Chig. dnn. of Math.
éB (4 198

ASYMPTOTIC BEHAVIOR OF SOLUTIONS
TO SECOND-ORDER NONLINEAR
DIFF RENTIAL EQUATIONS

Liane ZuroNGeHAO(R ¥ 42)* OCHEN SHAOIHU (JR 4B F)*

Abstract

- In this paper the authors study the oscillation and the aslymptotic behavior of solutiosn
to the second—order nonlinear differential equations
X, x, ) =0 (Xy)
and give mnecessary and sufficient condmons for Hquation (X,) to have a bounded
nonoscillatory solution or to be oscillatory. There are four classes of solutions to Equation
(X.) with different ‘asymptotic behavior. For each class of solution, the necessary or
sufficient condition of the existence is obtained.

§ 1. Introduction

In this paper we study the oscillatory and asymptotic behavior of solutmns to

the second~order nonlinear differential equations

: : i+ X (8, ¢, ©)=0, Xy)
where the functlon X (%, », y): [0, o) X R? — R, R- (—c0, o0), is continuous and
satisfies the following condition:

(A) There exist continuous functions a;(?), fi(#) and ¢,(y), =1, 2, such that

a1(D)f1() g1 (W) <X (8, @, ¥)<as () f2(2)92(9),
where ;(1) >0 and a;(¢) 0 on any infinite subinterval of [0, oo); afi(2)>0 for
e%0; gi(y) >0, i=1, 2. ;

A solution of Equations (Xf) is called a proper solution if it is defined on a
half-line [#o, oo) for some #>0. A proper solution is said to be oscillatory if it has
arbitrarily large zeros on [f,, oo); otherwise it is said to be nonoscillatory.
Throughout this paper, we are concerned only with proper solutions. In what
follows, for simplicity, by a solution we mean a pr’opei‘ solution.

In section 2 we -give the necessary and sufficient conditions for the existence of
a nonoscillatory solution and for the oscillation of all solutions of Equation (X,).

Manuscript received April 8, 1983, Revised August 3, 1984,
* Department of Mathematics Shandong College of Oceanology, Qingdao, China.
** Department of Mathematics, Shandong University, Jinan, China.




%82 CHIN. ANN. OF MATH. - 7 Vol 6. Ser. B

These results renew the Atkinson’s Theorem ™ and its generalizations ‘%8, A
sufficiency theorem for Equation (X,) to be oscillatory is also proved.

For Equatlon (X ); seotion 8 -is \devoted. o establishing 1.606SSATY and/or
sufficient condltmns for the ex1stence of each of the only four types of solutions with
different asymptotic behavmr The ‘results 1mprove some of the- Tesults given in
[2, 8, 5]. ' . E

§ 2. The Oscillation of Solutions of Equat'ibn" (X0

Before preceeding we shall requlre ‘some lemmas, the proofs of which are

omitted.

Lemma. 1. Ewvery nonoscillatory solution () of Equatwn (x +) and 4ts first

wdefrwwtwe a:(t) are eventually monotone, and a;(t) tends to @ ﬁmte limit as t—> oo,

Lemma 2. The integral J' mi(t)dt converges fz,f and O'nlfy if the mtegmlj tag( )

Cdt does

We begin by presenting necessary and sufﬁclent conditions of ex1stenee of a
nonoscillatory bounded solutlon for Equation. (X.).
Theorem 1. There ewists o nonoscfbllatory bounded solution of Equation. (X,) if

anol only 'z,f

Proof Necessity. Let o(t) be an eventually positive bounded solution of

Equat10n(X+) Ohooss";,>0 s0 1arge that 4(£) >0 and a;(t) >0 for t>;. ‘By Lemma 1
(%) is nonmcreasmg for t>t1, . -—hm a:(t) 0 and w(t) is 1ncreasmg for t>t1,

#o=1im w(t)>0 SO |

t~ro0

. _ 0<w(t1) <m(t) <a:°°, 0<a:(t) <w(t1) S (@)
for 1>14. Integratmg Equation (X,) from s o {>s>1; and letting t—>o0, we obtain,
w(s) j X('v w(fu‘), m('r;))dz' ‘ ()

