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ON A SURJECTIVITY FOR THE SUM OF

'TWO MAPPINGS OF MONOTONE TYPE

ZHA0 YICHUN (R L k) *

Abstract

[

In this paper the sum (7'+8) of two nonlinear mappings is considered, ‘where T is
maximal monotone or generalized pseudomonotone and S is geheralized pseudomonotone or
of type (). By using the concepts of 7T-boundedness, 7'-generalized pseudom.onotone
mappings ‘and mappings of type T — (M) introduced by the author, it is provéd that
(T+8) is of type (M). A new surjéctiﬁty_result for multivalued pseudo A-proper
‘mappings is given. As a consequence, it is obtained that the coercive mappings of type
(M) whose effective domain contains a dense linear subépace.are surjectivity. In particular,
the author answers affirmatively a part of Browder's question (see [1], p. 70).

It makes an important sense to study the surjectivity for the sum of two
mappings of monotone type in the theory of monotone operators and its applications.
Let X be a real Banach space, X" its dual space, and let 7'; X —2*" be a maximal
monotone mapping. Browder posed the following open question™: Suppose that § is
a bounded finitely continuous T-pseudomonotone mapping from X to- X* and
(T +8) is coercive; is it then true that (T+8) is surjective? Hess and the author
have researched into this question using different methods®®, In addition, if 7 is
weakly closed and § is of type (M), until now the best results on the surjectivity
for (T+8) belong to [4, b]. When studying a surjectivity for the sum (7'+8) of
two mappings of monotone type, all authors restricted ' and § respectively, but
did not make a connection between properties of 7' and § themselves. By the above
reasons, we have introduced the notions on 7-boundedness, T'-generalized pseudomo—

notone mappings and mappings of type T'— (M) in [6]. We have proved that the -

quasi-bounded mapping § must be T-bounded and that generalized pseudomonotone
mappings and 7T-pseudomonotone mappings in Browder’s sense § must be 7-
generalized pseudomonotone, if 7' is maximal monotone. This paper is a continuation
of [6]. In the first section of this paper, we shall simplify the sum of some mappings
of monotone type by means of the notion on T-boundedness: The sum of two
generalized pseudomonotone mappings is reduced to one; and the sum of a weakly
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closed mapping and a mapping of type (M) is reduced to a mapping of type (M). In
the second section of this paper, we shall first prove that quasi-bounded multivalued
mappings of type (M) are weakly A-proper, and then give a surjectivity result for
this kind of mappings. This not only extends a result in 7] but also answers
affirmatively a .pa,rt of Browder’s question. It should be noted that the mappings
studied here are not defined everywhere.

§ 1. On the Sum of Two Mappings of Monot’bne Type -

Let the spaces X and X" be as before and let T:X —2** be a mapping. We
denote by D(T") and G(T') the effective domain and the graph of 7' and denote by
“—” and “—"’ strong and weak convergences, respectively. .#” denotes the collection
of all natural numbers. We consider the following hypotheses on the mappings:

(my) For each #€ D(T), T is a nonempty bounded olosed convex set of X *

(mg) For any [#,, fol EG(T) (nEN), ifwg—my in X, fo—fo in X* with
2, X andfOEX*and ‘

E-E(fm wn—'wo) <O)

then [, fol €G(T). If, in addition, the assertion (f,, @,)—>(fo, %) holds, too,
then we say that 7' satisfies the hypothesis (mb);
* (mg) For each finite dimensional subspace F of X, T' is upper semicontinuous

a8 a mapping from F into 2%* rélative to the weak topology of X*;

(mg) For any [m,, ful EG(T) (REN"), if wy—>mo in X, fo—fo in X* with 2,€
X and f, € X*, then [, fo] € G(T). |

The mapping T is said o be of type (M), generalized pseudomonotone or weakly
closed, respectively, if it satisfies (my), and, (ms) in addition, a corresponding
hypothesis among (mg), (mb) or (ms). It was known that maximal monotone =>
generalized pseudomonotone => of type (M) &= weakly closed. Obviously, if T and §
satisfy (ms) and (msg), then their sum must be so. Thus, in order to show (7'--S)
is some one of these types, it suffices to prove that (T'+8) satisfies the respective
condition among (msg), (my) and (m,). As to the concepts for the quasi-boundedness
of a mapping and the normalized dual map, see [4]. '

Definition 1", 'Let X be a Banach space, X* its dual space, and let meppings
T, 8: X — 2% and QcD(T) N D(8) #¢p. A mapping 8 is said to be T-bounded on Q
if for any bounded sequence {,} Q when fu+ go—>h(n—>o0), where fo&Tw,, g,E Sw,
(mEN") and h€ X", {g,} is bounded.

