ON LKUR SPACES

Yu XINTAI (俞鑫泰)*

Abstract

In this paper it is proved that if X is an LKUR space, then X has (H) property and if X^* is an LKUR space, then X^* has RNP. Also, if M is a Chebyshev subspace of LKUR space, then P(M) is continuous.

§ 1. Introduction

In [1], F. Sullivan introduced KUR spaces and LKUR spaces. In this paper we study some properties of LKUR spaces.

Definition 1.^[1] A Banach space is said to be an LKUR space if for any s>0, $x \in S(X) \equiv \{x, x \in X, \|x\| = 1\}, \exists \delta = \delta(x, s) > 0$, such that for $x_2, \dots, x_{k+1} \in S(X)$, if $\|x+x_2+\dots+x_{k+1}\| > (K+1)-\delta$, then

Definition 2.^[3] A Banach space is said to have (H) property if $(x_n)_{n=1}^{\infty} \subset S(X)$ and $x_n \xrightarrow{w} x \in S(X)$ imply $x_n \to x$.

Definition 3.^[4] If X is a Banach space, the dual space X^* is said to have (**) property, if $(x^*_{\alpha}, \alpha \in D) \subset S(X^*)$ and $x^*_{\alpha} \xrightarrow{w^*} x^* \in S(X^*)$ imply $x^*_{\alpha} \to x^*$.

Definition 4.^[5] A Banach space X has the Radon-Nikodym property (RNP) if for every finite measurespace (Ω, Σ, μ) , each μ -continuous vector measure $G: \Sigma \to X$ of bounded variation there exists $g \in L_1(\mu, X)$ such that $G(E) = \int_B g \, d\mu$ for all $E \in \Sigma$.

In this paper we prove that if X is an LKUR space, then X has (H) property, and if X^* is an LKUR space, then X^* has (**) property and X^* has RNP.

In [1], F. Sullivan proved that if M is a Chebyshev subspace of L2UR space, then P(M) is continuous, where $P(M)(x) = \{y \in M; d(x, y) = d(x, M)\}$. Now we generalize this result and prove that if M is a Chebyshev subspace of LKUR space, then P(M) is continuous.

Manuscript received June 6, 1983. Revised February 27, 1984.

^{*} Department of Mathematics, East China Normal University, Shanghai, China.

§ 2. Theorems

Lemma 1.^[6] If $(x_{\alpha}, \alpha \in D)$ is a net of X, for every s > 0 there exists $\alpha_s \in D$, such that the tail $\{x_{\alpha}, \alpha \ge \alpha_s\}$ has a finite s-net, then (x_{α}) is a relatively compact subset of X.

Lemma 2.^[2] For all vectors x_1, \dots, x_k in X,

 $A(x_1, \dots, x_k) \ge \text{dist} (x_1, [x_2, \dots, x_k]) A(x_2, \dots, x_k),$

where $[x_2, \dots, x_k]$ denotes the affine span of the x'_i s.

Theorem 1. If X^* is an LKUR space, then X^* has (**) property, and X^* has RNP.

Proof Let (x_{α}^*) be a net of $S(X^*)$ such that $x_{\alpha}^* \xrightarrow{w^*} x^* \in S(X^*)$.

Let $y_{\alpha}^* = x_{\alpha}^* - x_{\alpha}^*$. If $||y_{\alpha}^*|| \to 0$, then, since $0 \le ||y_{\alpha}^*|| \le 2$, there exists a subnet (denoted by $||y_{\alpha}^*||$ again) such that $||y_{\alpha}^*|| \to a > 0$ ($a \le 2$), and obviously, $y_{\alpha}^* \xrightarrow{w^*} 0$.

