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POSITIVE MARTINGALES AND
RANDOM MEASURES

Kahane Jean—Pierre*

Abstract

Given Q,(t) (=0, 1, .++), a positive martingale indexed by lt, GtGel, coﬁﬁecf metrie
space) and a measure o € M*(T), the random measure Qo is defined as a limit of Q,0. In
general EQo<o. Conditions are given to insure either EQo =0 (degeneracy) orEQo
=0 (full action). In the particilar case when @.(t) a product of independent weight
functions, o is decompoeed into a sum of two mutually singular measures, ¢ =0'+0", such
that @ acts fully on o' and is degeneoate on o, and the operator EQis a projection. Examples
and applications ace given (random coveoings,B. Mandelbrot’s martingales, multiplicative
chaos).

The following situation appears in several circumstances, such as J;andem’

: @overingw ,11,7,9,19,16,17, 94, 95, 27,98, 6, 10: random models of turbuleneei?_.s'19'92'13120'15'213,

random geometrical construeiuons“”"2’3 261 mult1p110at1ve chaos™*, .
(T, &) is a compact metric space and (£, o, P) a proba,blhty space. We are

“given an increasing sequence of o—fields in &7, (€y)ucn, and a sequence of random

functions Q,(%, w)(nEN, t€T, w €2, the probability space)such that for each ¢ the
sequence (Q,(%, ®) )nen is a positive martingale adepted 10 (Fu)nen (positive means
=0) and fox almost all @ the functions Q,(+, ) are positive Borel functions on 7'.
To be short, we write (Qy)sen and we call such a seqilence a positive T'-martingale.
Given a positive Radon measure o on T (we write o€ M*(T)), we consider the
sequence Q,o, and we are looking for a random liniit, S. Theorem 1 shows how thig
is possible. Let us remark that the 1nterest1ng case is when fhe martlngales Qn(t )
are degenerate, that is, converge to 0 almost surely, whenever t€7T.

It may happen that (Qu0)sen is also degenerate, that is §=0. In the opbosite
direction, it may happen that the expectation of § is the expectation of Q,_,cr (both
are measures on 7). Theorem 2 says that the general case can be decomposed into
thess extreme cases. | | A

We indicate the main methods for studying the random measure §,and we give

' Manuscript Received June 11, 1986.
* Universite De Paris-sud, Unité Associeé 757, Analyse Harmonique Mathematique (Bit, 425), 91405
QOrsay Cedex, France.



2 CHIN. ANN. OF MATH, o+ Vol-8 Serv B

arather general theorem for complete degeneracy, that is, §=0 whatever o € M*(T'y
(Theorem 8). This ends the general part (§ 1).

In § 2 we study the most interesting situation, when Q,=P,P,:::P,, a product
of independent weights of expectation 1. In this case the decomposmon theorem has:
a much sironger form, and the operator ¢ — ES. from M* (T) into itself is a
projection (Theorem 4). |

Then we introduce the Peyriére probability on (T'x Q) (it is not a tensoriak
product of measures), a useful tool for 1nvest1gat1ng the local properties of § (a.s.),
and the basic Theorem 5. '

- The §8is devote_d t0 a few examples and .comments, - i L.

§ 1. The General Theory

" Lot us define Qu(£)=@Qn(t, ) and consider its expectation .
S ) B XC) R ¢
"We suppose ¢ € L*(a), that is
j g(#)do (¢) <oo. . (2)
'We write O (T) for the space of contmuous funotlons on T} weak convergenee of
-measures means weak" convergenee in the dual of 0 (T) ,
Theorem 1. Assuming (2), the mndom measures Quo convewge weakly a.s. to @

“random measure S. Moreover, gwen @ ﬁn@te or countadle family of Borel sets By on T,
we have

Vi S(B,) -lim (Qno) (B) a.8.. o 3y
Pq‘oof Let i be a countable family of bounded Borel. functlons on 7. When

@ €D the sequence J‘ PQudo eonverges a. 8. (We use (2)). Let us write

;S’(gu) llquJQ,,da a.8.. (@

Let @, be a countable densec subset of O (T, containing 1. The measures Q,o are
norm bounded and converge on (Do a.8., therefore they converge weakly and the weak
limit § satisfies a. s. \

‘f quS 11mj<p Qudo (5)_.
for all p €O0(T). Given the B,, let @ be the union of @, and {1z} Wr1t1ng (4) for
@ E.B we get (3). '

Let us remark that the probability of the event e
(S(B)=lim (Qu0)(B) for all Borel sets B) ' (6)
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may be zero (and actually is zero in most interesting cases; when § i a.s. singular
with respect to o). o

