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POSITIVE MARTINGALES AND 
RANDOM MEASURES

Kabane Jean-Pierre* *

Abstract

Given Q„(t) (n=0, 1, • ••), a positive martingale indexed by t  ( t&T,  compact metric 
space) and a measure о  € М+(Г ), the random measure Qcr is. defined as a limit of Qncr. In  
general EQcr̂ cr. Conditions are given to insure either EQcr—0 (degeneracy) or EQcr 
—cr (full action). In the particular case when Qn(t) a product of independent weight 
functions, cr is decomposed into a sum of two mutually singular measures, сг=о'+<т", such 
that Q acts fully on a' and is degeneoate on cr", and the operator EQ is a projection. Examples 
and applications aoe given (random* eoveomgs, В . Mandelbrot's martingales, multiplicative 
chaos)..

The following situation appears in several circumstances, such as random 
«оverin gC5’1:t* a*12> i6'17<24*25'27»28< e«lo;i, random models of turbulence’-18’19’22’13’20,15’21-1, 
random geometrical constructions1121’23’26-1, multiplicative Chaos’-14-1.

(T , d )  is a compact metric space and (Q, j / ,  P ) a probability space. We are 
given an increasing sequence of cr-fields in stf, (^ п)„еМ, and a sequence of random 
functions Qn(t,  o )) ( n £ N ,  t £ T ,  c o £ Q ,  the probability.space)such that for each t  the 
•Sequence (Q„(f, o>))„eM is a positive martingale adapted to (<̂ ’„)n6n (positive means 
> 0 ) and for almost all со the functions Q„(*, m) are positive Borel functions on T. 
To be short, we write (Q„)«ew and we call such a sequence a positive P-martingale. 
Given a positive Radon measure cr on T  (we write a £ M +( T ) ) ,  we consider the 
.sequence Qna, and we are looking for a random limit, 8. Theorem 1 shows how this 
is possible. Let us remark that the interesting case is when the martingales Qn(i, •) 
are degenerate, that is, converge to 0 almost surely, whenever i

It may happen that (Q»cr)neM is also degenerate, that is 8 = 0 . In the opposite 
direction, it may happen that the expectation of 8  is the expectation of Qncr (both 
are measures on T). Theorem 2 says that the general case can be decomposed into 
these extreme cases.

We indicate the main methods for studying the random measure 8, and we give
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a rather general theorem, for complete degeneracy, that is, $ = 0  whatever a  £  M+ (ТУ 
(Theorem 3). This ends the general part (§1).

In § 2 we study the most interesting situation, when Qn= P 1P 2‘"Pn, a product, 
of independent weights of expectation 1. In this case the decomposition theorem ha® 
a much stronger form, and the operator cr -> E8  from M+ (T) into itself is a 
projection (Theorem 4).

Then we introduce the Реупёге probability on (T XQ) (it is not a tensorial 
product of measures), a useful tool for investigating the local properties of'# (a.s.)^ 
and the basic Theorem 6.

The 1 3 is devoted to a few examples and comments. f'\E'

§ 1. The General Theory

! Let us define Qn{t) =  Q„(£, •) and consider its expectation 
f; \. \  " g(t)~ E Q n(t). . . (i>

We suppose that is

f g(t)d<x(t)<oQ. (2)
J T

We write 0 (T )  for the space of continuous functions on 37; weak convergence of 
measures means weak*~convergenee in the dual of 0 (T ) .

Theorem X. Assuming (2), the random measures Q„cr converge weakly a.s. to a 
random measure 8. Moreover, given a finite or countable family of Borel sets B$ on Tf 
we have

Vj 8  (B f  =  lim (Qn<r ) (Bf) a.s.. (3>
7l->oo

Proof Let Ф be a countable family of bounded Borel functions on T. When 

ф£Ф  the sequence J q>Qnda converges a. s. (we use (2)). Let us write

$(^ )= lim  a.s.. (4)-
П-> oo J

Let Ф0 be a countable denseo subset of 0 (T ), containing 1. The measures Qncr are 
norm bounded and converge On Ф0 a.s., therefore they converge weakly and the weak 
limit 8  satisfies a. s.

tpd8 =  lim mQx da (5)
J 7l~+°oJ

for all ср£0(Т ). Given the Bh let Ф be the union of Ф0 and {Is,}. Writing (4) for 
pG.B we get (3).

Let us remark that the probability of the event
($  (B) =  lim (Qncr) (B) for all Borel sets B) (6)
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may be zero (and actually is zero in most interesting oases; when S is a.s, singular 
with respect to cr).

