X maximal with respect to $J \cap \mathscr{Y}(I) = 0$, then $J + \mathscr{Y}(I)$ is essential in X. Consider the exact sequence

$$0 \rightarrow \frac{J + \mathscr{Y}(I)}{J} \rightarrow \frac{X}{J} \rightarrow \frac{X}{J + \mathscr{Y}(I)} \rightarrow 0.$$

Since \mathscr{Y} is closed under extension, $X/J \in \mathscr{Y}$. $J \supseteq I$ by the definition of I, and hence $\mathscr{Y}(I)=0$ since $J \supseteq I \supseteq \mathscr{Y}(I)$.

Lemma 2.4. Let $S_0 \in \varphi$. Then $\operatorname{Hom}(S_0, \prod_A M_s / \sum_A M_s) = 0$ for any module M_s , where M_s is the S-primary submodule of M, and A may be any subset of $\varphi - \{S_0\}$.

Proof Suppose, to the contrary, that S_0 is isomorphic to the submodule $R((x_0))$

š

22

Finaly, $S_0 \cong R/N = R/\sum_{a \in A} (0:x_a)$. This is a contradiction since $R/(0:x_a) \cong S \ncong S_0$ for each $a \in A$. Hence Hom $(S_0, \prod_A M_s/\sum_A M_s) = 0$.

Proof of the theorem 2.2

The necessity is obvious by Lemma 2.1.

We show that the condition in the theorem is sufficient.

Let *M* be an *R*-module and $S_0 \in \varphi$. Let $X = \prod_{s \neq s_0} M_s$ and $Y = \sum_{s \neq s_0} M_s$. By Lemma 2.1 it is sufficient to show $\operatorname{Ext}(S_0, Y) = 0$.

Consider the exact sequence

$$0 \rightarrow Y \rightarrow X \rightarrow X/Y \rightarrow 0.$$

We get the exact sequence

$$\operatorname{Hom}(S_0, X/Y) \rightarrow \operatorname{Ext}(S_0, Y) \rightarrow \operatorname{Ext}(S_0, X).$$

By Lemma 2.4 Hom $(S_0, X/Y) = 0$. Thus it is sufficient to show $\operatorname{Ext}(S_0, X) = 0$. By noting that $\operatorname{Ext}(S_0, X) = \operatorname{Ext}(S_0, \prod_{s \neq s_0} M_s) = \prod_{s \neq s_0} \operatorname{Ext}(S_0, M_s)$, it is clear that

 $\operatorname{Ext}(S_0, X) = 0$ if $\operatorname{Ext}(S_0, M_s) = 0$ for all S-prinary modules, where $S \in \varphi$, $S \neq S_0$.

Consider an exact sequence

(*)

$$) \rightarrow M_s \rightarrow W \rightarrow S_0 \rightarrow 0.$$

If M_s is not essential in W, then there exists a submodule N of W such that $N \cap M_s = 0$. Thus $W = M_s \oplus N$ and hence W has a submodule N isomorphic to S_0 . This means that the sequence (*) splits.

If M_s is essential in W, then $I = \bigcap \{L \subseteq W : L \neq 0, W/L \in \mathscr{Y}\}$ is in \mathscr{N} by Lemma 2.3, and $S \subseteq I$ since R is left semi-artinian and M_s is S-primary, thus $S \in \mathscr{N}$. By [10], S is a projective module. Since R is a max ring, there exists a maximal submodule K_s of M_s such that $M_s/K_s \cong S$, and hence $M_s = S \oplus K_s$ since S is projective. It is not difficult to show that $M_s = M_0 \oplus K_s$ since S is projective. It is not difficult to show that $M_s = M_0 \oplus K_s$ since R is left semi-artinian, M_s is an essential extension of Soc M_s , and hence $M_s = S \odot M_s$.