From now on let us write : BT o o
: Qo-k:g,:}liﬂQW': o o D
Q is an operator with maps Mt (T) (and M(T) as Well) into random measures. E’Q
ig the’ operator which maps ¢ into ES (therefors, M+ (1 into M HTY). o

There are two extreme cases. The first is Qo =0 (a 8. ); we say that Q 'is
degenerate on . The second is when the martmgale (Qn o) (B converges in Li(Q )
for each glven ‘Borel set B (or the same, when B= T'); this means ’

Al

| BQo)(B)=(go)(B) . , | ®
(q being defined in D)); we wr1te simply o T
Saomee e S

 and say that @ is fully actmg on o. Here is 4 simple observatmn which we shall
imporve later in the second part. :
Theorem 2. Given (Qu) e and o, thefr‘e is @ unique decomposwtwn of (Q,.) as w
sum of two positive T—martingales ,
. ’ ' Q Qn Q”' S (10\)
such that the com‘espond@ng operators Q" and, Q" are wesznectwely fully acting and
-degenerate on 0. Assumq/ng 'moweovefr q(#)=1 on T the opemtow EQ @s g contmotwn of
M+ (T) ,
‘ Po’oof Let %, be a. countable set of Borel sets in T, such that .%, is a Boole
algebra and’ .%, generates the, Borel o-field of T it is well known that a positive
measure on @’o has a umque extensmn to the Borel a~ﬁeld Let us erte Q,.a S

and ... - | e e
' E(S"}'(K,,)‘=S£, o S (11)
meaning that , B
- E(8(B)|%)=8.(B) | (12)
for each..B.€ %,. Obvigusly 8} is a.s, a positive measure on Hpand ™ ., -
| SEB<EB, (13).
therefore - . _ K :
IS""':Q,,,O' A .
{ 0<Qn=<Qn @)

and. (@) )nen i8 & positive T‘—maartingale' Moreover (12) implies that Si(B) tends to
S(B) in IL*(Q), which 1mp11es (and is equ1valent to)

EQo=¢'c : (15)
with the obvious notation ¢'(¢) = EQ,(¢) . Moreover | |
B(Q—Q)o=0. L 6y

(1) means that @ acts fully on ¢ and (16) means that Q" isdegenerate on o. When;
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we suppose ¢(4) =1 on T we have ; :
EQo=EQ's<o, B a1
therefore HQ is a contraction. _ " R ' '
In general we cannot say more. Given o € M* (T),q(t) and 0 <<’ (B) <q(B) (€
T) we can built a T-martingale (Qa)nen satisfying (9) and (15). Given a contraction
of M*(T"), we can write it as EQ for a oenvenient_ .T—-martipg_ale (Qn)nen sSuch that
g(t)=1onT.. |

Let us descnbe now the main methods o prove elther full action or degeneracy._

In order %0 prove full action we consider 7>>1 and the submart1nga1e_ﬁ((Q"a) (TH™

If
E((Q.0) )T))"~0(1) (for some B>1), (18)

then @ acts fully on ¢. This is partwularly manageable whén h= 2 in the form
JjE(Q..@Q,.<s>>da<t>da<s> 0().

If moreover Ic(t s) is a Borel functlon on T? whioh is elther posﬂnve or bounded'
the formula ' ' '

B j jk(t )8 ($)d8(s) = lim j f D(Q,,(t)Qn(s))k(t s)da(t)da(s)

allows to study some a. s. propertles of the random measurs §.
In order to prove degeneraey we oconsider 0<h<1 and the supermartmgale
B((Quo) (@)™ It
R E((Qna) (Tm)H* 0(1)  (for some h<l), - (19)

then Q ]S degenerate on o. Let us use (19) in order to get a sufﬁclent condltlon for'

eomplete degeneracy, that is, Q=0 (a. s. ) for every o €M * (.
Theorem 8. Lot o be a positive number such that meas, T<oo, 0<h<1 and O
>0.. Suppose

for all balls B amd some n=n(B) depending on B. Then Q is completely degenerate, that
4s, Qa 0 a.s. for all c€ M*(T). ‘
Proof Changing O if necessary (20) holds for all Borel sets B. Let us decompose
T into a finite union of disjoint Borel sets, Bj;, and choose n; = n(B;). Writing §,=
Q.o as usual and assuming n>n; we have
2 B(8u(B;))' <2 B(S,(B;))'<2 B sup(Qn,(£))*(0(By))"