We shall prove that for this subnet (y_{α}^*) and for each s > 0, there exists α_s such that the tail $\{y_{\alpha}^*, \alpha \ge \alpha_s\}$ has a finite s-net. It follows from Lemma 1 that the subnet (y_{α}^*) is a relatively compact subset of X^* . Therefore there exists a subnet $(y_{\alpha s}^*)$ of subnet (y_{α}^*) such that $y_{\alpha s}^* \to z^* \in X^*$. On the other hand, $y_{\alpha s}^* \xrightarrow{w^*} 0$, so $z^* = 0$, which contradicts $\|y_{\alpha s}^*\| \to \alpha > 0$. Therefore it is impossible that $\|y_{\alpha}^*\| \to 0$, hence $x_{\alpha}^* \to x^*$.

We divide the proof into three parts.

(I) In the case of the L2UR spaces:

Suppose $\varepsilon < a/2$. We choose $x \in S(X)$ such that $x^*(x) > 1 - \frac{1}{3} \delta\left(x^*, \frac{a\varepsilon}{8}\right)$, where $\delta\left(x^*, \frac{a\varepsilon}{8}\right)$ is the δ corresponding to x^* and $\frac{a\varepsilon}{8}$ in the definition of L2UR space.

Choose α_0 such that

$$x_{\alpha}^{*}(x) > 1 - \frac{1}{3} \delta\left(x^{*}, \frac{a\varepsilon}{8}\right), \qquad (1)$$

$$0 < a - \frac{a\varepsilon}{32} < \|y_{\alpha}^*\| < a + \frac{a\varepsilon}{32}$$
(2)

and

$$\frac{a}{\|y_{\alpha}^*\|} < \frac{3}{2} \tag{3}$$

for $\alpha \geq \alpha_0$.

Let $y_{\alpha}^{**} \in S(X^{**})$, such that $y_{\alpha}^{**}(y_{\alpha}^{*}) = ||y_{\alpha}^{*}||$, $\forall \alpha$. We have $||x^{*}-y_{\alpha}^{*}|| = ||x^{*}-(x^{*}-x_{\alpha}^{*})|| = ||x_{\alpha}^{*}|| = 1$, and by (1),

$$3 \ge \|x^* + (x^* - y^*_{\alpha}) + (x^* - y^*_{\beta})\| = \|x^* + x^*_{\alpha} + x^*_{\beta}\| > 3 - \delta\left(x^*, \frac{a\varepsilon}{8}\right)$$

for α , $\beta \ge \alpha_0$.

Since X^* is an L2UR space, we have

$$x \frac{\varepsilon}{8} > A(x^*, x^* - y^*_{\alpha}, x^* - y^*_{\beta}) = A(0, y^*_{\alpha}, y^*_{\beta}) \ge \| \|y^*_{\alpha}\|y^*_{\beta} - y^{**}_{\alpha}(y^*_{\beta})y^*_{\alpha} \|, \qquad (4)$$

for α , $\beta \ge \alpha_0$, and hence

$$a \frac{s}{8} > |\|y_{\alpha}^{*}\|\|y_{\beta}^{*}\| - |y_{\alpha}^{**}(y_{\beta}^{*})|\|y_{\alpha}^{*}\||.$$
(5)

By Using (5) and (2), it is easy to see that

$$|\|y_{\alpha}^{*}\| - |y_{\alpha}^{**}(y_{\beta}^{*})\| < \varepsilon/4$$
(6)

for α , $\beta \ge \alpha_0$.

If $\alpha \ge \alpha_0$ and $y_{\alpha_0}^{**}(y_{\alpha}^*) \ge 0$, then by (4), we have

$$a \frac{\varepsilon}{8} \ge \|y_{\alpha_{0}}^{**}(y_{\alpha}^{*})y_{\alpha_{0}}^{**} - \|y_{\alpha_{*}}^{*}\|y_{\alpha}^{*}\| \ge \|y_{\alpha_{0}}^{**}\| \|y_{\alpha_{*}}^{*} - y_{\alpha}^{*}\| - \|y_{\alpha_{0}}^{*}\| \|y_{\alpha_{0}}^{**}(y_{\alpha}^{*}) - \|y_{\alpha_{0}}^{*}\| \|,$$

and, by (3), (6)

$$\|y_{\alpha_{0}}^{*}-y_{\alpha}^{*}\| \leq \frac{a\varepsilon}{8\|y_{\alpha_{0}}^{*}\|} + \|y_{\alpha_{0}}^{**}(y_{\alpha}^{*})-\|y_{\alpha_{0}}^{*}\|\| < \varepsilon/2.$$
(7)

