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GRADED PI-RINGS AND GENERALIZED CROSSED 
PRODUCT AZUMAYA ALGEBRAS

F. Van Oystaeyen* *

Abstract

A generalized crossed product of a ring В and a group G is a strongly graded ring 
A = @  Aa and Ag — B, where e is the neutral element of G. This paper investigates the

tree

conditions on G and on the gradation of A, which will ensure that A is an Azumaya 
algebra whenever Ae is one. And the author extends Proposition 3. 8 in [9] to arbitrary 
finite group and some results of [10] concerning certain Pi-rings to the case of not 
necessarily finitely generated grading groups.

Introduction

A generalized crossed product of a ring R  and a group G is a strongly graded 
Ting A = ©  A,,, i.e. A aA v—A â  for all cr, Tf£G, and Ae= R, where в is the neutral

a-eG

element of Gf. We aim to investigate conditions on Gr and on the gradation of A, which 
will ensure that A  is an Azumaya algebra whenever Ae is one. This problem has 
been studied for group rings by F. De Meyer, G. Janusz in [1] and by the author 
in  [9, 10]. The proof of Proposition 3.8 in [9] is correct only for abelian groups, 
here we present an elementary proof for arbitrary finite groups. Also we extend 
some results of [10] concerning certain graded PJ-rings to' the case of not 
necessarily finitely generated grading groups, in fact also providing proofs for some 
claims of [10], e. g. in Propositions 4 and 5, whioh do not follow as easily rs pretended 
in  loo. cit.

§1. Preliminaries

A ring R  graded by G satisfies conditions (E) if for each г^ФО in R„ we have 
th a t R rj-i Го-ФО. When R e is a semiprime ring, condition (E)is left-right symmetri o. 
Beeall Proposition 14 of [2].
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L em m a 1.1. Let R  be graded by G meh that (E) holds and assume that R e is еь 
semipri/me left Goldie ring .

1. The set S={s(zM , s regular and homogeneous in R} is a left Ore set o f R .
2. The set 8 e= {sGRe, s regular in R e} is a left Ore set of R and 8~1R  = 8 e1R-
3. The ring S~XR  is graded by G, it satisfies (E) and (S~1R )e — S^Re- Moreover 

8~XR  is a gr- semisimple gr-Artinian ring.
In  this paper we will be considering P I -rings and in particular semiprime P I -

rings. By Amitsur’s theorem such a P i- r in g  has a oentral extension of the form 
a

©  Mi(Oi) where d is determined by the degree of the proper identity assumed on R
4=1 .
and each Ot is areduced commutative ring. If the reader looks up Theorem 6.1 in

* a
O. Procesi’s book C7:!, he will note that the theorem states that ©  M4 (0*) satisfies all

< = i

stable identities (in particular m ultilinear ones) satisfied by R. Prom this, or by 
checking each step of the construction of the rings Oi} it follows that

я - ( © с , ) = © м * ( 0 ,).\j=l / 1=1

If  R  is such a ring then T~*R is also such a ring for any left Ore set T  of R. This 
follows from the fact that every localization (e.g. at the kernel funotor associated

■ ". ' d ’
to T )  of the Azumaya algebra ©  M  (0{) is a central localization, or else by the

following easy argument. If qT~xR  is a n il right ideal of Т -1Й (i.e. contained in the 
prime radical of Т _1Е) then, for some tG T , tqR is a n il right ideal of the semiprime 
PL -ring R, hence tq=0 or q=0. Let us also mention the following special case of the 
Burnside problem (Corollary 2.8 p. 129 of [7]); a torsion group of.units in a P I -  
algebra is locally finite! Hence if To is a field and the groupring kG is a Pi-algebra, 
then eyery torsion quotient group of G is locally finite (because if G is such a 
group then th e  canonical epimorphism kG —>kG makes kG into a pi-ralgebra too). 
A sa  final observation we point out that kG is always semiprime if char lo=0; the 
same is true for kG4 and the proof runs along the lines of D. Passman’s treatm ent 
of the groupring ease using the trace function iv(f2aguf) = «e(cf. Theorem 3.4 using 
Lemma 3.3, 3.2 and 3.1 of [6], note that the proof is identically the same if one 
first extends к so that the cocyole describing kGf is normalized i.e. c(cr, <r-1) =  1 for 
all crEGr, as in [10] p. 13, then f(<r, r ) -1 = t (<t_1, t- 1) holds too). For general 
crossed products k*G, I  do not know whether ohar # = 0  makes k*G semiprime, it is 
true in case [A: &(;] <  oo, where k° is the fixed field under the action of G on k, 
because then one can sum over the finitely many conjugates and arrange the 
coefficients of homogeneous components of some nilpotent element such that they 
are in k.
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§2 . Graded-Pi-Rings Satisfying Condition E

