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ASYMPTOTIC BEHAVIOR OF SOLUTIONS 
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Abstract
/ .

In  this paper the authors study the oscillation and the asymptotic behavior o f  solutiosn

to the second-order nonlinear differential equations

. x ± X ( t ,  x, x )  = 0  (X ±)

and give necessary and sufficient conditions for  Equation ( X + ) to have a bounded 

nonoscillatory solution or to be oscillatoi’y . There are four classes o f solutions to Equation 

(X _) with different ‘asymptotic behavior. For each class o f  solution, the necessary or 

sufficient condition o f  the existence is obtained.

§ 1. Introduction

In  this paper we study the oscillatory and asymptotic behavior of solutions to 
the second-order nonlinear differential equations

x ± X ( t ,x ,s c )  = 0^ (X±)
where the function X (t, so, у )' [0, oo) X R 2 B, 12 =  ( — со, со), is continuous and 
satisfies the following condition:

(A) There exist continuous functions a((t), and gi(y), i = l ,  2, such that.

OiCO/iCeOtfiCsO<•*■(<> »> sO<«»(O/»(*)0a(iOi
where a4(2 )> 0 and at(t) Ф0 on any infinite subinterval of [0, oo); > 0  for

g«(2/)>0, i = l ,  2.
A solution of Equations (X ±) is called a proper solution if it is defined on a 

half-line [fo, oo) for some to>0. A proper solution is said to be oscillatory if it has 
arbitrarily large zeros on [20, °°),‘ otherwise it is said to be nonoscillatory. 
Throughout this paper, we are concerned only with proper solutions. In  what 

.follows, for simplicity, by a solution we mean a proper solution.
In  section 2 we give the necessary and sufficient conditions for the existence of 

a nonoscillatory solution and for the oscillation of all solutions of Equation (X+).
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These results renew the Atkinson's Theorem. ш and its generalizations A
sufficiency theorem for Equation (X+) to he oscillatory is also proved.

For Equation (X ..) , section 3 is devoted to establishing necessary and/or 
sufficient conditions for the existence of each of the only four types of solutions with 
different asymptotic behavior. The results improve some of the results given in 
[2 ,3 ,5 ] . - ' ■ / ■ ■ " '

§ 2. The Oscillation of Solutions of Equation (X+)

Before proceeding we shall require some lemmas, the proofs of which are 
omitted. •' • : ■ : ; . V : ;

L em m a 1. Every nonoscillatory solution x(t) of Equation. (X +) and its ‘first 
derivative x (t)  are eventually monotone, and x(t) tends to a finite lim it as t-> oo,

" * ' • ' 1*00 • • • • ’ Гоо '
L em m a 2. The integral tai(t)dt converges i f  and only i f  the integral ta2(t) 

dt does.
We begin by presenting necessary and sufficient conditions of existence of a 

nonoscillatory bounded solution for Equation. (X+).
T heorem  1. There exists a nonoscillatory bounded solution of Equation. (X+) i f  

and only i f  ,

j^ i0 l(i)d i< °o . , : ; . (1)

Proof Necessity. Let x(t) be ah eventually positive bounded solution of 
Equation(X+). Ohoose% >0  so large'that x(t) > 0  and x(t)> 0  for O i l .  By Lemina 1 
x (t)  is nonincreasing for O i l ,  ж ^ И т  x(f)  =0, and x(t) is increasing for t> tlf

■ ■ ' ■ ' t . . . . . .  ...... . • ; . ■'

Xoo=Hmx(t)>0. Sot-*oo - . 1 - ' •

. :0 < ж (^ .)< а з (0 < ^  0 < x(t)< x(t1) . (2)
for O i l .  Integrating Equation (X+) from s to O s > i*  and letting i— we obtain,

a ;(s)= j X ( r ,  x ( v ) ,  x(r))dv. ‘ : (3)

Integrating  (3) from ii to O i l  and using (A), we see that ........................
' •'  ' ' ...........................  f t  ' .  '

; x(f) — ®(ii)>"| ( r ~ t i ) X ( r ,  x (r), x(v))dv . . . . . . .’ 1 " '■ Jti
..■■■' ft ■■ ' ;

\  . > \.{ v ~ t i ) a 1(x)ft{x(T;))gi{x{'v))d'S
J t i  : ' ' . V .  ‘  ■ ■ '

Л , '■ ! > m tnx\ (v—t j f a i ^ d v , " ' (4)

where m in / 1 (0) > 0 , %== m in g±{y)>0. .