From now on let us write
Qcr==$-=lim Q»cr. (7)

П—>oo

Q is an operator with maps M *(T) (and M (T) as well) into random measures. EQ 
is the operator which maps cr into ES  (therefore, M+(T) into M *(T)) .

There are two extreme cases. The first is Qcr =  0 (a. s. ); we say that Q is' 
degenerate on cr. The second is when the martingale (Qn <r)(B) converges in 1Е(0) 
for each given Borel set В (or, the same, when В = 2’); this means

J?(Q<r)(5),(y<r)(B) ... (8)
(q being defined ip (1)); we write simply

EQa =  qa (9)
and say that Q is fully acting on cr. Here is a simple observation, which we shall 
imporve later in the second part.

Theorem 2. Given (Qn)ne  ̂and cr, there is a unique decomposition of (Q„) as a 
sum of two positive T-martmgales

Q»~Q'n+Ql (10)
such that the corresponding operators Q' and. Q" are respectively fully acting and 
degenerate on cr. Assuming moreover q(f) — l  on T, the operator EQ is a contraction of 
M +(T).

Proof Let SB a be accountable set of Borel sets in T, such that SBq is a BoOle 
algebraand SB$, generates the Borel. cr-field of T; it is well known that a positive 
measure on SBq has a unique extension to the Borel cr-field. Let us write Q„cr=$„ 
and

E ( 8 \r<f?n)*=S'n : ‘ ' 1 (11)
meaning that

E (S (B )\V n)~S'n(B) (12)
for each. В €#o-O bviously .is a. s, a positive measure qn and

fif'(B)<fif,(B), . - . (13).
therefore

Sn̂ QnCT,
0 <Q'n<Q n

(14)

and (QOnew is a positive T-martingale. Moreover (12) implies that $Х(В) tends to 
$ (B ) in X1(i2), which implies (and is equivalent to)

EQ'cr =  q'cr (16)
With the obvious notation q '(f)—EQh^t) .Moreover

B(Q-Q')o- =  0- (16)
(15) means that Qf acts fully on cr and (16) means that Q" is degenerate oner. When
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we suppose q(t) =  1 on T we have
EQa= EQ'cr <  a, (17)

therefore EQ is a oontraction.
In general we cannot say more. Given cr £  M* (T ),q (t)  and 0 < #'(£) <  q(t) ( t£  

T ) we can built a T-martingale (Qn)n6M satisfying (9) and (15). Given a contraction 
of M+(T ), we can write it as EQ for a convenient T-martingale (Q„)n6M such that 
q{t) —1 on T.

Let us describe now the main methods to prove either full action or degeneracy* 
In order to prove full action we consider h > l  and the submartingale JB((Qnu) (T ))h. 
If

JB?((Q„o-))!Z,))'!'= 0 (l)  (foi some й>1), (18)
then Q acts fully on <r. This is particularly manageable when h=2, in the form

JJ E(Qn(f)Qn(.s))dcr(t)dcr(s)-0 (1 ) .
Jt2

If moreover Jo(t, s) is a Borel function on T2 which is either positive or bounded, 
the formula

E ^ h(J , s)dS (t)dS (s)^ lim ^E (jQ n(t)Qn(s))Jc(t, s)da-(t)dar(s)

allows to study some a.s. properties of the random measure S.
In order to prove degeneracy we consider 0<A <1 and the supermartingale 

E((Q n<r)(T ))\ If
E ( (Q„cr) (T )) ft= о(1) (for some h < l) ,  (19)

then Q is degenerate on o\ Let us use (19) in order to get a sufficient condition for 
complete degeneracy, that is, Qcr=0 (a. s. ) for every <r£ M+(T).

Theorem 3. Let a be a 'positive number such that meas« T < oo, 0<Л <1 and О 
>0. Suppose

^ su p (Q B(^ ) ft< 0 (d ia m B )(:l- ft)“ (20)
ten

for all balls В and some п=п(В) depending on В. Then Q is completely degenerate, that 
is, Qa = 0 a.s. for all a  6  М л (T ).