Our aim is to extend the following result of D. Passman (of [4] ): if К  is a field 
and G is a group such that K G  satisfies a proper polynomial identity then [(?:4((?)] 
<  oo and \A (G y\ <oo, when A(Cf) is the finite conjugation subgroup of Cr. In  
particular when char К —0, (or else when G is finitely generated, G contains a 
normal abelian subgroup of finite index. In  Proposition 4 of [10] I  considered the 
case of PZ-rings divisorially graded by a finitely generated group G, and in  Theorem 
6 of loo. oit. the situation was generalized to gradations satisfying condition (E) but 
G still finitely generated.

We now provide the most general statement concerning graded P J-rings 
extending D. Passman’s result. Next to obtaining now a complete similarity with 
the group ring case,we also provide here some proofs for some claims in Proposition 
4 of [10], which were not so easy to verify as first thought. A graded ring R  such 
that condition (E) holds and R e is a semiprime (left) Goldie ring is said to have 
invariant сосу ole if Qg= S ^ R  (as in Lemma 1 .1 .8) is a direct sum of </r-simple gr- 
A rtinian rings Q{ strongly graded by some subgroup G{ of G such that the action of 
G onK(CQi)e) leaves each c{(cr, v) invariant, where Ciis the copy ole describing the 
crossed product Q{= (Q{)e*G. Note that this condition is not invariant under taking 
an equivalent cocycle!

Examples of such graded rings with invariant cooycles include both skew and 
twisted group rings and crossed products (for example of Galois-type) with factor 
sets in E%m (G, K G) o i H*{G, ( K G)*).

L em m a 2.1. Let R  be graded by G over the semiprime Goldie ritig Re such that 
condition (E ) holds, then

1. Put G i^supe (P ) =  {cr £(?, В^ФО}, then Gi is a normal subgroup o f G.
2. I f  Q,9=Qi®"-@  Qe is the decomposition of the gr-semisimple go'-Artinian ring 

Q° into gr-simple components, then fo r every cr £  G±, (Q O ^O  for i= l ,  •••, i.
Proof 1. By definition of (E), Gi is closed under taking inverses. Since R e is 

Semiprime, (E) is left-right Symmetric.Hence if c r , t£ G i  then hoth-RaRT and 
B VB V are nonzero, i.e. Gi is closed under products and obviously, if cr£G  then 
RyLCrRy-i^O yields normality.

2. For every cr£Gi and every left ideal L  of B ei ЬфО, we have* that B &B r x L  
c h f l  Дг-йст-i and it is clear from (E) that R aR a-x Ъ ф 0. Hence R aR a-i is essential as 
a left ideal of R e, Similar on the right since (E) is left-right symmetric). Oonse-, 
quently l£ Q eRaR a-i or Qa =  Q9R (rR a-i, if J2ff П Q«= 0  for some l< w < i then 
Qf B aQgc: ®  Qi but this contradicts
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Q!’R aQ?^Q°R'IR a-i = Q>g.
Theorem. 2.2. Let R be G-graded over- the semiprime Goldie ring R  such that 

property (i?) holds and assume that R  satisfies a proper polynomial identity. In  each of 
the following cases:

Case 1 . Ghar Re—0 and R  is semiprime,
Case 2. Ghar R e=0 and R  has invariant cocycle,
Case 3. G is finitely generated and R  has invariant cocycle,

