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GRADED PI—RINGS AND GENERALIZED CROSSED
PRODUCT AZUMAYA ALGEBRAS

F. V_an OYstaeyen* |

Abstract }

A generalized crossed product of a ring R and a group' G is. a strongly gfaded ring
A=@ A, and A,= R, where ¢ is the neutral element of @. This paper investigates the

oed
conditions on G-and on the gradation of A, which will ensure that 4 is an Azumaya
algebra whenever 4, is one. And the author extends Proposition 3.8 in [9] to arbitrary
finite group and some results of [10] concerning certain PI-rings to the case of not
necessarily finitely generated grading groups. ' '

-Introduction |

A generalized crossed product of a rmg R and a group G is a strongly graded
Ting A= @A,, ie. Ad;4,=A,; for all o, 7€G, and A,= R Wwhere ¢ is the neutral

element of &. We aim to 1nvest1gate conditions on G and on the gradation of 4, which
will ensure that A is an Azumaya algebra whenever 4, is one. This problém has
been studied for group rings by F. De Meyer, G. Janusz in [1] and by the author

‘in [9, 10]. The proof of Proposition 8.8 in [9] is correct only for abelian groups,

here we present an elementary proof for arbitrary finite groups. Also’ we extend
some results of [10] concerning certain graded PI-rings’ to” the case of not
necessarily finitely generated grading groups, in fact also pi'o'{riding proofs for some
claims of [10], e. g. in Proposmons 4 and B, whioh do nos follow as easﬂy s pretended
in loo. cit.

§ 1". Preliminaries

A ring R graded by G satieﬁes conditions (B) if for cach re#0 in R., we have
that B, r,%0. When R, is a semiprime ring, condition (E)is left-right symmetri o.
Recall Proposition 14 of [2].
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Lemma 1.1. Let R be graded by G such that (E) holds and assume that R, is @
semiprime Zeft Goldie ring.

1. The set S={s€ R, s regular and homogeneous in R} ts @ left Ore set of R.

2. The set S,={$E Ry, s regular in R} is a left Ore sot of B and S—*B=S;1R.

8. The ring 8~'R is graded by @, it satisfies (E) and (87'R). = S;1R,. Moreover
SR is a gr— semisimple gr—Artinian ring.

In this paper we will be eonsndermg PI —rmgs and in particular semiprime PI-
rmgs By Amitsur’s theorem such a PI-rmg has a central extension of the form

C—D M:(0) Where d i determmed by the degree of the proper 1dent1ty assumed on R
and each O; is areduced commuta,tlve ring. If the reader looks up Theorem B.1 in
C. Procesi’s book 3 he W111 note that the theorem states that (—B M s (O))satisfies alk

stable 1dent1txes (1n partmular multilinear ones) sahsned by R. From this, or by
checking each step of the construction of the rings O, it follows that

B @?1 a) —_-éug M),

If R is such a ring then TR is aléo suoh a ring for any left Ore set T of B. This
follows from the fact that every localization (e. g at the kernel functor assoelate&

’oo T) of the Azumaya algebra (—B M (0)) is a central localization, or else by the

following easy argument. If ¢7~'R is a nil right 1de_a1 of TR (i.e. contained in the
prime radical of T™'R) then, for some €T, igR is a nil right ideal of the gemiprime
PI-ring R, honce {g=0 or ¢=0. Let us also mention the following special case of the
Burnside problem (Oofollary 2.8 p. 129 of [71); a torsion group of units in a PI-
a_l_gebra' is locally finite! Henoe if & is a field and the greupring kG is a PI-algebra
then eyery torsion quotient group of G is locally finite (because if & is such a
group then the canonical epimorph,ism kG — kG makes ké. into a Pl-algebra $00).
Asa final obse?vation we point out that kG is always semiprime if char k=0; the
same is true for 4G and the proof runs along the lines of D. Passman’s treatment
of the groupring case using the trace function r(3 a,u,) = a,(of. Theorem 3.4 using
Lemma 3.3, 3.2 and 3.1 of [5], note that the proof is identically the same if one
first extends % so that the cocyole desoribing kG" is normalized i.e. o(c, o=%) =1 for
all o€, as in [10] p. 13, then (o, 7)"1 =t (0"1, 771) holds 100). For general
orossed produots k*G I do not knew whether char k=0 malkes h+G sem1pr1me it is
true in case [k: k%)< o, where' ¢ is ‘the fixed field under the action of @ on k,
because then one can sum over the finitely many eongugates and ‘arrange the
coefficients of homogeneous components of some nilpotent element guch that they
are in %.
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§.2.. Graded PI-Rings Satisfying Condition &

Our aim i t0 oxtend tho following result of D. Passman (of [4]): if K isa field
and G is a group such that K'G satisfies a proper polynomlal identity then [G: 4(@)]
< oo and [4(@)'| <oo, when A(G) is the finite conjugation subgroup of G. In
particular when char K =0, or else when G is finitely generated G contains a
normal abelian subgroup of finite index. In Proposition 4 of [10] I considered the.
case of PI-rings divisorially graded by a finitely generated group G, and in Theorem
B of loo. oit. the situation was generalized to gradatlons sahsfymg eondltlon (E) but
G still finitely generated. .