Proof Changing 0  if necessary (20) holds for all Borel sets B. Let us decompose 
T into a finite union of disjoint Borel sets, Bj, and choose щ = n(B3) .  Writing $„ =  
Qnor as usual and assuming ri>n} we have

2  Е (8 Я(В ,)У < 2  E{Snjm y < 2  E  swp(Qnj( t ) ) \a { B }))*tSB,

< 2 ( E sup {.Qnj( tm ^ y ~ \2 c r ( _ B s) y
t€Bj

< 0(2 (d iam B /) “) 1- V ( 2 7) ) ft (21)
by using the submartingale property, Holder’s inequality and (20). Now, using the 
numerical inequality
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(22)

we have

E (8n(T ))m —E ( 2 Sn(B}) ) ^ < { е * ( 2 ( 8 М т 1/а)

< ( E ( ^ M M J ~ h E 2 (S n(B d)b)1/2. (23)

According to (21) and the assumption measa T <  oo a sufficient condition for (19) 

(^with A  instead of hj is

;  “г 5 Ч Ш Г - ° *  •. (24)
where Bp denotes an arbitrary ball of radius p. Moreover we can assume S (T )> 0  a.
s. (if it is not the case, we can replace 8n(T) by ls<T)>o 8n(T) in (19) and (23) and
restricting the probability 'space to the event 8  (T) in (24) we are led to the same 
computations). (24) will follow from

.a / т> \
■ (26)lim lim 0 a.s.,p->0 n-><x> On\JL )

Suppose now that (26) does not hold. Then there exist s> 0 , a sequence of balls Д  
(p -̂>0) and a doubly indexed sequence nJfc(lim %.= oo) such that

Pi

fc->oo

P(8„M(BPi')> s8njX T ))> 8 .
Moreover we can suppose that lim BPj contains one point at most. Taking limits we 
obtain

P (S (B Pj)> e S (T ))> e ,
hence

Р (В (Ш В „ )> б 8 (Т ))> в .
Therefore lim BPJ consists of one point, i , and, due to 8 (T )> 0  a.s,

P (S ( t)>  0 )> 0 .
This implies inf Qn (t) >  0, which contradicts assumption (20) . The contradiction 
proves (26).

Let us remark that the proof is simpler when we assume meas„ T —0, using (21) 
directly together with

(8п(Т )У ^ 2 (8 п(В,)У  (26)
in order to get (19).

We shall see an application of Theorem 3 in the examples.
Let us remark that there are stronger conditions than complete degeneracy,such 

as
lim sup Q„(t) ет0 a.s.
n-*°o ter (2 7 )



We may oall (27) “strong complete degeneracy”. We shall see an example of this 
(random covering).
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§ 2. Independent Multiplications u

From now on we suppose .
Q„=PiPa- P n 4»€N )', (28)

where the Pn= P„(t, со) are independent positive random functions such that P„(*, 
со) is borolian for almost all со and ; 1

E P n(t, 0 = 1  , , (29)
for all t£ T .  Then (Q„)n6M is a P-inartingale with q(t) =1 (t(zT ). Here is an 
improvement of Theorem 2.

Theorem 4. Given (Р„)пем as above and cr(£M+(T) there exists a Borel set В 
such that . •  ; v ' : r" ' ' ■ 1 '' ;

E (S \V „ )= lBQn<r.' ' (30)
(r can be decomposed as a sum of two mutually singular measures, a = a '  +  cr" (where 
сг'==1всг), such that Q acts fully on c/  and is degenerate on cr". The operator EQ maps 
cr into cr', and it  is a projection.

Before proving Theorem 4, let us observe that, given cr, we have as a consequence 
of the theorem . , -

(Qn(t,o>)=‘X^(t)Qn(t! co)\ (31)
LQ2(*, o > )= * (l-lB(t))Qn(t, co) 

with the notations of Theorem 2, and also

* ' ( ( ) - l* (i). (32)
Now В depends on cr Usually the operator EQ will kill a “singular” part of cr (that 
is, cr"), and keep a “regular” part of cr (that is, cr'); for example, cr" may be the part 
of cr which is carried by Borel sets of dimension Ща, a given number. In all examples 
below, EQ has this character of a regulasing operator.

Proof of Theorem 4 Given n, let us consider the T-martingale . г

: . ^ = P n+1P»+2- P n+M (m € l)  (33)
and the corresponding operator Q(n). Clearly with obvious notations

E(Qa | <ГИ) = P (P 1P a-..PnQrn)cr | ^ J = P 1Pa--^„P(Q(n)cr). (34)
Writing (as in (16) and (16)) ”

o'^EQcr — q'cr (35)
and considering this as the oommUn expectation Of both members of (34) We obtain

E (S\tf„)~q'Q no- (36)
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■ ■ ■ f Qn—q'Qk

with the notations of Theorem 2). For every Borel set A in T

(37)

I

J dS (a.s. and in If(Q ))lim f q'Qndcr
J A

lim f (1—q')Qndcr=0 (a.s.).»-><*> j д

(88)

It follows that the intersection of the sets { t£ T \q ' ( t )> 0} and{ t^ T \ l  — q'(t)> 0}  
has zero cr-measure, therefore q'= l Bcr for some Borel set B. Then (36) reads (30), a' 
( = l Bcr) and cr" ( =  (1 — .1.B)tf) are mutually singular, {Qna f) f T) - f Q^ar ) :  (T))< 
converges in 1А(0) and (Q„<x") (T )( =  (Qlcr) (J7)) converges to 0 a.s. Finally : ;'i /, 
Qcr' =  Qa, therefore EQ is a projection.