Integratmg (3) from ti 0 £>14 and usmg (A), wWo gee that
| a(t)~ w<t1>>j (v~ 1) X (v, 0(x), 6(x))dr

5[} (W) (o)) o

-:-~>*>;n,n1§"<-r—t1>'a1<fa>czfu, e

| where m;= min fi(m)>0 m= min gi(y)>0

) <e<®. <Y<ty

By (2) and (4)
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(5)

; .
—t dp> T
L("f 1) a1 (7)dr> P

for t>1,. It is easy to show that (B) implies (1). .
When (%) is an eventually negative bounded solution, it can be shown by a

similar argument thatj taa(t)dt<oco. Then (1) holds by Lemma 2 So the necessmy
part of the proof is complete.

- Sufficiency. Since (1) 1mp11esj tay(t)di< oo, we can choose #,>>0 so large that
MQNQJ ta2(t)dt< ;, o . (6)
Where My=max fg(a;)>0 Ng— max gz(y)>0 B

g<e<i - O<y<— .

Let & Ve a sot of all oontlnuous functlons z( ) (as( ), y( )) [ti, oo)—>R2
We regard & as a Fréchet spaoe " with the topology generated by uniform
convergence on any. compact submterval of [ti, oo) Let

{2633‘ <a()<L, O<y(t)< 1€, oo)}

B is a closed, convex subset of Z. For any zE R deﬁne the operator .’I’ B———>ff by the
relation Tz— (T, Ty) and . :

@R H=1- j(s DX G, 5(5), Y@, 24,

(Ty)(t) j X (s, w(s),. (s))ds =ty

Th o can be shown that TBCZB T is oontmuous and TB i precompaot by the

Y

topology mentioned above by Sohauder—Tychonov s theorem there 1s a zEB such
thatz TzSO R ' :

I

o) %'iQIf(si't)ié'(s;e(’s;; é.is)i‘d,s, t>t;,,. | . (_)

EON RICEORTONE

Obv1ously, the function. o(4) is an eventually positive bounded solution of Equatlon |
(X4) .. The theorem is proved. .. TP SO ‘ Ca v 2
To study the oscillation of a11 solutions to Equatlon (X+), we need the followmg
‘definition. A. function X (¥, @, g) is said to be locally superlinesr in @ at |&| =oo, if
there is-a large. >0 such .that fi(#)is nondeoreasmg for e>a, f2 @) is nons
deoreasing for o< —ad, and SRCIE
e ) B ol L9
‘Theorem 2. Suppose b'e (¢, w, y) is Zooally supefrlmeam in o wt | & |—oo tken ol
solutions to' Equwtoon (X)) are oscillatory if and only 4f -+ ‘ : -
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J': tay(t)di=oc0. (10)

Proof By Lemma 2, the necessity follows from the sufficiency of Theorem 1. Te
prove the sufficiency, let #(#) be an eventually positive solution to Equation (X,).
By Theorem 1, #(¢) must be unbounded. Consequently, #(t) is eventually increasing
and @.,=co. There is a #,>0 such that (#1)=a, #(3)is increasing and (%) is
noninereasing for :=>#;. So '

0<a<w(t), 0<w.<z(d)<a(d) : (11)
for #1214 Integratmg Equation (X,) from s to #;, #<s<, yields |
5(s) — a(t) = j X (3, a(s), 6(x))ds. | (12)

Letting {—» o0 in (12) and using (A),I we obtain
660 b= X (r, a(x), 6(x), 8(x))

I QIACONACON

> fa(@(®)) | a(x)d, ©as)
where n;= min g¢;(y)>0. Dividing (13) by fi(w(s)‘) and integrating from #; to ¢,

0<y<a(t;)
we have

:(t) f:z(f,; > J dsj 01(7)d7>n1j (s—t1)es(s)ds. - 14

Lot t—>oc0 in (14); we get J (s—#1)a1(s)ds < oo, which is a contradiction. The
7 )

theorem is proved. o

Remark 1. Theorems 1 and 2 extend and improve the well-known Atkinson’s
Theorem ™! and the results of [4, 6, 8]. Macki and Wong™ ™=l ppoyed Theorem 2
in the case that g(y)=1, fi(#) are nondecreasing for € R, Wong 6 Theorems 1 and 2}
discussed Theorem 1 for X =a(#)f(2)g(y) with f'(2)>0, 0<h<g(y)<K <oco, and

proved Theorem 2 under additional assumption liminf. lf (w) >0(p>1). Ifg(y) =1,

|@| 00
we get Theorems 1 and 2 of [8]. Moreover, the proof of sufﬁclenoy part of Theorem 2
is much simpler than the one in [4]. | : :