Gi contains a normal abelian subgroup o f finite index.
Proof Reduce to G = Gt by restricting attention to Supe (R). W rite Qf=> 

when each Qt is gr- simple </r-Artinian as before, and 
(Q9) a- =  (Qi) a© • • • ©  (Qf) <r

for every cr£(? because the Qt are graded ideals. By the graded version of the A rtin- 
Wedderburn theorem (of. [3]), Qi=M nf D i){crt) ,  where D< is a ^-d iv ision  algebra 
and о* £ (P determines the gradation of M nf D t) as follows (dkj) 7 if and
only if dkj £  D<THra?. Let Gi be the subgroup (!) of G consisting of all <x£G such 
that (Д )ст=£0 . (Note that Gi¥=G is indeed possible, look at M2(k[T, T -1])  with deg 
T = 2  and define the Ж-gradation according to (0, 1) £  Жх Ж as described above, then 
there are nonzero elements of degree one in the m atrix ring but not in the grr-field 
h \T , 27"1] ) .  If  8 £ 6r then (Qi)&i=0 implies that some entry in (Jf„((Df)(cr,) ) 4 is 
nonzero, i.e. o l8(cr^)~1 £С?4 for certain %, /л£С?. Now look at the finite set of 
subgroups of G, У  = {Gi} (o l)-:l(?ioi, A = l, •••, щ}. For every 8 £ $ ,  (Qi)a=£0 yields 
th a t G is a finite union of right cosets of the forementioned groups i.e.

u (U  { ( ^ - ^ . ( ( o - D - M ) } ) ,
A , f i

A result of B. Neumann (of. [4]) yields that one of the subgroups in S? has finite 
index in G, hence [G: (?<] <  00. If  we establish that Gi has an abelian normal 
subgroup of finite index then the same will hold for (У, so we may assume from here 
on that R  — D a ^r-division ring i.e . R  — R e*G, R e a skewfield, and G acts on R e via 
the morphism, <p: G->Pic(Re)-^A ut(Z ( Д ) ). We now proceed to prove that Z(R f)  is 
a  field of finite dimension over Z(R f)°.

Case 1. Assume that ^ (R e)has infinite Z (Д ,)G-dimension. Consider independent 
elements Xf, •••, xm £ Z (R e) and suppose ,
(*) ----- bxmym = 0 with y i£ Z (R ) '
W rite «/< = 23 (У*)<г> ® —1, •••, m. Since the Xj have degree e, we obtain:

(**) %(2/a) a+  —4-a;m(ym) (, = 0 foreaoh tr.

Since y i£ Z (R )  we have 2тгл= (|/()а  for all ят £  R v, r£ 6 r, yielding

&F (j/i) a =  (jji) oZ-C)
where ?/ = гсгт''1. So, if {у^)аФ0 then 2х{у^)аф 0 and (2/i)w - ^ 0, Consequently, in



(*) we may assume that the are such that the degrees appearing in their;
homogeneous decomposition are exactly the finitely many con jugates {тгспг-'1,
From (**) we derive, fOr all cr, and after summation.
oyer the conjugation class 0(<r) of a fixed tr we get
(•***) 2  2  (уО^Су*)?1*  —+dxm = 0, . .

yea (a) yeola)

where d=  lO'(cr) ( =  [(?: ^ ( o 1)] . Since АФ0 (char Re =  0), the relation( *% ) is no t 
trivial. Moreover, for any nG.G and 2TGRT we calculate

^re ijji)< r(jjm )cr ~  ( i / i ) xe -e -^r(jjm )<r j

2 т ОУпь)аг “  ijjrn)rctx-1

and (Ofm)то-т-1 ~ &r(̂ Are)or •
Consequently we obtain the following relations

<r(j/m )t r * ”  ( 2/ 4) TffT-1 ( i / m ) тат-^Т)

■ %v( 2  (,?/i)vCym)t/ '̂) =  2  (̂ Ая-пут"1)
у evict) .y evict)

The coefficients i n ( *** ) are therefore in A(R) 0 R« =  /?(Re)°  and this contradicts 
the assumption on the #*, •••, жт . I t  follows that R contains a free Z  (R)-module of

d
infinite rank but then the central extension ©  J f4 (C4) (of. Section 1; this applies

4=>1

here beoauce R is semiprime i.e. also R 9 and D4 at the beginning of this proof) also 
contain a free module of infinite rank over ©  0 4, which is impossible (e.g. Localize

