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ON LKUR SPACES

Yu XanTat(fr &£ &K)*

Abstract

Yn this paper it is proved that if X is an LKUR space, then X has (H) property and
if X* is an LKUR space, then X* has RNP. Also, if M is a Chebyshev subspace of LKUR
space, then P(M) is continuous.

§ 1. Introduction

In [1], F. Sullivan introduced KUR spaces and LKUR spaces. In this paper we

study some properties of LKUR spaces.

Definition 1.*' A Banach space is said. to be an LKUR space if for any >0,
s€8(X)={o; € X, |o| =1}, 3=58(w, &) >0, such that for s, +-, 2,1 ES(X), if
ot wat oo A s | > (K +1) ~3, thon

1 1 1.
* * % % X*;
A(w, @3, -+, Dysy) =SUP w1(:w) a’i(:wz) w1(“:k+1) " ;r;l *E" » <s.
w;(w) w;(w2) w;(wk,*_i) ’Z=1, TR k.

Definition 2. A Banach space is said to have (H) property &f (@,)ne18(X)

and o, 5 o€ 8(X) imply @y —> .
Definition 8."" If X is a Banach space, the dual space X* is said to have (x+)

property, if (v, a€ED)CS(X") and a}, > atcl (X*) imply o, — o*.
Definition 4.5 A Banach space X has the Radon-Nikodym property (RNP) if
for every fimite measurespace (Q, 2, w), each p—continuous vector measure G:2-—>X

of bounded variation there ewists &€ Li(w, X) such that G(H) =L g dw for all B € 2.

In this paper we prove that if X is an LKUR space, then X has (H) property,
and if X* is an LKUR space, then X" has (#*) property and X* has RNP.

In [1], F. Sullivan proved that if M is a Chebyshev subspace of L2UR space,
then P(M) is continuous, where P(M)(2)={yEM; d(w, y)=d(w, M)}. Now we
generélize this result and prove that if M is a Chebyshev subspace of LKUR space,
then P(M) is continuous. % ‘
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§ 2. Theorems

Lemma 1. If (@,, a € D) is a net of X, for every e>0 there ewists o, € D, such
that the tail {@. a>a:} has a finite sQnet,' then (,) s a relatively compact subset of X.
Lemma 2. For all vectors @y, +-+, o, in X,
A(wy, -, o) >dist (@, [@5, -+, @]) A(@s, +*, @),
where th, «+e, @] denotes the affine spam of the xis.
Theorem 1. IfX* is an LKUR space, then X* has (»+) property, and X* has
RNP. ' '

Proof Let (a3;) be a net of §(X™) such that wf;ﬁ o*e8(X™).
Let yp=a;— ;. If |yz]—>0, then, since 0<<|¢/;[ <2, there exists a subnet (denoted

by |4.| again) such that [y;]—>e>0 (a<<2), and obviously, v % 0.

We shall prove that for this subnet (¢;) and for each >0, there exists &, such
that the tail {y% a=a,{has a finite s-net. It follows from Lemma 1 that the subnet
(v) is a relatively compact subset of X*. Therefore there exists a subnet (4},) of

subnet (¢,) such that 4, —>2"€ X", On the other hand, v, ” 0, s0 2*=0, which
contradicts |y5,]|—>&>0. Therefore it is impossible that |y;|-> 0, hence &} —> ", -

We divide the proof into three parts. |

(I) In the case of the L2UR spaces:

Suppose s<a/2. We choose € §(X) such that &*(x) >1—-%)— d (w*, 188—), where
b‘(m*, -‘%-) is the & corresponding to & and -“85- in the definition of L2UR space..
Choose & such that '

% ! 1 % | ’
w“(w)_>1—-§v8<w s %8—)’ 1)
ae * as )
0<o— 55 <[ga]<a+35 . 2)
and
a 3
Wil <2 | ®)
for a=>ap.

Let 45 € S(X™), such that o5*(y}) = 45|, Ve.
We have |o*—gz] = [o*— (o —@z) | = [ 2] =1, and by (1),
82l (" )+ (@) | = [0+ alad| >8-3 (7, 22)
for o, B=ao.
Since X* is an L2UR space, we have
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o 5> A, o' ~4, "~ 4n) =40, 4, ¥5)> H.%Hya v (s yals @
for &, 8>ay, and hence
| w—> AN A R A CHIT AR ®
By Using (5) and (2) , it is easy to see that _
| Hyall — |43 (ys) | <e/4 (6)

for o, B>ay.
If az>ay and o7, '(y.,) =0, then by (4), we have

& o> [y (R~ ok bual = i | vs — il = loel 19l (el - AT
and, by (3), (6)

, 9 —val <—m |9 (9a) — Lol | <e/2. (7
If a0y and g (95) <0, then by (3), (4), and (6), we have
‘ " ?/a+ yaou .<8/2- ' (8)

Now we congider three cases:
(i) If for all >0y, ¥i (¥2) =0, then, by (7), (%) isa -z——net of the tail {ty,,.,

a>do}. _
(it) If for all a>ay, 45(yi) <O, then, by choosing ay>ao, (Yz, ¥z) 18 an s—net
of the tail {y,,, a=ao}. In fact, if aa( #ay) >ao, then, by €))
"ydn ‘ydxH< llyaa+y¢0" + "ya,"'yao" < 2 —2—=

(iif) If there exist ay , aa>ay, such that g5;(45,) >0, 4 (¥2,) <0, then, (4L, v.,)
is an e—net of the tail {y; a>ao}. In faot, if a>ao, and ¢ (g) =0, then, by (7), we

have [IyZ-—-yZ. [[< s if a>0t, and o (y2) <O, then, by (8), we have s —vil <e.