We now provide the most general statement concerning graded PI-rings
extending D. Passman’ s result. Next to obtaining now a eomplete similarity with
the group ring oase,we also prov1de here some proofs for some claims in Proposition
4 of [10], which were, not so easy to Verlfy as first tho ught A graded ring B such
that condition (E) holds and R, is a semiprime (left) Goldie rmg is said to ‘have
invariant cocyole if @?=S"'R (as in Lemma 1.1.8) is a direct sum of gf/'—S1mple gr—
Artinian rings Q; strongly graded by some subgroup Gi of G such that the action of
G on, Z((Q)e) loaves each ¢;(o, v) invariant, where ¢, is the oocyole desenbmg the
crossed product Q;= (Q‘)G*G Note that th1s eondltlon is not mvanant under takmg
an equlvalent oocyele' . '

Examples of such graded rmgs w1th invariant eocyeles 1nclude both skew and
twisted group rmgs and crossed products (for example of Ga101s~type) with factor
sots in H3,n (G, K°) o HQ(G (K*). a

- Lemma 2.1. Let R be graded by G over the semwpmfme Goldie - mng R, such that
condition (EY holds, then

1. Put Gy=gupg (R)={c €Q, R; =7‘50}, then G4 is @ normal subgroup of G-

2. IfF QU =Qi®: @ Q, is the decomposition of the gr-semisimple go*—Aa*t@mam ring

Q7 imto gr—simple components; then for efvery o €EG4, (Q)e#0 for i=1,

Proof 1. By definition of (E), G is closed under taking mverses. Smce’ R, is
semiprime, (E)'is left-right symmetric. Henoe if o, #€ Gy then both-R,R, and
R,R, are nonzero, i.e. Gy is closed under products and obviously, if ¢ €G then
R,K ,R,70 yields normality. -~ - '

2. For every o €@y and every left ideal L of R,; L+#0, we have: that RsRe- L
< LN R,;R;- and it is clear from (E) that RqRa-x L#0. Hence R,R;-: is egsential as
a loft ideal of R, similar on the right since (E) is left-right, symmetrie). Oonse—-}
quently 1€QR,R,- or Qg—QgR R,,-;, if R, n Q,. 0 for some 1<n<¢ then
QR Q' (—D Q‘ but th1s contradmts
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| QR OYR, By = (.

Theorem 2.2. Let Rbe G—graded over the semiprime Goldie ring R such that
property (H) holds and assume that R satisfies @ proper polynomial identity. In each of
the followq)ng cases: ‘ | '

Case 1. Ohar R,=0 and R is semiprime,

Case 2. Char R,=0 and R has invariant cocycle,

Case 3. G ds ﬁnitely‘ generated and R has invariant cooycle,
G1 contains ‘a normal abelian subgroup of finite indew.

Proof Reduoe to G =G4 by restricting attention to Sup(; (R). Wr1te Q=

Qi@ -@Q; when each @, is gfr— simple gr—Artinian as before and

(Qg) ¢= (Qi) a@ @ (Qt) o

for every o) EG because the @, are graded ideals. By the graded version of the Artin-

Wedderburn theorem (cf [81), Q=M,,(Dy) (o), where D, is a gu~division algebra
and o*€ G* determines the gradation of M, (Dy)as follows (dy,) € M. w(Dy) (6% if and
only if d,MGDc,,‘,.,? ‘Let G4 be the subgroup(!) - of @q consisting of all o€G such
that (Dy),#0. (Note that G+ G is indeed possible, look at Ma(k[T, T~ 1]) with deg

 T=2 and define ‘the Z—gradation according to 0, 1)€EZXZas desoribed above, then

there are nonzero eloments of degree one in the matrix ring but not in the gr-field

k[T, T- 1]). If 5€G then (Q)s#0 implies that some entry in (M,(Ds) (6*)s is |

nonzero, i.e. oid(c%)™? €G; for certain A, p€G. Now look at the finite set of
subgroups of G, & ={Gy, (63) 2Giot, A=1, -, n}. For every 8E€Q, (Q)s#0 yields
that G is a finite union of right cosets of the forementioned groups i.e.