• i
to semisimple Artinian ring or reduce modelo a prime or maximal ideal of the 
centre). We have established that Z (R e) is a Galois extension of Z (Re) e with Galois 
group Im$s>, a finite group. Crossed products of Z(JRe) and G with action given by qy 
and cooycle c.G У G->U (Z  (,Re) )  w ill be denoted by {Z(R e), G, (p, 0). Since

R = R e*G
is a PJ-algebra, Z (R e)*G is a P i-a lgebra  too. For A =  (Z (R e), G, <p, c) and B =  
(Z (R e), G, <p, a) we claim that A  ® ZiRe)s В contains the Z (Re) ̂ —algbra (Z  (Re) , G, 
q), cd) as a subalgebra. The proof of this is identical to the proof of the product 
theorem for 2-eocycles in Galois cohomology (of. R. Pierce [6] p. 258), up to  
noting that the finiteness of G used in  that proof may be replaced by the finiteness 
of Imp: G al(Z(R e)/Z (R e)G, Applying this argument to the i?(Re) ̂ -algebra 8, 8  — 
{Z(R^)t G, q>, c)®ziRs)e C.Z(Re), G, q>, c)° we obtain that 8  is a P i-algebra by 
A. Regev's theorems and 8  contains (Z(JH^),G,q>} 1). I t  follows that the latter ring as 
well as the subring Z (R e) GG is a P i- r in g . Now D, Passman's result in characteristic 
may be invoked to conclude that there is a normal abelian A in G of finite index.

Case 2 and 3. As before we reduce the situation to Z (R e)*G but now we know 
that the cooycle is invariant underthe action of G, Consider the set map:

, . . ф: G ->(Z(Re)*G)®ziR«)° (Z (R e)® G )°, о ^ и „ ® и а-г.
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We calculate that
ф{сг)ф(тг)— c(cr, v)e(v~1, cr~1)i/r(cr'B’) e

Sinoe e(cr, v) £ Z (R e) e we may find a field extension L  of Z (R e) G containing all 
V  c(cr, u -1) such that c is equivalent to a normalized cooyole o': G x G  -> L*, i.e. 
satisfying c'(y, 2/_1) =  1 for all y ^ G .  So in fact we may define ф: G->LG0’ ® l(LG g')°, 
■cri—>i//(cr) \ /  c(<7, cr-1) and sinoe LGG'^ L G °  is a subring of L® Z{Re)°Z, we have pre
sented G as a subgroup of the units of some P i-algebra, so we may invoke the spe
cial case of the Burnside problem mentioned in Section 1 to conclude that Im p  is 
locally finite. Indeed if <r £  Gf is a torsion element then p„ is torsion; if cr £  G is not 
torsion, then #(!?<,) *<cr> is a P J -r in g  of the form Z (R e) [X , X -1, p f\, hence pi is 
inner for some (well known) i.e. p„ is torsion, hence Imp is always a torsion 
group. For Oase 3, it follows that Im  p is finite and one proceeds as in Case 1.

For Oase 2, it suffices now to observe that G will contain a normal abelian 
subgroup of finite index if and only if every finitely generated subgroup of G has 
the Same property. If H czG  is finitely generated then Z  (Д,)* !? is again P J  and 
now Z (R e) has finite dimension over Z (R e)H, so, as in Case 1, it follows that H  
contains a nQrmal abelian Subgroup of finite index and Case 2 follows by the 
foregoing observation.

Remark 2.3. Does it. follow from char P e= 0  that Re*G is semiprime? (of. 
Section 1). The fact that this case be established when Z (R „) is finite dimensional 
over Z (R e)G yields another proof for Oase 2 by reduction to Oase 1.

Corollory 2.4 (of. the proof). I f  R  is as in the theorem but have invariant cocycle 
then without restriction on G or char Re one deduces from  the proof given that G is a 
pi-group, i.e. fo r some field b (in fact char b = char R e) bG is a Pi-algebra. This then 
entails Case 2 and Oase 3 directly.

2.5 Added in proof: Possman and Montgomery have a result that enables us to 
give a positive answer to 2.3.

§ 3. Generalized Crossed Product Azumaya Algebras

Throughout this Section A e is a (left) Goldie ring. We Say that a gradation oh 
A  is quasi-inner if Z (A f)d Z (A ')  and A is strongly graded. Note that a qUasi-inner 
gradation always has invariant eoeycle. we first present a proof for Proposition 3.8 
in [9], which is also valid for nonabelian groups.