Remark 2. The condition imposed in Theorem 2 on the monotomclty of
funections fi(#) is weaker than the corresponding one in [4, 6, 7, 8]. If therse exist a
large positive number « and nondeoreasing continuous functions p;() on [a, o)
and ¢2(w) on (—oo, —a] such that fi(e)=>pi(e) for o=>a, fo(e)<p.(w) for s<—a

and Jm < oo, Jw do <oo then the conolusmn of Theorem 2 holds. This
s pi(®) o Pa(®)

geems to be better. But, instead of fi(#) we can choose funotions fi(w) such that
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F1(2) =pi(w) for w=>a, fa(w)=gps(a) for o< —a and (A) holds for Fi(z). Therefore,
X is still locally superlinear in @ at |#| =co, In particular, faking @i(@)=pu?,

@a(&) = pat®, i, pa>0, p>1, we obtain a condition corresponding to condition

lim inf l—f—(—T)—l>0 used in {6, 8].

j@|=re0 I

Theorem 8. If, in addition, the following assumption
- (B) liminff;(#)>0 and lim inf f,(2)<0

ts satisfied, then
J: a3 (8)di = o0 (15)

émplies that all solutions to Equation (X,) are oscillatory.

Proof Let solution #(#)>0 eventually. A parallel argument is valid for the
case that ©(¢) <0 eventually. By Lemma 1, #(%) satisfies (11) and is increasing for
$=1,. Sinde (B) holds, there is a positive number my such that fi(w(t))>m1 for
t>1,. Thus

£(t) —a(t) = j X (v, o(v), w(w))dr>m1nij ai('v)dw, (16)

[m(ti) - oo]

where n;= min gi(y)>0 Let t—>c0 in (16); we havej al(t)dt<

<1I &(t)
< oo, This proves the theorem.

Remark 8. Wong [7] got a suffiicient condition ra(t)dt= oo for the equation

&''(t) +a(®)f(2(8)) g (£)) =0 to be oscillatory, where g(a' )>0 f (#)=0, of (¢)>0
for ##0, and e¢(?) may become negative for some ¢.

§ 3. The Asymptotic Behavior of
Solutions of Equation (X-)

It is well known that every solution to Equation (X_.) is eventually monotone,
So either
L 2.=0, 2.=0;
II. #.=0, w°,=ciaé0§
I 2.= 330, ©,= 4 o0;

or

IV. #,= %00, &,,=+oo,

A solution ig said to be of I-fype, II- type 1II-type and IV—type if it behaves
as above respeotively.

We first present some results concerned with bounded solutions of Equation

(X.).
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Theorem 4. There ewxists a II-type solution to. Equation (X _) fbf and only if
' | j s (1) dt < oo an

"Proof Necessity. Silppose o(t) is a II-fype solution with 0..>0. One argues_‘

_ similarly for the case #,,<0. It ig easy to see that #(¢)>0, #($)<0 for =0, and

0<a.. <w(t)<x0—-w(0), w(O) a:0<(t)<0 (18)
for 1=0. Sinoe ., —-0 we have o - :
(%) = -f X (v, o(x), ; (2))dz, £0 BT

and for any t>0, L

o) =ao = [ s X(z, a2), a))ie TR
<a-[ra@hGeE)uGER
<mo—m1n1r vay(7)dv, S P (20) :

where my= min fi(w)>0 = mm gi(y)>0 So

To<W<Py

m
< il
J 'é'(li(’v')d'b' . MMy

for any ¢>0. This implies (17). -

Sufficiency The proof is similar to theone of sufficiency part of Theorem 1. So
~ we give only a sketch of ‘the proof By Lemma 2 we:can take #;>>0 large enough
such that .
1

J t(lg(t)dt<2MN " R CAD X
where Mg—max fz(a:)>0 N 3= Inax gg(y)>0 Let & be a Fréchet space defined as