Olearly, if T is a bounded mapping (zero mapping), then arbitrary mappings §
are T'-bounded (0-bounded) on the effective domain D(S). We have proved that if
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a mapping § is quasi-bounded, then § must be T-bounded on D(T) N D(S) with

Tespect t0 any monotone mapping s, Thus, T-boundedness is a very weak concept.

Definition 2, Let spaces Xand X* be as in Defimition 1, and mappings T, S,

X —>2%* qith D(T)' ND(8) #¢. A mapping S is said to be T-generalized pseudomonotone

if for any sequence {w,} =D(T) N.D(S) with zy—>w,, g and{ f} is bounded.such that
11m(f n k- On, Tn— @) <O,

where f»ETw», y»GSwn(nE A"), we have [, 9] € G(8) and (gn, w»)-*(yo, o) (n—>
00). 8 is said to be of type T—(M) if we do not require (gn, ©n)—>(go, o).

According to Definition 2, a generalized pseudomonotone inapping (a mapping
of type (M)) in [4] must be 0-generalized pseudomonotone (0-of type (M)), where
0 is the zero mapping. | ’

Lemma 1. Let X be a real Banach space, T, X—>2%* generalized pseudomonotone.
Suppose that {w,} <D(T"), W=y and f,,é o (n—>00) with foETw,(REN"). Then

1im (fo, an—20) 0. W
Proof If the inequality (1) does not hold, then _
l.iin(f”’ a;,,——wo)<0. . (2)

By hypotheses, {(fx, @,— o)} is a bounded numerical sequence. It follows that there
exists its subsequence {(f,,, @, — )} such that

lijm (s @ny—wo) =Um( fo, 25— 0)<0. 3
Since 7' is generalized pseudomonotone, we obtain (f,,, @,)—>(fo, #). This fact
contradicts (8). . | Q. E.» D.

Lemma 1 extends Lemma 1 in [6].

‘Theorem 1. Let X be a real re flewive Bamach space, T, X —> 2%* genefmhzed
pseudomonotone. Suppose that 8; X —> 2% is generalized pseudomonotone or T-pseudomo—
notone (in the Browder's sense in [1]') (of type (M)) and D(T) ND(S) #¢. Then S is
T—-generalized pseudomonotone (of type T — (M)).

Proof Woe shall show only the case when § is generalized pseudomonotone and
T-pseudomonotone. If § is of type (M), the argument is similar. Let {x,} <D (T) N
D(8) such that w,~—>as, go—go and {f,»} is bounded with f,ETw, go€ Sz,(RE A")
and

ii__m(fn’i"gm s — @) <0, S \ 4) ,

‘Since X is reflexive and {f,} is bounded, there exist fOE X and its aubsequence S,
—fo(j—=>0). (4) 1mplles
l_lil__l(f,.” T, ~ wo) + ]Tjﬁ-l(gﬂu Tny— mo) <0.
J .

Since § is either generalized pssudomonotone or 7'-pseudomonotone, we have [y, go]
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EG(8) and (g, Bn,)—>(go, @0) (j—>0). Indeed, in the course of the above proof we
have shown that to every subsequence {(gs,, @s,)} of {(ga, zv,,,)} there exists its
subsequence {(gnm, @axw) ) Which converges t0 (go, @o). Therefore, (gny @n)—>(go, %)
(n—»oo) | o e - QE.D.