By (2) and (4) . , ■ ■
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f (t - tf)ax( v ) d v > - (5) 
Jti Wi^i

for I t  is easy to show that (6) implies (1).
When. x(t) is an eventually negative hounded solution, it can he shown hy a

similar argument that |  t a 2( t ) d t < o o .  Then (1) holds by Lemma 2. So the necessity

part of the proof is complete. ,

Sufficiency. Since (1) implies j t a 2( t ) d t < o o f we can choose ^ > 0  so large that

M 2N 2 ( 2а2(2 )й £ < р
. J ti . A 1

(6>

where М2= m a x / 2(ж)>0, iV2=  max g2(y)>0.

Let Ж  be a set of all cpntinuous functions, я(•) =  (ж(•), 2/(*)): Pn <>o)—>Д2. 
We regard /  as a FrSchet space with the topology generated hy uniform 
convergence on any compact subinterval of [tX) ,oo). Let

B = 0 < 2 / 0 0 < y ,  t£  [*i, ° ° ) |.

В is a closed, convex subset of For any z£ R ,  define the operator Т'.В-ьЛХ by the 
relation Tz*= (Tx, Ту) and ' ■ .......

(T x ) ( i ) = l - (s—t ) X (s, «(e), y(s))ds, t> tx, 

(Ту) (t) ■= X (s, a<s), y(s))ds, t> tx. / c '
(7)

I t  can be shown tha t TBCLB, T  is continuous and ТВ  is precompact by the 
topology mentioned above, by Schauder-Tychonov's theorem, there is a 2 £  В such 
ЪЫ,%я==Тя. So .........

e ( < ) = l - |  ( s - t)X (s ,v (s ) , y(s))ds, t> tx,
/*00 . . . .  , . .

2/(0 =  j X (s, x(s), y(s))ds, t> tx. :
(S)

Obviously, the function ж(0  is an eventually positive bounded solution of Equation 
(X +). Tho theorem is proved. . : U : . .. ,. ; . - : l Ч ’ v

To study the oscillation of all solutions to Equation (X+), we need the following- 
definition. A. function X ( t ,  x, y) is said to be locally superlinear in  ж at \x\ ==oo) if 
there is a large «>.0 such that f x(io) is nondecreasing for ж>«, / 2(ж) is non-- 
docroasing for ж < —«, and U

Г  dx A f"~ dx
... J .  / * ( - $ '  J — /-(»:

< 00.
g e p p . : J - л е е )

T heorem  2. Suppose X ( t ,x ,  y) is locally superlinear, in x at \x\ 
solutions to Equation (X+) are oscillatory i f  and only i f  ■ 1 ‘

(9)
••• • • j j }

■■oo, th&n all
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.J ta±(t)dt =  oo. (10 )

Proof By Lemma 2, the necessity follows from the sufficiency of Theorem 1. To 
prove the sufficiency, let x (t) be an eventually positive solution to Equation (X+). 
By Theorem 1, x(t) must be unbounded. Consequently, x(t) is eventually increasing 
and ojm= oo. There is a fi> 0  such that x(ti) =«, cc(t) is increasing and &(t) is 
noninoreasing for t>tx. So

0<a<® (£), 0<азоо<а;(^)<а;(4 ) (1 1 )
for Integrating Equation (X +) from s to tlf h yields

x(s) — x(t)  = J  X (v , x (v ), x(it))d t. (1 2 )

Letting t-*oo  in  (12) and using (A), we obtain
• • • c°° . . .
x(s)> x(s)  —ж„= X (v , sc(r), x (v ), x (r))dv

ai (v )/i (ж(т) )gi(x(v))di;

> % /i (» ( s ) ) J 4 Oi(v) dr, (13)

where % = min ^1 (3/) > 0 . Dividing (13) by / 1  (<»(*)) and integrating from to t, 

we have
C*(t) ft f«  ft ,
I > n i ds 0i(r)dTr>% (s—ti)ai(s)ds. (14)

J *  J  1 \X) Jtt  Js J t i ,

Let t->oo in  (14); we get | (s—ti)ax(s)ds<oof which is a contradiction. The

theorem is proved. .
Remark 1. Theorems 1 and 2 extend and improve the well-known Atkinson's 

Theorem ш and the results of [4, 6, 8]. Maoki and WongC4,Theoremi:i proved Theorem 2 
in  the case that gt(y) = 1 , f t(x) are nondecreasing for В. Wong C0«Theorem31 and 23 
discussed Theorem 1 for X = a (t) f(x )g (y )  with f '( x )> 0 , 0 < k < g (y )< K < 00, and

proved Theorem 2 under additional assumption lim inf -^т^г^> 0(р> 1). If 0 (3/) s=l,|®Hoo . |®|P
we get Theorems l  and 2 of [8]. Moreover, the proof of sufficiency part of Theorem 2 
is much simpler than  the one in  [4].