G= GtU(U {(O‘A)—IGN‘A ((0'7.) 10'@)})

A result of B. Neumann (ecf. [4]) yields that one of the subgroups in & has ﬁmte
index in G, hence [G: G <oo. If we establish that @; has an abelian normal
subgroup of finite index then the same will hold for G,so we may assume from here
on that B=D a gr-division ring i.e. R=R*@G, R, a skewfield, and @ acts on R, via
‘the mor phism @: G—>Pic(Re)—>Aut(Z(R,)). We now prooeed 0 prev_e_ that Z(R,) is
a field of finite dimension over Z(XR,)¢. :

Case 1. Assumethat Z(R,)has infinite Z (R,) G—dlmensmn OonS1der mdependent
elements x;, -, z, €Z(R,) and suppose .
(%) @441+ o0+ Bty =0 W1th y‘EZ (R) ,
Write y;='§G(y‘)a, §=1, +-:, m, Since the x; have degree ¢, we obtain:

‘(**') ' ' mi(yi) 4+ T (Ym)o=0  foreach o.
Since y; EZ (R) we have z.y;— ( Ys) ot for all zTER,,, rrEG yleldmg

| 2 (@) o= (U)ot _ )
where y=vov . 80, if (¢;)¢%0 then 2,(3),#0 and (#)rer:#%0. Consequently, in
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() we may assume that the y; are such that the degrees appearing in their:
homogeneous decomposition are exactly the finitely many conjugates {zov™", 7€ G}.
From (%) we derive, for all o, @1(y1)e(yYm)s +=++on =0, and after summation:
over the conjugation class O(cg) of a fixed ¢ we get . '
Cx¥s) @y DY (Y1) y(Ym)y 2; (y2)7(?/m)71+ *+don=0,

YEO (o)

where d= [0(o) | =16 Oq¢(0)]. Since d#O (char R,=0), the relatlon( «*s ) is not

tr1V1a1 Moreover for any v €@ and 2, ER, we caloulate '

‘ zv(?/i) (%n>zr "(?/i)'w'r!zr(flIM)a s

. By (?/m>v" (?/m> vog-1 &z
and . (?JM> vor-1 By = %(%n)
Consequently we obtam the followmg relatlons
' z’r(%) (ym)o (?/5)107-' (f’/m)rarlzw
z'lf( 2 (.%)ﬂ(%n)y1> = 2 (%)W‘v-l(ymvm—l) z,.

The ooefﬁcmnts in( 4% ) are therefore in Z (R) ﬂ R, = 7z (R,)? and_ thls contradicts
the assumption on the @y, -+, &p. It follows that R containg a fr_ee Z(R)-module of

d
infinite rank but then the central extension (—B M, (0;) (ef. Section 1; this applies

here becauce R is semiprime i.e. also R’ and D; at the beglnmng of this proof) also
contain a free module of 1nﬁn1te rank over (—D O, which is 1mp0SS1ble (e.g. Localize

o semlslmple Artlman rmg or reduee modelo a prime or maximal ideal of the
- centre). We have established that Z (Re) is a Galois extension of Z (Re)" with Galois
group Imgp, a finite group. Crossed products of Z (Re) and G with action glven by o
and oocycle ¢: GX G->U(Z (Re)) will be denoted by (Z(R,), G‘, @ o). Since

' R =R »@G _
is a PI-algebra, Z(R,)*@ is'a PI—algebra t00.- For A= (Z(R,), G, @, ¢) and B=
(Z(R,), G, p, a) we claim that A ® e B contains the Z(R,)%—algbra (Z (R.), G,
@, cd) as a subalgebra. The proof of this is identical to the proof of the product
theorem for 2-cocyoles in Galois cohomology (of. R. Pierce [6] p. 258), up to
noﬁng that the finiteness of G used in that proof may be replaced by the finiteness
of Img: Gal(Z(R,)/Z(R,)¢ Applying this argument to the Z (Re)‘G—algebra 8, 8=
(Z(Ry), &, @, 0)®zwmy(Z(Ry), G, @, ¢)° we obtain that § is a PI-algebra by
A. Regev’s theorems and 8 conta;_i;_s (Z(R,),4,p,1). It follows that the latter ring as.
well as the subring Z(R,)%G is a PI-ring. Now D. Pagsman’s result in characteristio
may be-inyoked to conclude that there is a normal abelian 4 in & of finite index.