- Corollary 1. Tkeorem 1 in [6] . :

In general, the sum of two generahzed pseudomonotone mappmgs need not be
generahzed pseudomonotone but we have

‘Theorem 2 Let X be a real reﬂewwe Bwnach space, T, X —->2X genemlfozed
pseudomonotone Sz@pose that ;S’ X —->2X* s T~bounded cmd T—genemlszed pseudomono——
tone. T'hen (T +8 ) is geneml@zed pseudomonotowe on .D(T) ND(S). ' '

Proof Let {w,,}cD(T) N.D(S) such that v, zo, f,,—i—g,,—-‘-k Wlth anTw,,, g,,E
;S’a:,,(nE A and hEX and

hm(f,,+g,,, w,,,~~wo)<0 T ®)

Since S is T—-bounded { f,,} and {g;} are bounded.. We may agsume g,,~>go in X"
and fu,~>h—go in X" (j—>o0). Becauss of (5) and the fact that § is T—generahzed
pseudomonotone, we have [, goj EG S’) and (g,,,; @,)—>(g0, %) ( '7——>oo) I—Ience

the 1nequa11ty (5) becomes
= 11m(f,., B, — w0)<0

Now, we conclude [wo, h—go] €G(T) and ( fn,, Dy,) —> (h go, wo) since T ig
generahzed pseudom.onotone Therefore, we obtain [@o, #]€Q(T+8) and (fy,+ga,
@) —>(h, %) (j—>op). By the same reason: asin the proof of Theorem 1, we find
(fatgn, @a)—>(h, @) (R—>0). . QED. . -
In combination with Theorem 1, we have - SRR
. Corollary 1. ' If T is genemlwzed pseudomanotone and S is T-bounded generalized
pseudomonotane or T—pseudomonotone, then (T+8)-is generalized. pseudomonotone.
Oorollary 1 eliminates the assumptions of the boundedness.on 7' and. D(T) X
in Lemma in [5, p. 212]. ‘ o el
Corollary 2. If T s generalized pseudomonotone and S is T—boundeol generalized
pseudomonotone or T~pseudomonotone which are muliivalued and satisfy condition (m,),
suppose that there ewists o dense: limear. subspace” Xo of X which is contained in D(T')
and (T+8) is quasi-bounded and coercive, then R(T+8)=X*, s
. Proof By Corollary 1, (T'+ 8) is generalized pseudomonotone. Therefore,
R(T'+8)=X" by Theorem 5in [8]. _ , v L
. Gorollary 8. LetT, X525 bea mawimal monotone mappmg tmd S X -—>2X*
@& quasi—bounded finitely conténuous T—pseudomonotone fwhwh swtq,s fies condition (my).
If (T+8) is coercive, then (T+8) is sumecmfve e
Proof Since D(T)=D(S)=X, T is quasi-bounded and 0 & Int D(T).
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Therefore, (T'+8) is quasi-bounded. By Corollary 2, (T+8) is surjective.
" Remark 1. If 0€Int D(T), T is quasi-bounded. The assumption that D(Z')
=D(8) =X in Qorollary 8 can be changed to D(T+8)=X. (see Corollary 2).

Remark 2. In general case, (T'+8) is coercive but is not certainly surjective.
For example, lot T, 8; B*— R satisfy the assumption that for any @ in B*, To=0
and Sz=x for any o€ D(8)=R1 U {0}. It is known easily that T is bounded maximal
monotone, § is bounded T—péeudomonotone and (T+8) is coercive. But R(T+S)

RLU {0} =;ER1 Corollaries 2 and 8 are pomted out by my post graduate Min,
Lequan . :
In a similar fashion to the proof of Theorem 2 we obtain the following.

Theorem 3. Let X be a real reflemive Banach space, T, X —>2%* weakly closed.
Suppose that @ mapping 8, X —>2%* is T-bounded and of type T—(M ). Then (T +8) ds
of type (M). .

In combination with Theorem 1, we have

~ Corollary 1. If T is a weakly closed and mamimal monotone mwppmg and 8 is @
T-bounded mapping of type (M), then (T+ S) is of type (M).

When 7T is generalized pseudomonotone (in particular, maximal monotons),
Theorem 1 unifies two mnotions that § is generalized pseundomonotone and T'-
pseudomonotone by P-generalized pseudomonotone mappings. The assumptions in
Qorollary 1 of Theorem 2 iy gimpler than ones in Theorem 1 in [8]. Since a
generalized pse__udomonotbﬁe mapping must be of type (M), in order to study a
surjectivity for the sum (7+8) of two mappings of monotone type, by Theorems 2
and 3, it suffices to consider a surjectivity for a mapping of type (M). |

§$ 2. Results of a Surjectivity ‘

In what follows we always assume that X is a real separable reflexive Banach
space. For thig kind of space, there is an injective approximation scheme I'=
({X R D. ¢4 {Pﬂ}, {Q.}) for (X, X *), where {X,} is an increasing sequence of
finite dimensional subspaces of X aﬁd p(@, X,;)—>0 (n->00) for each € X, P,
X ,~>X ig the injection mapping and @,= P} is the dual mapping of P, This scheme
is assumed in this paper. For the concepts on a weakly (pseudo) A—proper mapping
with regpect to an injective approximation soheme, see[9, 10]. Let QX and T,
X > 2%, We write Q,=0N X, and T.=Q.TP,.