<I(B 53 (G () TF)H (S0 (B

. <O0(Z(diam By)*)* (o (T))" , (21)
by using the submartingale property, Hoélder’s 1nequa11ty and (20). Now, using the

numerioal inequality

B sup (Q,,(t))"<0(d1am B)@-ma (20)
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) . _1—h ) L , .
For<(ZL4)" 5a) (@>0) e

we have

B(8,(T))"*=B(58,(B) '<(E (ﬂ%&) (3B, (B)H)

sup 8, (B;) m1/3 . e 2
<(E (_____._ 5 ) B 3(S,(B)))- (23)
Aoccording to (21) and the assumptlon measaT <oa sufficient eondmon for (19)

(Wl‘l’:h —- instead of h)

o omBEme(SE) -, e

where B denotes an arbitrary ball of radius p. Moreover we can assume S(T) >0 a.
s. (if it is not the case, we can replace S,(T') by lgmso Su(T") in (19) and (23) and
restricting the probability 'space to the event §(7') in (24) we are led to the same
computations). (24) will follow from

Su(B,).
lim 3,.‘,‘33 8,7

Suppose now tha’r (25) does not hold. Then there exist s>0 a sequence of balls B,,

=0 a.s., ' | - (2B)

(0;~>0) and a doubly indexed sequence ny(lim ny= o) such that
. ] s ..~y . N

P(8S,,(B,,)>e8,,(T)) >e.
Moreover we can suppose that Tim B,, contains one point at most, Taking limits we
obj;ain v ' '
| P(8(B,)=e8(T))>s,
hence , v ..
| P(8(lim B,,) =8 (T)) >e. | .
Therefore lim B,, consists of one point, £, and, due to S(7)>0 a.s. ‘
o P(8(z)>0)>0.
This 1mp11es inf Q, (¢) > 0 which contradiets assumptlon (20) The eontradmtlon
proves (25).
‘Let us remark that the proof is simpler when we assume meas, I'=0, using (21)
directly together with ’ : ,
| (ST <3 (Sa(B) N %)
in order to get (19). ‘ ' '
.~ 'We shall see an application of Theorem 3 in the examples.
Let us remark that there are stronger conditions than complete degeneracy,such

as
hm sup Q.(t) =0 a.s. (20

fn-oo LED
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We may call (27) “strong complete degeneraey We shall see an example of this
(random covering).

§2 Independent Multiplications

From now on we suppose. _ RO
Qu=PPy---P, (nE N), | o (28)
where the P P,. (t a)) are 1ndependent posmve random functwns such that P ( R
) is borelian for almost all w and S R v
EP,(4, )=1. | (29)
for all tET Then (Qn)nen 1s a T—ma,rtmgale Wlth q(t) ==1 (tET) Here is an
improvement:of Theorem 2. = - -
_ Theorem 4 Given (P,.),.GN as above wnd o-EM +(T) there emets @ Borrel set B
such that . \ : : S S
E(SI Co)=1aQuo - (80)
o can be decomposed as @ sum of two mutbwli‘y singular mewsuq'es, o=0"-+c" (where
o' =130), such that Q acts fully on a cmd 48 degenefrwte on " Tﬁe opetr_wtoq' EQ maps
o into o’ dnd it is @ fprroyectwn ' o |
Before proving Theorem 4, let us observe that, glven o, we have as a consequence
of the theorem ‘ ‘ RS
‘ {Qk(t; ®) =lB<t>Qn<t) w) o
(8, @) = (1—13())Qu(t, o)
with the notations of Theorem 2, and also ,
q¢'(t) =1x(). (82)
Now B depends on ¢ Ustially the operator EQ will kill a “singular” part of o (that
o', and keep a “regular” part of o (that is, ¢’); for example, o' may be the part

(81

of o which is carried by Borel sets of dimension <e, a given number. In all examples
below, K@ has this character of a regulasing gperator. .
Proof of Theorem 4 Given n, let us consider the T—martmgale

| . QY = Pas1PuiaPogn (mET) . B ¢~
‘and the corresponding operator Q. Clearly with obvious notatlons ' - :
E(Qo|%.) =E(P1Py+P,Q%0 | €,) =P1Py-PEQ™0). (84)

Writing (as in (15) and (16)) | S (.
o o'=BQo=¢'c 7 o (8B)

and considering this as the commun expeotation of both members of (34) we obtain
E(S| %) =¢'Quo - (36)

(that is _
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Q—(l e ST
with the notations of Theorem 2). For every Borel set 4 in T
J q'Qudo "f a8 (aus: - and in I1(Q))

f(l Q,)Qnd(f O (as) | o

It follows that the 1nterseot1on of the sets {tGT [g (t)>0} and {tETll q (t)%O}
has zero g—measure, therefors ¢ =1Bcr for some Borel set B. Then (36) reads (30), ¢
(=130) and ¢" (=1{(1—1p)0) are mutually singular, (Q.c")(T") (= Qo) (T))
converges in L*(2) and (Q.¢") (T) (= (Q'o") (T)) converges 10 0 a.s: Finally . = .7
Qo' =Qa, therefore FQ is a projection,.