In a word, the tail {ya, a=>dy} has a ﬁnlte g-net,

" (II) In the case of the L8UR spaces,

2
Ohoose & corresponding to 2* and a (TG-) in the definition of L3UR space.
The notations and method are as above. There exists ap such that

(16) >A(0, 92, Y5, Y9,

for a, :8; ¥ =0,
By Using Lemma 2

( - 6) >dist (¢, span (45, y2)) 40, 4i, ¥3).
If for each pair «, B=>a, '
. w(-fé-)>A(0: y:) ‘!!;):
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then, by (1), there exists a,>a such that the tail {9’ a>a,} has a finite s-net.
Otherwise there exist &y, aa=>a, such that

=
‘A‘(O yﬂh) y“a) @ — 16
Let @,> 04, . Then if for a>a,,

15 =it (95, span (45, ¥5)),
then there exists #,€ span(ya,, ¥a,)such that Hz;—y;‘,ﬂ =dist (g5, span (¢}, ¥%.)). Since

(g;) is bounded, then there exists w\—%——net (21, =+, #) of (2).

Therefore (21, +-, #,) is an e-net of the tail {y}; a=ea}. In fact, if a>>a,, then

| — 2t < Jwl— 2] + | 2 — 2] <-—1%-+—;—<6 for some 4, 1<i<n.

(IIT) In the case of fhe LKTUR spaces (5>3),

-1
Choose & corresponding to 2* and @ ( 186 )k in the definition of LKUR space.

Using the same argument, we get that if ay, -, ay=>a,

k=1 ) % *
a(5) " >4, g, -, g >dist (ghy span (G -y Yo VA, Gy -y Yy

If whenever ay, *+°, 012>,

8 k-2 " <
a("ﬁ) >A(0; Yors *°*» yak-l)' »
.According to an inductive argument, there exists a,=>0y such that the tail {ya,
a=>0,} has a finite g—net. Otherwise, there exist ay, -+ a;c_1>ao such that

A, 9, -+, Yirr) >0 (,1.6_)" -

Then choose ¢;,=>max (@, *++, ®-1). When a>>a, we have

16 >d1st (¥, sP2D. (Ya,, ***, Yer) )

Since dim span (4, **, Yn,..) <k—1 and the bounded set in finite dimensional
space is a relatively compact set, as the proof of L8UR spaces, we get that there exists
a tail {¢; a=>a,} which has a finite s-net. '

In the end, we have proved that if X* is an LKUR space, then X* hag ()
property, and, by [4], X* has RNP. Q. E. D.

Theorem 2. If X is an LKUR space, then X has (H) property. |

Proof Suppose (#,)=8(X) and o, Sech (X). If o, > w, then there exists a
subsequence (denoted by (a,) again) such that

sep (@) =inf (|@s— &n|: lnEm)>e>0 for some £>0.
As in the proof of Theorem 1, we get a subsequence (s,,) and an integer N, such

that the set (@, ) has a finite %fnet, which contradicts sep (#,)>s. Q. E. D.
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Theorem 8. If M is a Chebyshev subspace of LKUR space, then P(M) is
continuous.
Proof (I) If #€ M and @, —> o, then
[P(M)a~ P(M)z| = [o— P(M)os| <|a—zal + | P(M)2, ]
<|o—ap| +dist (24, M) <2|as—a|—0.

: nool= 8= P(M)s .+ w—P(M), ,
(1) If e M, then o= [o=PCDa] o= Ilw—P(M)wn and

P(M)z,~>P(M)a iff P(M)a,~—>P(M)s.

So we may assume that || =1 and P(M)x=0, and we need prove that if z, >,
then P(M)a,—>O0.

Since M is a Ohebyshev subspace, if {P(M)a,} is a convergence subsequence of
(P(M)w,), then we have P(M)a, —>0. In fact, if P(M)w, —>m, then

o] = lo—P(M) o] < [o—m| =Lim | @y~ P(M)o,| <lim|o| = |2],

therefore m=0. So if P(M)x,-#0, then there exists a subsequence of {P(M)az,}
(denoted by {P(M)w,} éga,in) such that sep (P(M)w,)>s, for some §>0.

Since 2] <o~ P(M)2u|<|an— P(M)as] + |o—arl<len] + o—2a]>]2l,
we have |P(M)w,—a|—> || and |o+ (a—P(M)2,)+ (9—P(M)2,)| —>8 when n,
m—> oo,

Let yyp=P(M)w,, as in the proof of Theorem 1, we get a subsequence {P(M)a,} -

9

and an integer Ny such that the set (P(M)a,; ¢=>N,) has a finite -%—net, which

contradiots sep (P(M)=,)>e. ‘ Q. E. D.
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