Remark 2. The condition imposed in  Theorem 2 on the monotonioity of 
functions fi(so) is weaker than  the corresponding one in  [4, 6, 7, 8]. If there exist a 
large positive number a and nondecreasing continuous functions (p1 (0) on [a, 00) 
and <p2(x) on ( — 00, —a] such that jfi(®)>?>i(®) for ®>«, /а(ж)<9>а(^) for &*<;—«

3 dx and -<00
• Г

dx. — / 4— t hen the conclusion of Theorem 2 holds. This
J .  (px\X) j - о q>2\&)

seems to be better. But, instead of /<(«) we can choose functions /<(») such that
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/ а(а?) —срх{р>) for as>«, / 2(o?) —фа(а>) for — a and (A) holds for / 4(а?). Therefore, 
X  is Still locally superlinear in  a> at |a?|=oo. In  particular, taking <pi(a>) —рхяР, 
9>2(а?)=/л2а;р, fix, дь2> 0 , <р>1, we obtain a condition corresponding to condition

lim inf M > 0  used in  [6, 8].
\ 0 } \ p  .

T heorem  3. I f ,  in addition, the following assumption 
■ (B) lim in f fa(» > Q  and lim i n f / 2(«r)<0(p~>00 JH-CO

is satisfied, then

i : a x ( t ) d t = o o  (16)

implies that all solutions to Equation (X +) are oscillatory.
Proof Let solution a?(t)>0 eventually. A parallel argument is valid for the 

ease that x (t) < 0 eventually. By Lemma 1, »(t) satisfies (11) and is increasing for 
t > t x .  Since (B) holds, there is a positive num ber m% such that fx(.®(i))>'Mx for 
t>tx. Thus

®(r), n(v))di!>mxnx\ Ox(*)dv, (16)J ti J и
f" i  . .

where %== m in ffx(y)>0. Let t->oo in  (16); we have j a1(t)dt< -^-^-[o:(t1) —

<oo. This proves the theorem.
Jh

/•oo

R em ark  3. Wong [7] got a sufficient condition j  a(t)d t= oo for the equation

в^ОО+вСО/ОКОЖ яЧО) = 0  to be oscillatory, where </(a?')>0, /'(® )> 0 , ®/(®)>0 
for хФО, and a(t)  may become negative for some t.

§ 3. The Asymptotic Behavior of 
Solutions of Equation (X~)

I t  is well known that every solution to Equation (X_) is eventually monotone. 
So either

I. ®c=0, »«,==();
П. ®o.=0, ajM=Ci^0; .

Ш . ±C2^0, »M=  ±00;
or

IV. aL= ± °° , a?,»— ± °° .
A solution is said to be of I-type, П-type, ПГ-type and IV-type, if it behaves 

as above respectively.
We first present some results concerned with bounded solutions of Equation 

(X_).
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Theorem  4. There exists a II-type solution to. Equation (X _) i f  and only i f

ta%(t)dt<oo. (17)

Proof .Necessity. Suppose x(t) is a П-type solution with ж„>0. One argues 
similarly for the case ж„<0. I t  is easy to see that ж(2)>0, x(t)< 0  for 0, and

0<<ввв<а?(0<®о=3®(0.), ж(0) = я о< 00< О  
for 0. Since a„= 0 , we have

£c(t) =  — j" Х(т!, x (t;), a; (v))dr, tf>0

(18)

(19),

and for any 0,

( i f )  = x 0 “ | 0 ^ s |  ( ? ,  « ( ' s ' ) , '  x(v))dt

<Ж° “ J ^ e iM /iC ® ^ ) ) ^ ®  (*))*&*

=̂ £Uo— J* та1('г')йг, (20)
where m in f t (x)> 0 , щ =  min gi(y)> 0. So

* • ®o<2/«»0 ' . •

for any t>0. This implies (17).

< XQ-Я сс
Щ фх

Sufficiency The proof is similar to theone of sufficiency part of Theorem 1. So 
we give only a sketch of the proof. By Lemma 2 wo can take ^ > 0  large enough 
such that . • . ,, . ,

. . .  . .  . l  ■
f ta2.(t)dt< ; 
J t» 2 Ж Л ’ - ( 2 1 ) -

where M2 = max f 2(x)> 0 , N 2= max g2{y )> 0. Let <^~be a Fr6chet space defined as
1<*«S2

in the proof of Theorem 1. Let
1

}•

(22)

E  is a closed, convex subset of For any zQ E , define the operator 2': E —>£F by 
the relation Tz=  (Tx, Ту) and

(T x )( t)=  1 + J  (s~ t)X (s , x(s), y(s))ds, t> t1} ;

(T y )(t)  = - X ( s ,  x(s), y(s))ds, i> h . ^  :....