Let us suppose now cr=EQcx, that is, Q acts fully on cr, and moreover cr is a 
probability measure (we write There is a unique' probability measure
2  on the cr-field generated by the B x A  (B: Borel set in T, A: event in Q) which 
satisfies .

(89)f f ( t ,  o>)-Ш  ( / ( ( ,  a)dS(t)Jtxq jt

for all positive measurable functions f  (i, b>). By definition it is the Peyri&re 
probability. We also write E gf  for the first member of (39).

Theorem 5. Assuming a ^ M i (T), a=EQ<x, and moreover that the distribution 
of Pn(i) does not depend on t ( t£ T ) ,  the P„ ( =  Pn(t, со)) are 21-independent.

Proof We have to show v  j

for all iVGINI and positive Borel functionsf„ defined on R* (w =l, 2, •■*, N ). Using 
(39) and the previous notation (33) we have

and the assumption on the distribution of Pn(t) implies that E (P nf n(Pn))  does not 
depend on t} therefore .

^ П / В(Р » )= П ^ (Д Л (Р » ))= П ^ Л (Р » ) , (41)

what we had to prove. r 1 , j
, As an application let US; suppose that the distribution of Pn(t) does not depend 

on n (and dues not depend on t either), that is, all Pn{t) have same distribution as 
a given positive random variable P  suoh that E P =1. Then 

' ; , ' .... Iim(P1Pa-”A ( 0 ) 1/> .6 ^  | ( F l o g  ^ ' /S'-a.s. \  (42),
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with probability 1. This is nothing but #he law of large numbers applied to the 
log P„ in the probability space (T  x

§ 3. Examples

1. Random coverings. . : '
Suppose T = T = H /Z , and

, P»(t, o>) -  ■ A -x X t-o y .)   ̂ (43)

where xn̂ iio,ini, ‘and a>„ are independent random variables equally distributed on
T. The martingale . , .

[ P r ..pn(#)d# (44)
w • J *U*

converges in i 2(jQ) if and only if

ff П  )..(1 - Xn(s- 0in))  dt<00' : (45)
yl 1 ( l  *»/

Writing

' 4 > ( 0 = = % n x{t+u)x(u)dii (46)

(/l„ is the triangle function supported by [—ln, ?„], d(0) =  Z„), (45) can be written
1

as . ,
f  oo .

• " .  (47)
exp 2 4 > ( 0 ^ < ° ° -Ч г  i

A remarkable theorem of L. Shepp says that there is strong complete degeneracy 
when (47) does not hold. This has a nice interpretation when we consider the 
random intervals

In — [0, Ini +e>„. (48)
Strong complete degeneracy means *

■ ' ' -P ( 0  7n= T ) —1 . (49)

and full action implies

' p (U 1 » = t )< 1 . (50)

(47) can also be written as ■ - ■

^ w ^ e x р(?1 +***+?„)<оо (see [25]). (51)

There are many variations around this. theme (see [12], second edition). The 
analogue of (45) is always a sufficient condition for non-covering (that is, the 
probability of non-covering is Strictly positive). Is it also a necessary condition as



in the ease we just considered? This seems to be open, even in the ease of covering a 
ball by random balls in an euclidean spaoe of dimension >2.

In the case of non-covering, a closer investigation of the random measure 8  
leads to a precise estimate of the Hausdorff dimension of the subset of T which is not 
covered infinitely many times:

dim (T \lim I n) «= 1 — lim ■ ^ ~j~ V . a. s. [12] first edition, (52)log n
2. Some martingales of Benoit Mandelbrot a9,32,;13’20’:15:i.
Suppose У = {  1, 2, •••, c}N, Let W  be a positive random variable such that EW  

=1, and let Жыг...{„ be independent copies of W  (w£IM, Ц 6  ■{!, 2, •••<;}). We define 
ij(t) as the j-th  coordinate of t £  T and

Pn(t) < (53)
We consider сг—Haar measure on T  (considered as the group (Ж/сЖ)*7), Then we 
have the following results.