Theorem 3.1. Let A  be strongly graded by d finite group G such that Ae is an' 
Ammaya algebra, the gradation is quasi-inner, and \G \^G .A e; then A  is an Ammaya 
algebra. •

Proof Since A  is an Ae-bimodule centralizing Z (A e), it follows that A<=>
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■̂ е®г(Ае)0л(А )‘ Obviously 0 A{Ae) is 6r-graded and frOin 4 < г® ^ У_1=Л  it  follows 
that ( Aff) (/ls)0  (A cr_1) (Ae) is isomorphic to A(Ae) (where ( —) (4e) denotes the commu
tation functor yielding the equivalence of the category of Ae-bimodules over Z (A e) 
and the category of g(Ae)-modules). Clearly 0 A(As) is strongly graded by G over 
Z  (Ae). If О a. (Ae) is separable over Z(A f), then A  will be an Azumaya algebra. 
Consider a maximal ideal m  in Z(A.e) and look at the strongly graded ring  В, В — 
ОA( Ae) /mOA( Ae) , over Z (A e)/m.- Since the latter is a, field Ь central in B, i t  follows 
that В~ЬО* and from j 6? | G A we conclude that В  is ^-separable. The local-global 
property for separability yields that 0 A(A e) is J£(Ae)-separable.

We now provide an extension of Corollary 10 in  [10], that includes the case 
of twisted and common group rings.

Proposition 3.2. Let A  be strongly graded by G such that A  satisfies the 
■identities o f n X n-matrioos (of. 0. Procesi [7] ). I f  A  is gr-semisimple gr~Artinian 
and then A. is an Azumaya algebra.

Proof Obviously A e is a semisimple Artinian ring and A(G0 is ^r-semisimple 
Artinian. But since each A a, crGG is a finitely generated projective Ae-module, 

it is clear that А(<?,) =  ©  -Aa is finite dimensional over A(Ae), hence Artinian. On

the other hand, since |C?'|-1G Ae, we have

J(A<G'>) = /* (A (G'> ) A (G'\

( / » ( i (tf>) n A . - 0  •

(of, [9] for properties of the graded Jacobson radical J 9), hence A(G0 is semisimple 
.Artinian and A  is strongly graded by G/G' over A (G'\

Put A (G/)=Ao with 0£G /G ',‘ let S~0 be the set of regular elemente in Ag. By 
Lemma 1.1, it follows that A is gr-semisimple gr-Artinian in the G/G '-gradation 
because So is invertible in  Ag, i.e. S ^ A = A .  W rite A =A i©  •••©A{, each A{ being 
^r-simple in the 6r/6r'-gradation. Since G/G' is abelian, Z{A/) is a yr-field (the 
centre is graded here!) and a non-trivial m ultilinear central polynormial / ,  for A4 
cannot vanish at all homogeneous substitutions, hence it must take at least one 
nonzero homogeneous central value. The Formanek centre of A4 must then equal 
5/(A4), i.e. A is an Azumaya algebra. -

Corollary 3.3 (of. the proof). The result in Proposition 3.2 is also valid i f  
the gradation on A  satisfies (Ж).

Proof Since A is yr-semisiinple ^r-A rtinian, A e is semiprime and A=Q?(A). 
So from the proof of Lemma 2.1 (2) we retain QfA^Ao-i^Q9, hence Q̂ Â -i = Q9 for 
all crG:G'. This yields AACT-i =  A for all &G.G, or A aA a-i =Ae, i.e. A is strongly graded 
by G. ■

Proposition ЗА. Let A  be graded by a group Gi< ‘ v  J
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1. I f  A  is an Azumaya algebra, then there is a finitely generated subgroup H  of G 
such that A(H) is an Azumaya algebra too.

2. I f  some central localization 8~гА  containing A  is a finite module over its centre, 
then there is a finitely generated subgroup H  o f G such that A  is Azumayawhenever A ai) 
is an Ammaya algebra.