Then we can show that T E ^ E ,  T  is continuous and ТЕ  is preeompact .by the 
topology of compact convergence ,од [tx, oo). .So 37 has a fixed point %£J3 satisfying

ajOO^l-i-j ( s ~ t)X (s , x(s), y(s))ds, t> tl f ., .:
' "• . . .  / i  "• .■•■! ..• ;./foo . .: •(•.' : . .!. .. - . r.' • '

' # ( 0 “ “ | -z '(*< * ( * ) . . # ( » ) ) * .  * > Ь -

(23)
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Thus, we get a II-type solution x(i) . The proof of the theorem is complete.
C orollary . Every bounded solution to Equation (X _) is of I-type i f  and only i f

j  iqx(t)dt = oo. (24)

To make every nontrivial bounded solution to Equation (X_) be of II-typo, wo 
should confine the function X  within necessary limits. A function1 X ( t ,  x, y) is said 
to be locally superlinear in  ж at ai=0, if there is a small a > 0  such th a t /a(a?) is 
nondeoreasing on (0, a ) ,  f i ( x )  is nondooreasing on ( —« ,  0 ) ,  and .

dx _ (~a dx[a d x ____  f - “
Jo.fo(x) ’  Jo j-Jr? \ ---- > i t m =00, (26)/ 2О ) Jo /i(aj)

Theorems. I f  X ( t, x, y) is locally superlinear in x at x=0, then every
nontrivial bounded solution to Equation (X _) is o f Il-type i f  and only i f

J*̂  iax(t)d t< cb . (26)

Proof Obviously, only the sufficiency must be proved. Let &(£) be a nontrivial 
I-type solution and let x(t)  > 0  for t> 0 . In  the case a;(f)<0 the proof is similar. 
Since 0 and x(t) is nondeoreasing for 0, x(t) must be negative for tp=0 and
, r 0<а)(^)<а/оь=ж(0), ж(0)==а;о<а;0)<0 (27)

■ f°° <" . . .. ■■ / Ч V . . .  ,4: . ' . ‘ "
for f > 0. By Lemma2, J ta2(t)dt<oo. Since x„= 0, Equation(19) holds. Since £»„=0,

there is a £*>() such that x(tf)  = «  and 0<®(f)<=« for Using the monotonicity 
of x(t)  and the local superlinearity of X  and noting that / 2(* (0 ) *s nonincreasing 
fo r .O k , from (19) we obtain, • - ,

- a ( f ) < j^  a2(v ) f2(x('v))g2(x (v ))d r< N 2f 2(x ( t ) ) ^  a2(r)dv  , (28)

for t> ti, where N s= max g2(y )> 0. Dividihg (28) Ьу f 20 ( 0 ) and integrating from
®o<S2/«SO

it  to t produce

[ [ dsf д аО ) й г < Х 2 f (v -tx )a 2(T;)dv
Ja(t)J 2(r)  Jt, J 8 JU

(29)

dr
M r )

<oo'. This contradiction proves the
U f l / a O )

for t> ti. Letting t-»oo  in  (29) gives 

theorem. ..
R em ark  4. If  there exist nondecreasing continuous functions <p2(x) on (0, a) 

and q>i(x) on- ( —«, 0) such that f 2{x)<,p2(x) .for 2£(0, a) and fi(x)>q>1(x) for

* * “ * « > '  a n d
dx*— , . . — =oo, where a is a small positive number,

$>aO) J° 0>iO) ,
then the conclusion of Theorem 5 is true (see Remark 2). Especially for q>i(x) =р,х®, 

q>2(x) = u,2x, u,i, u,2> 0, we get conditions lim sup £ ^ l< .o o  and limsup &.Cff)<ooT \ /  r  j r- 7 r  7 a  0+0*. • X ®->0- X

which are also available to Theorem 5, where f {(x) may not be monotone near ®=0.
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R e m a rk  6. For ax(t) ^ a s ft) ,  ®=1, 2,

where n > 0, b> a> 0, Theorem 6 and the corollary of Theorem 4 coincide with 
Taliaferro's Theorems C3>Theorems 4 *naM. If, in  addition, «=6, we get a result established 
by Wong CTheorem i»13.

Notice tha t all nontrivial bounded solutions to Equation (X_) are either of 
I-type or of II-type if function X ( t ,  x, y) is locally superlinear in  x  at <e=0. We 
give an example to illustrate.