- Qase 2 and 3. As before we reduce the situation to .Z(R,)*G but now we know
$hat the cooyole is invariant underthe action of G. Consider the set map:

. .lp:v G -2 (Z(Re> *G) ®Z(Re)° (Z(Re) ®G>0’ 0> Ue ® Ug-1s
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we oalculate that -~ : - _ :
W(o)P(v) =c(o, v)o(v7, 0" )(07).

Sinoe ¢(o, v) €Z(R,)® we may find a field extension L of Z(R,)¢ containing all
n/¢(o, ¢ %) such that ¢ is equivalent to a normalized. cocyole ¢': G X G — L*, i.e.
satisfying ¢ (y, y=) =1 for all y €G- So in fact we may define i: G—->LG" @u(LG™)°,
o>(0) &/ e(e, o) and since LGY = LGY is a subring of L@Z;Ra)oz;, we have pre-
sented G as a eubgroup of the units of some PI _—algebi'a, s0 We may invoke the spe-
cial case of the Burnside problem mentioned in Section 1 to conclude that Iingp is
locally finite. Indeed if ¢ €@ is a torsion element then @, is torsion; if ¢ €@ is not
torsion, then Z(R,)#<{o) is a PI-ring of the form Z(R,)[X, X, ¢,], hence ¢} is
inner for some p €N (well known) i.e. @, is torsion, hence Img is always a torsion
group. For Case 8, it follows that Im g ig finite and one proceeds as in Case 1.

For Case 2, it suffices now to observe that G* will contain a normal abelian
subgroup of finite index if and only if every finitely generated subgroup of G has
the same "pi;ofpie'r.ty. If HC@ is finitely generated then Z (R,)«H is again PI and
now Z(R,) has finite dimension over Z(R,)H, so, as in Case 1, it follows that H
contains a normal abelian subgroup of finite index and Case 2 follows by the
foregoing observation. :

Remark 2.3. Does it.follow from char R,=0 that RxG is semlprlme? (cf.
. Section 1). The fact that this case be established when Z (Re) is finite dimensional
over Z(R,)® yiolds another proof for Case 2 by reduction to Case 1.

Corollory 2.4 (of the proof ) If B is as in the theorem but have invariant cocycle
then without restriction on G or char R, one deduces from the proof given that G is a
pi~group, i.e. for some field & (in fact char k= char R,) k@ is a PI-algebra. This then
entails Case 2 and Case 3 directly.

2.5 Added in proof: Possman and -Montgomery have a result that enables us to
give a posmve answer 10 2.3. ' '

§ 8. Generalized Croséed‘PrOduét Azumaya Algebras

Throughout this section 4, is a (left) Goldie ring. We say that a gradation on
A is quasi-inner if Z (A.,)CZ (A) and 4 is strongly graded Note that a quasi-inner
gradatlon always has invariant cooyole, we first present a proof for PropOS1t10n 8.8
in [9], which is also valid for nonabelian - groups. - '

Theorem 3.1. Let A be stvrongly graded by @ finite group G such that A, is.am
Azumaya wlgebm, the ymdwtwon is quwsw—mnerr, and | G‘( "1EA9, the«n A o/s an Ammaya
algebra. ' ' - S ' ‘ ‘

Proof Since A4 is an' As-bimodule centralizing Z(i4,), it follows that 4 =
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Ad®2u,04(4s). Obviously O,(4,) is G-graded and from A,® 44,1224, it follows
that (4,)“9®(4s_1)“? is isomorphio to Z(4,)(where (- )“e denotes the commu-
tation functor yielding the equivalence of the category of 4,~bimodules over Z(4,)
and the category of 2(4.)—modules). Clearly 0,(4,) is strongly graded by G over
Z (4,). If 04 (4,) is separable over % (4,), then A willbe an Azumaya algebra.
Consider a maximal ideal m in-Z(4,) and look at the strongly graded ring B; B=
O4(4,)/mO4(4,), over Z(A,)/m. Since the latter is & field b central in B, it follows
that B=k@ and from |G| 1€k we conclude that B is h-separable. The local-global
property for separability yields that O4(4,)is Z(4,)-separable. '

" 'We now provide-an extension of Gorollary 10 in. [10], that includes the case
of twisted and common. group rings. :

Proposition 3.2. ILet A be sta“ongly gmded by @ such that A swt@sﬁes the
identities of X n—matricos (of. C. Procesi [7]). I f A is gr—semwzmple 9r—-Artinian
amd |G| 1€ A, then A is an Azumaya algebra. ’ '