Let us suppose now o= HEQo, that is, Q acts fully on o, and _Imoreover ¢ isa
probability measure (we write o € Mi(T)). There is a umque probablllty meagiire
2 on the o—field generated by the Bx A (B: Borel set in T, A event in Q) which
satisfies

| jrxn ACA aS)dQ(t, CO) =E L, f(, ®)dS () (39)

for all positive measurable functions f (¢, w). By.definition it is-the Peyriére
probability. We also write E,f for the first member of (89). o
Theorem 5. Assuming o € M# (1), o=EQo, and moreover that the distribution
of P.(t) does not depend on t (¢{€1T'), the P, ( P.(¢, co)) are D—independent.
Proof We have to show = - g 'g

-Eq H fn(P») = H Eq.fn(-Pn>

xfor all NEN and posmve Borel functlons f,. deﬁned on R* (n 1 2, +«, N). U‘s'inig
(89) and the previous notation (83) we have o

B L) =B [ 11 Bufu(B)d@0) = B f(BY)ae (a0

and the assumption on the distribution of P,(¢) implies that B (P, f,,(P,,)) does not
depend on ¢, therefore

Eqﬁf.,(P.,)=IZiE‘(P"f»(P;))&——-IiiEq 1o(P2), (41)

What we had to prove. vl Gl e )
- As an application leb us §uppose that the distribution of P,() does not depend

on n (and does not depend on § either), ’nhat is, all P,,(t) have same dlstrlbutlon as
a glven posﬂnve random varlable P such thait EP 1. Then - a

Bim(PuPyPy($) = oxp E(P log P) S-as. (42)

@
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with probability 1. This is nothing but #he law of large.numbers applied to the
log P, in the probablhty space (T X Q, Q)

§ 3 Examples

1 Random coverin gs. , S . .
Suppose T —T R/ Z, 1>l1>lg>la Z,, >O and

where g,=1,1,5,' and w, are‘iﬁdependent»random variables equally distributed on
T. The martingale ' :

| L J PyP, (t)clt o - (44)
eonverges in IF (.Q) if and only if . S | ‘_
o Ji;j‘ f;[ E( (1 xn<t (ffﬂ)% (1'_'Xn<8 wn)) dt<oo, ' - (45) .
Writing .
4 () = 13 (E) =L? Gt rwde - (46)

(4, is the triangle function supported by [—I, %], 4(0) =1), (45) can be written
as ‘ - B T '

2 < oo,

. o C)
j exp S 4,()di< co. -
T 1

A remarkable theorem of L.  Shepp says that there is' sirong complete degeneracy
when (47) does not hold This has a nioce 1nterpretat1on When we con31der the
random intervals ‘

~[0, Ll+on N )
Strong complete degeneraoy means ' o .
P(UL=T)=1 =~ L 49)
and full action implies o ;
P(UL=T)<t. o (50)
(47) can also be Wntten as '
' Zn exp (Zi+ e, )<oo (see [25]) o (51)

There are ma,ny Var1at1ons around this, theme (see [12] second ed1t10n) The
analogue of (46) is always a sufficient condition for non—eovermg (that is, the

probability of non-covering is strletly positive). Is it also a necessary condition as
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in the case we just considered? This seems to be open, even in the case of covering a
ball by random balls in an euclidean space of dimension >2.

‘In the case of non-covering, a closer investigation of the random measure §
leads t0 a precise estimate of the Hausdorff dimension of the subset of T which is not
oovered infinitely many times: ' "

dim (T \ffm 1,) = 1T ﬁii@ﬂ_ a8, [12] first edition,  (52)
2, Some martingales of Benoit Mandelbrot [192:18,20,151

Suppose T'={1, 2, -+, ¢}*. Let W be a positive random variable such that KW

=1, and let Wy,.;, be independent copies of w (nEN % € {1 --rc}). We define
45(t) as the 4-th ooordmate of t€T and S ' | '
' »(ﬂ Wh(t)h(t) Al / - (83)

'We consider o =Haar measure on 7' (considered as the group (Z/cZ)N ) Then we
have the following results. '

Q is degenerate on ¢, that is EQo =0, if E(W log W) =>logec.

Q acts fully on o, that is EQo=o, if E(WlogW)<loge..