The following theorem gives a very general result that mappmgs of monotone

. type are weakly A-proper. o -

Theorem 4. Let a mapping T, X—>2%* be o f type (M) and quasi-bounded. Then

T is weakly A—proper with respect to an injective approwimation scheme I'=({X,},




476 ' CHIN. ANN. OF MATH. Vol. 6 Ser. B

{X5}: {Pa}, {Qu}) on D(T)).
Proof Let w,, €D(T)NX,, with {,} bounded and A,,&E Ty, (jE A") satisly
[0, @u P[0 (j—>o0) (6)
for some p€ X*. Since P,,; X,,~> X is an injection mapping and Ty, =@, T P,, we
may take f,, € T'w,, such that h,,=Q, f,,. Hence, (6) becomes :
1Qa,Sn,— Qup|—>0  (j—>00). M
Since |@,,[|<1 (jEA"), from (7) we know that {@x,f»,} is bounded. Hence, by the
quasi~-boundedness of 7' and
(fﬂp m".i) (fm; Pﬂﬂ;ﬂ;) (meﬂ,u wﬂu) < " memn " w"d " <M1 ” ‘”m “ ’
where M 1=5Up |@n, S, Wo see that {f,} is bounded.

For fixed X, and each # in X,, we have #,—2€ X,, as n;>n. Consequentely, -
(7) implies that
[(f”j D, Tn,— m> [ = ‘ (fﬂu P, M(mﬂf—m)) [< "Q’Ufﬂj*QMp" ¢ ”%“"’ﬂ
<M+ [2]) |G, fos— Qupl >0 (j—>c0), ()
where M‘=31j1pﬁa;,,jﬂ. Indeed, to each € X, since p(w, X,)—>0 (n—>o0), we have

from (8) and the boundedness of {f,} . |
G am0)0 (jeo), ®
Since X is reflexive and {,,} is bounded, we may assume some of its subsequence
By, —>20E X  (k=>00). Setting s=min (9), we obtain :
| (Froo—D, Gny—20)—>0  (B=>00). @)
(9) and (9') imply ( fase—2,% —o)->0. This means fy,,,~p(k—>00). We have also
from (9) ‘ ' :
(fsers Faco—@0)—>0  (b—>00). (10)

Since T is of tybPe (M), we obtain, by (10), [wo, p] €G(T), i. 6., 2, D(T) and

p&Tay. Thus, T is weakly A-proper. Q. E. D.

By Theorems 2 and 8 in the first section, we obtain '

Corollary 1. Theorem 2 in [6]

To show a surJect1V1ty of weakly A-proper mappings, we shall need the following

- Lemma 2. Let T', X —> 2% be weakly A-proper, and let Q(C.D(T)) be a bounded
set of X and p€ X* and pET(Q). Then there ewist no € A" and a>0 such that
p(@np, To(ln))>a as nSM.

In pwrtfbculavr, Q.PcT, (.Q,.) (n=ny).

Proof If the assertion is false, there exist {g;}, &;—>0 and n;— oo such that

inf [h—Qup|=p(Qup, To, (@) <8; GEN).

hET(Qns)

It follows that there exist @, € Q, (CQ) and h,;JE Ty, such that

“7% Qﬂjp"<8ﬂj—90 (.7_)00) :
Since T is pseudo A-proper, there exists @, € Q satisfying p € T'wy This fact contradlts
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pET(Q). Q. E. D.

Theorem & (Theorem 8 in [6]). Let QC X be o bounded set, 0E Q and let Q, be
an open symmetric set about the origin of X, for each n€ N, Suppose that T', X —>2%*
is pseudo A~proper with respect to an injective apprewimation scheme I'= ({ X4}, {X 3}
{P.}, {@}) on 2 and that for each nE N it satisfies the following

(i) T is a compact convew set of X3 for each o€ Oy

(i) Ty, B,CX,—> 2% is upper semicontinuous;

(iii) to each p€ X*,

(S, a:)>(Q,,,rp, ) as €90, and f,ET .
Then there is wo€ 2 such that p € Tw,.