Q is degenerate on cr, that is EQcr = 0, if E  (W  log W) >log c.
Q acts fully on a, that is EQ<? =  cr, if E (W  log }V) <log c. > ;
(Q».or)(27) converges to (Qcr)(27) in 1 /(0 )  if and only if E(W h) < cn (A>1),
Moreover, if Q acts fully on cr and if the distribution of W is not too sparse, we 

have a.s. -

un, .ъ щ а т . - р - ! -  K ( l!7 °gl1'.)
»-»oo log cr(/„(#)) \  logo /

except on set of Qcr-measure 0. As a consequence, Qa is concentrated on Borel sets 
of dimension D, and all Borel sets of dimension < D  have Qcr-measure zero, a.s. The 
probability of Peyriere was introduced in this context1-15-1.

3. Log normal operators and multiplieate chaos.
This again relies on an intuition of B. Mandelbrot ( [18, 21] p. 380). The theory 

is developed in [ 14]. Here

P „(0 -exp (X „  ( f ) - i  M XH t)),

where the X„(t) are independent gaussian centered random functions on T. The 
distribution of the P„( •) depends only on the correlation functions

pn(t, s) = E ( X n( t)X n(s)) ( t£ T ,s £ T ) .  (54)
A basic fact is that the distribution of the operator Q (that is, all joint distributions 
of (Qcri(Bi), (Qcr2) (B2), (Qcr„) (B„), for all choices of n, cru ••• cr„, B1} ••• Bn) 
depends only on

oo
q(t, s) s )< ° °  (55)

whenever the pn(t, s) are positive. A ease of particular interest is when exp(—?/d2(fy 
«)) is a correlation function (in other words, a kernel of positive type) for all y >

No. 1 . K dhaneJ.P . POSITIVE MARTINGALES AND RANDOM MEASURES 9
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0; this is true when (T, d) is embedded in a euclidian space with the euclidean 
metric. An important example then is

$0, «) “ y  £  exp(-?/d2(^ s))-^-=ulog4- ~ - —у4-0(1) (66)

with u> 0 given.
Let us add the following assumption (satisfied in the particular case mentioned 

above). Writing A (s, B) for the smallest number of balls of diameter s whose 
union contains the given set B, we assume

suplV^y diam В, B̂ J<  oo (57)

the supremum being taken on all balls in T. This condition appears in different
contexts in [1] and [3]. It implies that Hausdorff dimension and oapacitarian 
dimension are the same for Borel subsets of T, and it implies also that the Dudley 
integral J  (B, d) satisfies

J{B , -d) vf log N (s, B )d e < 0  diam В (58)

for all balls В, О depending only on (T, d).
Assuming (57)> Q is completely degenerate when

dim T < ~ .  (59)

If (assuming (57) again) .

dim T > ^ ,  (60)

Q is not completely degenerate and the infimum of the dimensions of random Borel 
sets on which the non-vanishing random, measures Qcr are concentrated (cr £  
M \ T ) )  is . . . . . .

d im T - ^  - (see [14]). ' ' (61)

For the first port of this statement we need only (58) instead of (57). Let us 
sketch the proof (and correct in this way a mistake- in the proof given in [14], 
where formula (182) is not correct). It relies on Theorem 3. Choosing a and 0<h0<  
Л<1 such that

:
2

>  J ^ -= a > d im  T 
£

we shall prove (20), defining

4

jE(Yn(t)Y n(s ))= q n(t, s) — exp(4-yd2(t, s))

We choose ' : v . 1 - ■ - .
и**'и Л . u .:m i ” i -u s i . )

(62)

(63)

i (6 4 )
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In order to prove (20) we choose p > l ,  q >  1, such that

p  ’r 4
{later on, we take q near 1). Ohoosing s'€B we have

= (i7supexp(Ap(Fn( t ) - Y n (s ) ) )7 п~*{ЬЩЬ'>
te e

According to properties of gaussian processes114-1 we have
J$suj>ex])(hp(Yn(j>) — Y n(s))<.e0J<-B,m),

t ев

where

(65)

(66)

(67)

82(* /8 ) -Я ( |У п© - Г п(5)|3) - « [ " ( 1 - е - и,<,'» )А < и ш 1а0 , «). (68)

Using (64), (66), (67), (68) and the assumption (68) we get

Мвар (Qn(i) ) ft<a(diam  B ) ^ 1̂ )’ (69)
i6B

where О depends only on (T, d) and q. Ohoosing now q such that

h ^ 4 T ~ ho (7°)

we obtain (20), which ends the proof.
This paper id an extension of the last of a series of lectures I gave at Wuhan 

University in April, 1986. This is an opportunity to express my gratitude to Wuhan 
University for its kind hospitality.
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