<Q< _
5 <y<0

in the proof of Theorem 1 Let

-

={z€gr- 1<w(t)<2 —%-<y(t)<1 t>t1}

E i3 a closed, convex subset of Z. For any 2E E "define the operator i E—>9‘ by
the relation T'z= (T, Ty) and

(@) () =1+ (=) X G5, o), y(s))c_le.,:;?;g, )

i .(22)
(T®=— [ X, 06, 9())ds, Bt o

Then we can show that THCH, T is continuous and T'H iy ‘precompact by the
bopology of compact convergence on [44,, oo) So T has a ﬁxed pomt 2€ H satlsfymg

a;(t) 1+J (s—t)X(s o(s), y(s))ds o

== X6, 06, 96, 1>t )

)
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Thus, we get a II-type solution o(¢). The ﬁroof of ‘the theoterm is e(omplete.
Corollary. ZEuery bounded ’:solutéon to Eq'zmtfz}o"ﬁ (X.) dés-of I-type if and only if

J tai(t)dt - o, I €3

" To make every nontrivial bounded solut;o,n 0 Equatlon (X_) beof II—type, we
should confine the function X within necessary limits. A funection' X (¥, #, ¥)is said
0 be locally superlinear in z.at w=0; if there is a small a>0 such that f,g(é) is
nondecreasing on (0, a), fi(@) is '_non__deere’a_siﬁg on (—a, 0),.and

" do wdm e

T o Ty -

;. Theorem 6. If X(t, o, y)is laoally superlinear in o at ©=0, then every
nontmfvwl bounoled solutzon to Eguat@on (X ) is of II—-type if and onl'y zf

j tai(t)dt<oo e

| Prroof Obv1ous1y, onl}r the sufficiency must be proved Let o(t) be a nontrlvlal
I-type solu’mon and let @(£)>0 for #=0. In the case. m(t) <O the proof is similar.
Since #(¢)>0 and «(¢) is nondecreasing for $=0, #(¢) must be negative for t=>0 and

, - 0<a(8) Sao=w(0), w(O) a;o<a;(t) <0 . . (2D
for ¢=0. By Lemma 2, J tas (3)dt < 00, Sinde z.= 0,’Eq\"1’atidn'(19) .h'oids..'Si.nce' ., =0,
there is a #;,=>0 such that o(#) =« and 0<2(t) <a for £>t1 Using the monotonicity
of #(¢) and the local superlinearity of X and notmg that fa(a(?)) is noninereasing
for 1>1,, from (19) we obtain. -y '

~a(t)<[ (570 (5 <N2f2<w<t>)j- a@dr - (28)
for $>%;, where N,= max 92(y) >0. Dw1d1ng,(_-28-) by fa(@(3))and integrating from

Bo<y<0 ’

¢y to ¢ produce

J:mff@ﬁl"ﬂf asf; “2(’”)”"’<N2J (= t)as(e)ar (29)

for #>1#;. Letting {—>o0 in (29) glvesJ. Folr )<oo Th1s contradmtlon proves the

theorem. : :
Remark 4. If there exist nondecreasmg continuous funoctions pa(z) on (0, o)

and ¢;(z) on (—a, O) such that fz(a;)<<pg(w) for tG(O a) and fi(w)>¢1(m) for

tE(_a; 0)7 a,ndj ¢2(m) 0 ¢:.Z(a;)

then the conclusmn of Theorem 5 is true (seo Remark 2) ESpeomlly for gvi(w) = U1,

~oo, Where o is a small positive number

gpg(w) = s, p,i, ,w2>0 we get oondltmns lim sup f 2( )<oo and 11msup f 1(w)<°°

= U : @=0-

which are also available to Theorem 5, where f,(a:) may ‘10t be monotone near ©=0.
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Remark 5. For a,(t) =ay(t), gi(az) =1, i=1, 2,
a|z|, >0, b|z|"w, >0,
_ f%(@ ={ b|s|*, m<0, Falw) = { alw:”w, 2<0,
where n>>0, b>a>0, Theorem 8§ and the corollary of Theorem 4 coincide with
Taliaferre’s Theorems ":Theorems 4 and sl T¢ 5 gddition, @=b, we get a result established
by Wong LTheorem 1. 13
Notice that all nontrivial bounded solutions to Equation (X_) are either of
I-type or of II-type if function X (¢, @, y) is looally superlinear in # at #=0. We
give an example to illustrate. .
Example Consider the differential equation