Proof LetJ, X —> 2% be the normalized dual map. It iy known easily thai
J,=Q,J P, is also the normalized dual map from X, to X, for each n&.4#". Hence,
when #€ X, and ¢,E€ J @, we have (g, #)=|«|®. Thus, in virtue of the hypothesis
(iii), when #€ 2Q, (according to the assumption on .Q,,, 2#0), f,.ET,,w and 0<t<1
for each n€ A", we have

J#(fu—Qup) + (1~ B gul >ﬂ%ﬂ(t(fn—(“2np>+ (1~1)g4,0)

; :
=m(fn—an, w) +(1_t) “w"

=(1—1t)|«]>0. (11)
We are going to show that the equation Q.pE€ 7,2 has a solution on 0, for all
n€ A . Assume the contrary, then the equation Q,p € T’ has no solution on 2, for
some ny € 4. Consequentely, we have
1fn— @np|>0 a8 €202, and f, €T, .
This together with (11) shows that for all #€ 20,, and 0<t<1,
0E (T po—Qu,p)+(A =) T 0.

In accordance with the hypothese (i) and (ii) of this theorem and the homotopy
invarianoce of the Oellina—Lagota topological degree™, we obtain | -
degL.S. (Tnow"Qno f, 'Qﬂo: 0) —degﬂ.s. (Jno; *Qno; 0) ={1} #* {0}0
Hence, there exisst @, €2, CQ,, such that Qno P € T'no. This contradicts the fact
that the equation @, p& T2 has no solution on 2,,. Therefore, to each n€ A , Qup
€T, (2,). Since T is pseudo A~proper on 2, the equation p € T'w is solvable on 2 by

Lemma 2. . . Q. E. D.

Corollary 1. Let a mapping T:X —> 2% be of type (M) and quasibounded.
Suppose that there ewists a dense meewr subspwce Xo of X such that D(T')DX,. Sz@pose
Jurther that T s coercive, ¢. e.,

) ,
hm——"——”—- + as [o, f] E.,G<T)

lapf—co o

Then {@|p€ Tw} is a nonvoid weakly sequential compact set of X for any p€ X", i
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pwrmculwr, R(T) =X"
Proof Since X, is a denge linear subspace of a separable space X, there oxists
an increasing sequence of finite dimensional subspace of X : Xy Xy« C X, +-such

that Xo= U X,, dim X,=n and X,=X Sd, we obtain an. injective approximation
n=1

scheme I'= ({X.}, {X}:{Pu}, {Qu}) by {X.}. Since T is of type (M) and quasi-
bounded, 7 is weakly A-proper with respect to I' on D(7T') and moreover it is pseudo
A-proper. By the hypothesis (m;) on ma'ppings of type (M) and the reflexivity of
X, T'w=Q,T P, is a compact convex set of X, for each «&€D(T) mEAN). Since
- the strong topology and the weak topology are equivalent in a finite dimensional
- space, T'y: X, — 2%, by the hypothesis (ms), is upper semmontmuous Let p€ X*,
By the coercivity of T' there exists a closed ball B(O Ty) such that (f—p, 2)>0 ag
w€dB(0, r,) ND(T), fETw. We are going to show that the condition (iii) of
Theorem & is satisfied. In fact, write B,(0, 1) =B(0,r,) N X. Suppose z€ 0B,(0, ;)
and f,ET,@. By o€ X,,, we obtain (p, 2)=(p, Pux)=(Qup, ©). By f,.ET,,w there ig
JE€Tx such that f,= Q,. f. Hence, by Qr= P,, we obtain

(for @) =(Quf, 2) = (£, Q@) =(f, 2)> (2, 2) = (Qup, 0).
By Theorem 5, we have R(T)=X"*. As for the fact that {w|p€Ta} is a weakly
sequential compact set of X, it is deduced eésily from the coercivity.
. _ Q. E. D.