If $\alpha \ge \alpha_0$ and $y_{\alpha_0}^{**}(y_{\alpha}^*) < 0$, then by (3), (4), and (6), we have

 $\|y_{\alpha}^{*}+y_{\alpha_{0}}^{*}\| < \varepsilon/2.$ (8)

Now we consider three cases:

(i) If for all $\alpha > \alpha_0$, $y_{\alpha_0}^{**}(y_{\alpha}^*) \ge 0$, then, by (7), $(y_{\alpha_0}^*)$ is a $\frac{s}{2}$ -net of the tail $\{y_{\alpha}^*; \alpha \ge \alpha_0\}$.

(ii) If for all $\alpha > \alpha_0$, $y_{\alpha_0}^{**}(y_{\alpha}^*) < 0$, then, by choosing $\alpha_1 > \alpha_0$, $(y_{\alpha_0}^*, y_{\alpha_1}^*)$ is an s-net of the tail $\{y_{\alpha_i}^*, \alpha \ge \alpha_0\}$. In fact, if $\alpha_2(\neq \alpha_1) > \alpha_0$, then, by (8)

$$||y_{\alpha_{s}}^{*}-y_{\alpha_{1}}^{*}|| \leq ||y_{\alpha_{s}}^{*}+y_{\alpha_{0}}^{*}|| + ||y_{\alpha_{1}}^{*}+y_{\alpha_{0}}^{*}|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(iii) If there exist α_1 , $\alpha_2 > \alpha_0$, such that $y_{\alpha_0}^{**}(y_{\alpha_1}^*) \ge 0$, $y_{\alpha_0}^{**}(y_{\alpha_0}^*) < 0$, then, $(y_{\alpha_0}^*, y_{\alpha_0}^*)$ is an *e*-net of the tail $\{y_{\alpha}^*; \alpha \ge \alpha_0\}$. In fact, if $\alpha > \alpha_0$, and $y_{\alpha_0}^{**}(y_{\alpha}^*) \ge 0$, then, by (7), we have $\|y_{\alpha}^* - y_{\alpha_0}^*\| < \frac{\varepsilon}{2}$; if $\alpha > \alpha_0$, and $y_{\alpha_0}^{**}(y_{\alpha}^*) < 0$, then, by (8), we have $\|y_{\alpha}^* - y_{\alpha_0}^*\| < \varepsilon$.

In a word, the tail $\{y_{\alpha}^*; \alpha \ge \alpha_0\}$ has a finite *s*-net.

(II) In the case of the L3UR spaces.

Choose δ corresponding to x^* and a $\left(\frac{\epsilon}{16}\right)^2$ in the definition of L3UR space. The notations and method are as above. There exists α_0 such that

$$a\left(\frac{s}{16}\right)^2 > A(0, y^*_{\alpha}, y^*_{\beta}, y^*_{\gamma}),$$

for α , β , $\gamma \ge \alpha_0$.

By Using Lemma 2

$$a\left(\frac{\varepsilon}{16}\right)^2 > \text{dist} (y_{\gamma}^*, \text{span} (y_{\alpha}^*, y_{\beta}^*)) A(0, y_{\alpha}^*, y_{\beta}^*).$$

If for each pair α , $\beta \ge \alpha_0$,

$$a\left(\frac{\varepsilon}{16}\right) > A(0, y_{\alpha}^*, y_{\beta}^*),$$

467

then, by (1), there exists $\alpha_s > \alpha_0$ such that the tail $\{y^*_{\alpha}; \alpha \ge \alpha_s\}$ has a finite s-net.