&=2(t-+1)"8/35/3 >0, ~(80)
- Here, a(t) =2(¢+1) %2 satisfies I ta(t)dt<oo and f(&) =48 is sublinear. It follows

from Theorem 4 that Equation (30) has at least one II-type solution. But Theorem
5 is falge for Equation (80) which possesses #==({-+1)"* ag a I-type solution.
'We are now in a pogition to investigate the existence of unbounded solutions to
Equation (X_).
Theorem 6. Suppose funciions fi(o) and fo(a) are nondeoreasing. Then there
ewists a I1T-type solution to Equation (X.) if for some a>>0 either

REOIACHIAE | (81)
or
j " a1(8) | F1(—ab) |dt<oo | (32)
and only if foa~ some >0 either
J: as(8)f1(ad)di< oo (33)
or . | : '
[" a1 fa(=at) | dt<con. B
Proof Let (81) hold. Take t1>0 large enough such that
| [ as(t) fa(at )t <52 o | - (35)

where u a=max g3(9)>0. Let 4(¢) be any solution to the equations
O<y<oa )

S(O) =gt j: X (s, 0(s), 5(s))ds, tt,

 'We claim that z(¢) <a for t=t. If not, then there exists /,>#; such that &(ts) =at

‘(36>

and —;— a<z(t)<a for tE [t t;,).» Therefore
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w(8) = j : w(s)ds< (4 — t) <o (37)
Since fa(#) is nondecreasing, from (36) we have

a-—-w(t,,)__a+j X (s, o{s ), 6(s))ds

2

which is a contradiction. So #(#) <« for t>1,. ‘

Because x(t) is nondeoreasing for £>>1y, the limit x,, exists and is a finite positive
number. Obviously, as a solution to Equation (X_), 2(¢)is aslo of III-type.

Similarly, (82) leads to the existence of an eventnally negative III-type solutlon
So the first part of the proof is complete.

" Let #(t) be a II-tyhe solution with #,>0, @,=oco. Then there is a #>0 such
that #(#) is positive and increasing, () is positive and nondecreasing for ¢>>4;, and

0<B=a(t)) <a(t) <. (39)

<lorm Jh as(s) f (as)ds<-l- at+M —a——=;x (38)
. 2 “ 2 2 9 ‘2 2M2 LI -

for =t If t>2t1, then
ot) =a(ts) + j S0l +B=4)
>o(ty) + -2- Bt >-2- Bt. , (40)
' _
On the other hand, owing to condition (A) and (40) we have
i) —s@t)=[  X(s, a(s), 5(6))ds

>n1j‘ oty dj_(S)fi( ) (41)
for 1>>2t;, where = mm gi(y)>0 Letting £ —> oo in (41) gives

Lt‘ ae(s) fi(-ﬁ- ,Bs) ds<—n—1-(wm— B)- (42)
The inequality (42) proves that (83) holds for a=—21- B.

Similarly, a III-type solution #(#) with #,,<0 and ,=—oo leads to (34). The
theorem is proved. :

Corollary. Suppose fi(@) and fo(x) are nondecreasing. Then every unbounded
solution to Equation (X .) s of IV —type if for any «>0 '

[T a®1A((— 00 |dt=co, =1, 2
and only if for any a>0,
' j: a(®) | fi (—1)'at) |dt=c0, §=1, 2.’
Remark 6. In the case X =a()f(«)g(#) Theorem 6 says that there exists a
III-type solution if and only if either J: a(t)f(at)di< oo or J: a($) | f(—at)|dt < oo
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for some a>0, and the corollary says that every linbo_u:;ded solution is of FV—type if
and only if Jm a(t) | f(xat) |dé=oco for any a>0, | (jombini.ng the lafter zesult with

the corollary of Theorem 4, we can obfain neceSSa,ry and sufficient. condition to
ensure that every solution is elther of I—type or of IV—type This result improves
Theorem 3.1 in [2] established by one of the authers of the present paper and for
Sf(&) =2*(A>1) and g(w) =1 coincides with Taliaferro’s regult ©Theoerm 2.4,
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