Corollary 2. Suppose that mappings T and 8 satisfy the hypotheses of Theorem
2 or Corollary 1 to Theorem 8, and suppose further that there ewists @ dense linear
subspace Xo of X such that D(T)ND(8)>DXo and (T+8) is quasibounded coercive.
Then R(T+8)=X"*. Milojevic’ (Theorem 2.1 in [10]) gave a result similar to
Theorem 5, there a projectionally complete scheme is assumed by him. But a géneral
soparable refloxive Banach space does not always have that scheme. Besides, he
required that @ is a bounded open set, Whereas We require only that D(T') contain a
dense linear subspace df X. Our methods of the proof are different from those in
[10]. Qorollary 1 extends’ Theorem 5.2.8. in [7] to multivalued case and the
hypothesis on the boundedness of a mapping is weakend. Oorollary 2 glves a partlally
affirmative answer to a Browder’s questlon .

The stronger results can be- obtained by usmg Yosida apprommatlons for
example

Theorem 6 (Theorem 5 in [6] ). Let T, X —> 2% be mammal monotone and
strongly quasi~bounded, and let 8, X—> 2* g quaswbowrbdedb generalized pseudomonotone.
Suppose that there ewisis @ dense linear subspace Xo of X such that D(S)>X,. Suppose
further that S is coercive in the following sense, &. e., there is a real function O(r). R, |
- R, 0(0) =0 and O(r)—> +oo(r —> +o0) such that
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(g, 2)=0([s]) || as [», g1€G(S). | (12)
Then R(T+8)=X".

-+ Proof Since X ig reflexive, we may assume that X and X* are strictly convex
by renormed theorem due to Asplund“#. Hence, the normalized dual maps. J and
J 1 are smglevalued We take &,—0, &,>0 (n€ A"). Making Yosida approx1mat1ons

T, = (T4 g,J 1) -1 of T, we. see that Ts” is a bounded max1ma1 monotone and
: smglevalued operator and D(T,,) = X. Hence, the mapping S is T, ~bounded. By
Corollary 1.to Theorem 2, (7',-+8) is generahzed ‘pseudomonotone. Obvlously, it is
quasi-bounded. Let pE X * From Theorem b there exists 4, € D(S ) such that

pE (Ts,‘—l—S')a;sn

T @o,+ o, =D. BN E)
We know easily that there exists r,>0 such that |a,,| <r, for all ng A"~ by the:
coerclvlty of §. Without loss of generality We may agsume a;a,, —~2€X. We write
Tw=T.,, 9n=Gs,, On="=2, and u,=a,—J T, By the definition of Yosida approxima-
tions, Ty, € Tu,. Now, we are going to show that {T @,} is bounded. &, pon={J (w,—
u,) implies that g,(T s, 2 —uy) = || a:,,—un ”2>0 (neAN"). Hence, by this inequality,
(12) and (18), we obtain
(T weop, un)<<Tnmm @) =(p— gn;wn)
<|p|r,

It follows from strongly quasi-boundedness of T’ that {T,a,} is bounded (see [8]).
We know from (18) that {g,} is boﬁnded; tbo. We may assume g, — goE X", We
have from (18) 7'y, —p— go. Since J is a bounded mapping, from J (w,—us) = 8, n%s
we obtain |o,—u,| =g,|Thn]—>0 (n—>o0). Thus, u,—a, (n—>c0). ,

Finally, we want to show [®o, go] € G‘(S’) and [@o, p—go] €G(T). If s0, we will
complete the proof of Theorem 6. In virtue of Lemma 1, we find

lim (T, @4 20) =lim (an,,,"u,, —ag) — Hm (T, U — @) =0.

Take ., € So,, such that

By T&n+ gn=mp, &n— xo and the above inequality, we gel
11m(g,,, mn-w0)<l1m(T,.m,,+ Ony Bp— @) — 11m(T,,w,,, @, — o) <O.

Since 8 is generalized pseudomonotone, [@g,ge] € G (S ) and (ga,a,—0)—0. It follovvs.
from (Tyy~+ g,y —20)—> 0 and u, —x, —> 0 that }
(T oo, Un—@0) = (Tuon+gny Un— Do) + (Gns Un— ) + (gn, To—0)—>0 (n—>00).
| (14)
We remember Tya, € Ty and Ty, —p— go. Since a maximal monotone mapping T .
‘must be generalized péeudomonotone, we obtain from (14) [y, p— ¢o] €G(T), i. e.,
PpE (T+8),. ‘

I want to thank Professor Tian Fangzeng and Professor Zhang Gongqing,
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