Otherwise there exist α_1 , $\alpha_2 \ge \alpha_0$ such that

$$A(0, y^*_{\alpha_1}, y^*_{\alpha_2}) \ge \alpha \frac{s}{16}$$
.

Let $\alpha_s > \alpha_1$, α_2 . Then if for $\alpha > \alpha_s$,

$$\frac{s}{16} \geq \text{dist} (y^*_{\alpha_1}, \text{span} (y^*_{\alpha_1}, y^*_{\alpha_2})),$$

then there exists $z_{\alpha}^* \in \operatorname{span}(y_{\alpha_1}^*, y_{\alpha_2}^*)$ such that $||z_{\alpha}^* - y_{\alpha}^*|| = \operatorname{dist}(y_{\alpha}^*, \operatorname{span}(y_{\alpha_1}^*, y_{\alpha_2}^*))$. Since (z_{α}^*) is bounded, then there exists $a \frac{s}{2}$ -net (z_1^*, \dots, z_n^*) of (z_{α}^*) .

Therefore
$$(z_1^*, \dots, z_n^*)$$
 is an *s*-net of the tail $\{y_{\alpha}^*; \alpha \ge \alpha_s\}$. In fact, if $\alpha \ge \alpha_s$, then

$$\|y_{\alpha}^{*}-z_{1}^{*}\| \leq \|y_{\alpha}^{*}-z_{\alpha}^{*}\| + \|z_{\alpha}^{*}-z_{i}^{*}\| \leq \frac{\varepsilon}{16} + \frac{\varepsilon}{2} < \varepsilon \quad \text{for some } i, \ 1 \leq i \leq n.$$

(III) In the case of the LKUR spaces (k>3).

Choose δ corresponding to x^* and $\alpha \left(\frac{\varepsilon}{16}\right)^{k-1}$ in the definition of LKUR space. Using the same argument, we get that if $\alpha_1, \dots, \alpha_k \ge \alpha_0$,

 $a \left(\frac{s}{16}\right)^{k-1} > A(0, y_{\alpha_1}^*, \dots, y_{\alpha_k}^*) \ge \text{dist} (y_{\alpha_k}^*, \text{span} (y_{\alpha_1}^*, \dots, y_{\alpha_{k-1}}^*)) A(0, y_{\alpha_1}^*, \dots, y_{\alpha_{k-1}}^*);$ If whenever $\alpha_1, \dots, \alpha_{k-1} \ge \alpha_0$,

$$a\left(\frac{\varepsilon}{16}\right)^{k-2} > A(0, y_{\alpha_1}^*, \cdots, y_{\alpha_{k-1}}^*).$$

According to an inductive argument, there exists $\alpha_s \ge \alpha_0$ such that the tail $\{y_{\alpha_i}^*, \alpha \ge \alpha_s\}$ has a finite s-net. Otherwise, there exist $\alpha_1, \dots, \alpha_{k-1} \ge \alpha_0$ such that

$$A(0, y^*_{\alpha_1}, \cdots, y^*_{\alpha_{k-1}}) \geq a \left(\frac{s}{16}\right)^{k-2}$$

Then choose $\alpha_{s} \ge \max(\alpha_{1}, \dots, \alpha_{k-1})$. When $\alpha \ge \alpha_{s}$ we have

$$\frac{s}{16} \geq \text{dist} (y_{\alpha}^*, \text{span} (y_{\alpha_1}^*, \cdots, y_{\alpha_{k-1}}^*)).$$

Since dim span $(y_{\alpha_1}^*, \dots, y_{\alpha_{k-1}}^*) \leq k-1$ and the bounded set in finite dimensional space is a relatively compact set, as the proof of L3UR spaces, we get that there exists a tail $\{y_{\alpha_i}^*, \alpha \geq \alpha_s\}$ which has a finite *s*-net.

In the end, we have proved that if X^* is an LKUR space, then X^* has (**) property, and, by [4], X^* has RNP. Q. E. D.

Theorem 2. If X is an LKUR space, then X has (H) property.