Proof 1. There is a finitely generated ring C0 in О (over the base ring 
generated by 1) and an Azumaya algebra A0 over O0 such that A = A 0O — A0® Co O. 
Let H  be the subgroup of G generated by all degrees of homogeneous elements 
appearing in the decomposition of the ring generators for O0 and the generators for 
A q as a C^-module. Obviously А 0О с А т . If  z £  Z  (A(H)) then « commutes with A0 
hence with A, thus Z (A<H)) = A(A) f!A(H). Also,

А(А0)сА <н>ЛА(А)=А(А(Я)),
thus we obtain: A(H) = A0®c0A ( A(H))., i.e. A(H) is an Azumaya algebra.

2. Let Xx"-, xm generate $ -1A as a Z ($ -1 A)-module and let s £ S  C  Z  (A) be 
such that A for all A. Let В  be the subring of A generated by the homogeneous 
components of all the sx(, i —1, • ••, m, and let H  be the subgroup of G generated by 
the degrees of 'these components. Obviously BczAm . If Z  £  A w  commutes 
with В then it commutes with all the x,, hence we get

A(A(H>)= A(A) П АШ>= А ($ -1А) П A(H)
and also that Z  (A (H)Z  (A )) =  A (A ). If A(H) is an Azumaya algebra then so is 
A (m® Z(A<n>)Z (A ) and also A(H)A(A). From

, A = A ® A (A )0 za)OA(A<H>)=A^>A(A(®ZU)A(A),
it then follows that A is an Azumaya algebra.

We now extend Theorem 17 of, [10] as follows.
Theorem 3.5. Let Abe a P i-r ing  satisfying the identities o f n X  n-matrices and' 

let A  bequam-innergradedbya group Gsuch that,G1is finite and \G’\_1£ A. I f  Ae, 
is an Azumayd algebra and a Q-algebra then A  is an Azumaya algebra.

Proof By the commutator method we reduce the problem to the case
A0=A (A e).

I t  is sufficient to prove for every maximal ideal M  of A (A) that A /M A  is separable 
over Z (A )/M . P u t P  = M  fl A(Ae). Then A /M A  is an epimorphie image of the, 
strongly graded A /P A  over A e/P A e. Let a be the image of a £A /P A  in A /M A . 
Since Z (A )/M  embeds into A /M A , it follows that the field of fractions К  of Ag/P' 
also embeds in A /M A . Therefore we may define a map Ap—>A/MA aS. the composi
tion of the canonical map A p -^K ® Ae/p A /P A  and the map K ® Ae/P A /P A —> A/M A,. 
x®a\~>xa, which is obviously a ring epimorphism. Since (A0)p is local, we may 
write Ap— /Ag/pG* and in fact К ® л е/р А /Р А = KG* where we have used the image 
of the cocycle describing the structure of AP. If we prove that Ap is an Azumaya.
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algebra, then Z ( ( A e)P G*) maps to Z  (KG*) and Z(A)  maps to a subring В  of 
Z(KG*) such that K B  = K ® Ae/P B =  Z(KG*).  The centre of KG* consists of linear 
combinations of ray-class sums(cf. [10] ) and such a sum in Z  (KG*) may be written 
as 2  h  (*) Уз "with XjGK, y s£ Z  (A /P A ) ,  because KG* is obtained by central

i .
localization of A /P A ; h e n c e Я/х)г/,- maps to £ Z (A )/M  and so Z (A )/M

is the image of Z(KG *). Then Z(KG*) separability of KG* entails that A/MA. is 
Z  (A) / M  -separable and by the globalization property of separability: A  is separable 
over Z (A ). So we have to establish that (A^pG* is Azumaya. Since the localization 
is central and A  satisfies the identities of и X«-matrices, we use Proposition 3.4 to 
reduce to the case where G is finitely generated. Since G is a PJ-group by the result 
of Section 2, [(■?: Z(G )] < оо ; Since ray - class sums are central in (A e)P G* (even if 
A e is not a domain this holds but then one cannot easily show that the centre is 
freely generated by such ray-class sums), we may reproduce Proposition 14 of [10], 
modified in  a very triv ial way in order to deal with the fact that Q(AC) is Only 
semisimple here, and conclude that the О-regular elements, Greg say, in  Z  (G) have 
finite index in G. So (A e)P G^g is central in (A e) PG and then we invoke Theorem 
3.1 to finish the proof.
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