As before, we get an exact sequence

$$\operatorname{Hom}(S_{\bullet}, \Pi S / \Sigma S) \rightarrow \operatorname{Ext}(S_{\bullet}, \Sigma S) \rightarrow \operatorname{Ext}(S_{\bullet}, \Pi S).$$

By Lemma 2.4, $\operatorname{Hom}(S_0, \Pi S / \Sigma S) = 0$.

On the other hand, $\text{Ext}(S_0, \Pi S) = \Pi \text{Ext}(S_0, S) = 0$, since $S \neq S_0$. Hence $\text{Ext}(S_0, M_s) = 0$. Thus the sequence (*) splits and so the proof is complete.

§ 3. Torsion Theory

Theorem 3.1. All torsion theories of $_{R\mu}$ are simple type if and only if

(1) R is a left semi-artinian ring;

(2) R is a max ring;

(3) $\operatorname{Ext}(S_1, S_2) = 0$ for any non-isomorphic simple modules S_1, S_2 .

Proof Necessity. See [2].

Sufficiency. Let $(\mathcal{T}, \mathcal{T}_+)$ be a torsion theory. It is sufficient to show that $(\mathcal{T}, \mathcal{T}_+)$ is hereditary since R is left semi-artinian.

Let $M \in \mathscr{T}$, and let S be a simple shbmodule of M. If we choose $N \subseteq M$, maximal with respect to $N \cap S = 0$, then S is essential in M/N. By Theorem 2.2, R has a primary decomposition. So M/N is a S-primary module. By (2), there exists a maximal submodule $M'/N \subseteq M/N$, then $M/M' \cong S$, and heace $S \in \mathscr{T}$ since \mathscr{T} is closed under homomorphic image.

Let $\Delta = \{S: S \text{ is a simple } R \text{-module and } S \subseteq M/N \text{ for some } N \subseteq M\}$. Then $M \subset \mathscr{T}_{\Delta}$ since R is left semi-artinian, where \mathscr{T}_{Δ} is the torsion theory generated by Δ . By the precoding paragraphs, $\Delta \subseteq \mathscr{T}$; so $\mathscr{T}_{\Delta} \subseteq \mathscr{T}$. It follows that any submodule of M is in \mathscr{T}_{Δ} since \mathscr{T}_{Δ} is hereditary. Thus \mathscr{T} is hereditary and the proof is complete.

In the process of the proof of Theorem 3.1, we also prove the following

Theorem 3.2. Let R be a left semi-artinian ring. Then all torsion theories are hereditary if and only if

(i) R is a max ring;

(ii) $Ext(S_1, S_2) = 0$ for any non-isomorphic simple modules S_1 and S_2 .

References

- [1] Ohtake, K., Commutative rings over which all torsion theories are hereditary, Comm Algebra, 9: 15 (1981), 1533-1540.
- Bronowitz, R. and Teply, M. L., Torsion theories of simple type, J. Pure. Appl Algebra, 3(1973), 329-336.
- [3] Dickson, S. E., A torsion theory for abelian categories, Trans. Amer. Math. Soc., 121 (1966), 223-235.

[4] Stenström. B, Bings of Quotients, Springer-verlag, Berlin Heidel-berg, 1975.

[5] Dickson, S. E., Decomposition of modules II. Rings without chain conditions, Math. Z., 104(1968), 349-357.

- [6] Alin. J. S., Primary decomposition of modules, Math. Z., 107(1968)319-325.
- [7] Alin, J. S. and Dickson, S. E., Goldie's torsion theory and its derived functor, Pacific J. Math., 24 (1968), 195-203.
- [8] Teply, M. L., Some aspects of Goldie's torsion theory, Pacific J. Math., 29(1969), 447-459.
- [9] Năstăsescu. C and Popescu. N, Anneaux semi-artiniens, Bull. Soc. Math. France, 96 (1968), 357-368.
- [10] Tegly, M. L., Torsion-free projective modules, Proc, Amer. Math. Soc., 27 (1971), 29-34.