Proof Suppose $(x_n) \subset S(X)$ and $x_n \xrightarrow{w} x \in S(X)$. If $x_n \not\rightarrow x$, then there exists a subsequence (denoted by (x_n) again) such that

 $\sup(x_n) = \inf (\|x_n - x_m\|; |n \neq m) > \varepsilon > 0 \quad \text{for some } \varepsilon > 0.$

As in the proof of Theorem 1, we get a subsequence (x_{n_i}) and an integer N_0 such that the set (x_{n_i}) has a finite $\frac{s}{2}$ -net, which contradicts sep $(x_n) > s$. Q. E. D.

Theorem 3. If M is a Chebyshev subspace of LKUR space, then P(M) is continuous.

$$\begin{array}{l} Proof \quad (I) \quad \text{If } x \in M \text{ and } x_n \to x, \text{ then} \\ \|P(M)x - P(M)x_n\| = \|x - P(M)x_n\| \leqslant \|x - x_n\| + \|P(M)x_n - x_n\| \\ \leqslant \|x - x_n\| + \text{dist } (x_n, M) \leqslant 2\|x_n - x\| \to 0. \\ \\ (II) \quad \text{If } x \notin M, \text{ then } x'_n \equiv \frac{x_n - P(M)_x}{\|x - P(M)_x\|} \to x' = \frac{x - P(M)_x}{\|x - P(M)_x\|} \text{ and} \\ \quad P(M)x_n \to P(M)x \quad \text{iff } P(M)x'_n \to P(M)x'. \end{array}$$

So we may assume that ||x|| = 1 and P(M)x = 0, and we need prove that if $x_n \to x_n$, then $P(M)x_n \to 0$.

Since *M* is a Chebyshev subspace, if $\{P(M)x_{n_i}\}$ is a convergence subsequence of $(P(M)x_{n_i})$, then we have $P(M)x_{n_i} \rightarrow 0$. In fact, if $P(M)x_{n_i} \rightarrow m$, then

 $\|x\| = \|x - P(M)x\| \le \|x - m\| = \lim \|x_{n_i} - P(M)x_{n_i}\| \le \lim \|x_{n_i}\| = |x|,$

therefore m=0. So if $P(M)x_n \neq 0$, then there exists a subsequence of $\{P(M)x_n\}$ (denoted by $\{P(M)x_n\}$ again) such that sep $(P(M)x_n)>s$, for some s>0.

Since $||x|| < ||x - P(M)x_n|| \le ||x_n - P(M)x_n|| + ||x - x_n|| \le ||x_n|| + ||x - x_n|| \Rightarrow ||x||$, we have $||P(M)x_n - x|| \Rightarrow ||x||$ and $||x + (x - P(M)x_n) + (x - P(M)x_m)|| \Rightarrow 3$ when n, $m \to \infty$.

Let $y_n = P(M)x_n$, as in the proof of Theorem 1, we get a subsequence $\{P(M)x_{n_i}\}$ and an integer N_0 such that the set $(P(M)x_{n_i}; i \ge N_0)$ has a finite $\frac{s}{2}$ -net, which contradicts sep $(P(M)x_n) > \varepsilon$. Q. E. D.

References

- [1] Sullivan, F., A generalization of uniformly rotund Banach space, Canad. J. Math., 31 (1979), 628-636.
- [2] Geremia, R., Sullivan, F., Multi-dimensional volumes and moduli of convexity in Banach space, Annali de Math. Fure ed Applicata, 1(1981), 1-21.
- [3] Day, M. M., Normed linear space, Springer Verlag (1973).
- [4] Phelps, R. R., Dentibility and extreme points in Banach space, J. Fun. Ana., 16 (1974) pp78-90.
- [5] Diestel, J., Uhl, J. J., Jr., Vector measures, Math. Surveys, 15 (1979).
- [6] Holmes, R. B., Geometric functional analysis and its applications, Springer-Verlag (1975), p. 233 (Exercises 4.21).