E x am p le  Consider the differential equation
. x = 2 (t+ l)~ 8/sxl/s, t> 0. (30)

Here, a(t) = 2 (tf+ l)~ 8/3 satisfies j" ta (t)d t<oo and f ( x ) =ar1/8 is sublinear. I t  follows

from Theorem 4 that Equation (30) has at least one H-type solution. But Theorem 
5 is false for Equation (30) which possesses a? =  (<+1)-1 as a I-type solution.

We are now in  a position to investigate the existence of unbounded solutions to 
Equation (X_).

T heorem  6. Suppose functions f i ( x )  and f 2(x) are nondecreasing. Then there 
exists a I ll- ty p e  solution to Equation (X_) i f  for some a>0 either

foo
J a2( i ) fa(ai)dt<oo

or Jo ax(t) |Д ( -  at) | dt<  oo; 

and only i f  fo r some «> 0  either

f c i(t)/i(« t)d t< o o
Jo

or
Jo a2(t) | / 2( — o<) |dt<oo.

Proof Let (31) hold. Take ^ > 0  large enough such that
• • fco

where M 2=m ax g2(y)> 0. Let x(i)  be any solution to the equations

(81)

(32)

(83)

(84)

(SB)

We claim that x (t)< a  for t>t%. If  not, then there exists i2> tt  such that x(t2)= a

and ~  a<;cc(t)<a for [$*, t2). Therefore



x(t) = f x(s)ds<!a ( t~ t1)< at. (37)Jti
Since / 2(ге) is nondecreasing, from (36) we have

X (s , x(s ), x(s))ds

g2(s)/a(«s)ds<Y  я+ ffa -g j"  - =«, (38)

which is a contradiction. So x ( t)< a  for t>t*. ,
Because гс( )̂ is nondecreasing for <><*, the lim it x„ exists and is a finite positive 

number. Obviously, as a solution to Equation (X_), x(t) is aslo of Ш -type.
Similarly, (32) leads to the existence of an eventually negative Ш -type solution. 

So the first part of the proof is complete.
Let &(t) be a Ш -tyhe solution with £CM> 0 , x„=oo. Then there is a t j> 0  such 

that x(t) is positive and increasing, x (t)  is positive and nondecreasing for and
0</8==a?(ti)<a;(0<®<e (39)

for If  then
a?(̂ ) ==fu(ii) -Ь f x(s)ds> x(tf)-\-fi(t—tf)

J ti

>®(*i) +  - |0 t > - |y S t .  . (40)

On the other hand, owing to condition (A) and (40) we have

x (t) — х (2 ^ )=  f X (s, x(s), x(s))ds 
J sn

« i( s ) / i (y  (41)

for t> 2tb  where %== m in g i(y )> 0. Letting t -» oo in  (41) gives
0<y<£r

(42)

1
The inequality (42) proves that (33) holds for a = y  #.

Similarly, a Ш -type solution x (t)  with x^< 0  and ««,==—00 leads to (34). The 
theorem is proved.

C orollary. Suppose f i( x )  and fz(x)  are nondecreasing. Then every unbounded 
solution to Equation (X _) is of IV -type i f  for any «> 0

J oM« i W I / i ( ( - l ) <+1« 0 1^=00, 4 -1 , 2;

and only i f  for any «>0,

J 0 ei(O I/*((“ 1) ,«O ld<“ ,°o, ^= 1 , 2 .

R e m a rk  6. In  the case X  = a( t ) f (x )g(x ) Theorem 6 says that there exists a
. Лоо ЛОО

Ш -type solution if and only if either I a(t)f(cit)dt< 00 or 1 a(t) \ f (  — at)\dt <  00

No. 4 Limg, Z. C. #  Chen, 8. Z. ASYMPTOTIC BEHAVIOR OP SOLUTIONS TO NLDE 4 8 9



4 96  ■ ; '■■■■■■■■■ : CHliSr; ANN. OF-'MATED* 1 -  v'- • ' " VoL 6 Ser. В

for some a>0, and the corollary says that every unbounded solution is of TV-type if

and only if a(t) \ f ( ± a t )  \dt = oo for any «>0 , Oombining the latter result with

the corollary of Theorem 4, we can obtain necessary and sufficient condition to 
ensure that every solution is either of I-type or of IV-type. This result improves 
Theorem 3.1 in  [2] established by one of the authors of the present paper and for 
f ( x )  =а;л(А>1) and g(a>) = 1  coincides with Taliaferro's Result к.^еоегт.а.*^
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