(Quo) (T") converges to (Qo)(T) in I*(Q) if and only if BE(W™) <c (h>1)

Moreover, if @ acts fully on ¢ and if the distribution of W is not 00 Sparse, we-

&,

have a.s.

log(Qo) (I.(3)) _ WlogW
neo olgogo(‘r(l,,(t)) =D=1- E( Toge )

except on -set of Qo—measure 0. As a consequence, Qo is concentrated on Borel sets

of dimension D, and all Borel sets of dimension <D have Qa—-measure zero, a.s. The

probabﬂﬂ;y of Peyriere was introduced in this context™®, -

8. Log normal operators and multiplicate chaos.

This again relies on an intuition of B, Mandelbrot ([18, 21] p. 880). The theory
is developed in [14]. Here

P,() =exp(X, (1) — 5 BXA®),

where the X ,(#) are independent gaussian centered random functions on 7', The
distribution of the P,(+) depends only on the correlation functions

: u(t, 8)=B(X.()Xu(s)) (€T, s€T). (54)
A basm faot is that the dlstrlbutlon of the operator @ (that is, all joint d1str1but10ns
of (Qos(By), (Qoa) (Ba), +++ (Qo,) (By), for all choices of n, oy, + oy, By By)
depends only on ' ' ' a

Q(t: 8) =$Pﬂ(th><oo : (55)

whenever the p,(%, s) are positive. A ease of particular interest is when oxp(—yd?(#;
$)) is a correlation funetion (in other words, a kernel of. positive type) for all y>
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0; this is true when (T; d) is embedded in a euclidian space with the euclidean

metrie, An important example then is -

q(t, s)—-—[ exp( =yd?(3, 5))—L dy =y log* d(} )+O(1) (56)

’Wlth u>0 given,

Let us add the followmg assumption (satlsﬁed in the partlcular case mentloned
above). Wrﬂung N (s, B) for the smallest number of balls of diameter s whose
union contains the given set B, we assume

sup]\7<1 diam B B><oo ‘ . | (B57)

the supremum bemg taken on all balls in 7. This condltmn appears.in dlff'erent
contexts in [1] and [8]. It 1mp110s that Hausdorff dimension and capacltanan
dlmensmn are the same for Borel subsets of T and 11; 1mp11es also thatb the Dudley
1ntegra1 J (B d) Satisfios '

J(B, )= ‘[ \/logN(s B)ols<0d1amB S .(2258)

for all balls B, O dependmg only on (T, &). -
Agsaming (87); Q- is completely degenerate when

amr<t T g
If (assuming (B7) again). S | :
| o dimT>3, o (60

Q is not completely.deger;era@é and the infimum of the dimensions of random Borel
sets on which the non-vanishing random measures Qo are concentrated (o &
M*(T)) is oo E .
dim T——-~ “(see [14]).° : (61)

For the first port of this statement we need only (58) instead of (57) Let us
" gkotch the proof (and correct in ‘this way- a mistake* in the proof given in [14],
where formula (182) is not correct). It relies on Theorem 3. Choosing o and 0<hy<
h<1suchthat _ - T o

l‘ﬁ> uhy . a>d1mT A (62)

2 2
we shall prove (20) deﬁnmg \ ‘
Q,,(t) ——exp(Y (t\ EY2(t)) Lo
L . (6)
BT 2(6) =a(t, ) = 2 oxp( 48t 8)) @,
We choose . .. R F U S L N R
' - n=nEB) =(diam B)2H01) . i ol Tl o (B4):
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In order to prove (20) we choose p>>1, ¢>1, such that
. . 1,1 . | ;
=] ’ 65)
>t (65)

(later on, we take ¢ near 1). Ohoosing € B we have

Bsup (Qu(0)'= (sup(Q"“> )h<Qn‘<S>>")

Gn(s)
: 1 . .
Qu(t) 3
<@ S“p(Q,,<>> ) @@ | N
=<Egggexp(hp(y,._(t)—.Y,,(s)))_% WY (66)
According to properties of gaussian processes™’ we have o
B oxp(hp(¥o(8) = Yu()<e™®9, - (6])

where . :
20t ) = B(Ya() =¥(6) ) =v I (- e—ua-«m)ﬂzgundﬁ(t, ).  (68)
Using (64), (66), (67), (68) and the assumptlon (B8) we get

Bsup (Qu())*<O(dism B)F*™ | (69)
where O .depends.only on (7', d) and ¢. Choosing now ¢ such that _
kllq;fho | (O

we obtain. (20), which ends the proof.

. This paper i$ an extension of the lash of a series of lectures I gave ab Wuhan
Umversﬂsy in April, 1986. This is an opportunity to express my gratitude to Wuhan
University for its kind hospitality. |
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