Proof -Obviously 4, is a semisimple Artinian ring and A is gr-semisimple
gr-Artinian. But since each 4,, ¢ €G is a finitely ‘generated projective A,—module,

it is clear that A9’ = @ .4, is finite dimensional over Z (Ae) , hence Artinian, On
ocEeq’

the other hand, since |G'|~1€ 4,, we have .
' J (A9 =Jo( A(d')) = A,
(JI(ADY ) A=0 -

(of, [9] for properties of the graded Jacobson radical J¢), hence A" is semisimple
Artinian and A is strongly graded by @/G’ over 4@,
Put A" = A5 with 0€G/G; let S5 be the set of regular elemente in A;. By
Lemma 1.1, it follows that A is gr-semisimple gr—Artinian in the G'/G'~gradation
because S5 is invertible in 4, i.e. 85 A=A, Write 4= A;@® --@4;, each A4, being
gr-simple in the G/G'-gradation. Since G/G' is abelian, Z(4,) is a gr-field (the
centre is graded here!) and a non-trivial multilinear central polynormial f; for 4,
cannot vanish at all homogeneous substitutions, hence it must take at leasi one
nonzero homogeneous central value, The Formanek centre of A; must then equal
Z(4,), i.e. Alis an Azumaya algebra. :
Corollary 8.3 (of. the proof). The result in Proposition 3.2 is also valid &f
the gradation on A satisfies (H). ‘ B -
Proof Since A is gr-semisimple gr-Artinian, 4, is semiprime and 4=Q7(4).
So from the proof of Lemma 2.1 (2) we retain Q/4;4,:=Q¢, hence Q/A,..=Q? for
all 0 €@. This yields AAs=A for all ¢ €Q, or A&A;,_l ""='A¢; i.e. 4 is strongly -graded
Proposﬂzlon 3.4. Let A be graded by a grotp G R
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1, If A is an Azumaya algebra, then there is a finitely genemted subgroup H of G
such that A™ s an Azumaya algebra too.

2. Ifisome ceniral localization S~1A containing A is a _ﬁmte module over its centre,
then there is o finitely generated subgroup H of G such that A is Azumaya- fwheneverl A
s an Azumaye algebra. : :

Proof 1. There is a finitely . generated ring Cp in O (over the base ring
generated by 1) and an Azumayaalgebra 4, over Oy such that 4=4,0 = 4,®q, O
Let H be the subgroup of G generated by all degrees of homogeneous elements
appearing in the decomposition of the ring generators for U, and the generators for
Ao as a Oy-module, Obviously A0 A®, If 2 € Z (A“) then 2 commutes with 4,
hence with A, thus Z(A'®)=Z(A4)NA. Also,

Z(40)C AN Z(4) = Z(AD), |
thus we obtain: .A(H)“‘-.Ao®g Z(A®), ie, A jg an Aznmaya algebra

2. Letb @y+++, @, generate 874 as a Z (8 *A4)-module and let s€S < Z (4) be
such that sw; E_A- for all ¢. Let B be the subring of 4 generated by the homogeneous:
‘components of all the sz, 6=1, -+, m, and let H be the subgroup of G generated by
the degrees of these ocomponents. - Obviously Bc A, If Z€A® commutes:
- with B then it commutes with all the #;, hence we get

Z(AD)=Z(A)N A(H);Z'(,SAA) n A(Ii)

and also that Z (AZ(4))=Z(4). If A® is an Azumaya algebra then so is

A(H)®Z(A(m)z (4) and also A®PZ(A4). From

, A= ABFZ(A)@paOa(A™) = ADZ(A(@ a2 (4,
111 then follows that 4 is an Azumaya algebra.

We now extend Theorem 17 of [10] as follows.

- Theorem 3.5. Let A be ¢ PI-ring satisfying the ’bdent@t’&es of n X n—matrices and’
let A be quasi—inner graded by .a group G such that G' is finite and |G'|™€A. I f A

8 an Azumayd algebra and & Q-algebra then A is an Azumaye algebra.
Proof- By the commutator method we reduce the problem to the case
=Z(4,).

It is sufﬁment to prove for every max1ma1 ideal M of Z(A) that .A/MA is separable-
over Z(A)/M. Put P=MNZ(4,). Then A/MA is an epimorphic image of the.
strongly graded A/PA over A,/PA,. Let a boe the image of a€.A/PA in A/MA.
Since Z(A)/M embeds into 4/M A, it follows that the field of fractions K of 4,/P*

algo embeds in A/ M A. Therefore we may define a map Ap—>A/M A ag the composi—

tion of the canonical map Ap—>K®4,/» A/PA and the map K@y, » A/PA—>A/M4;

s@at—>ze; which is obviously a ring epimorphism. Since (A4,)pis local, we may

write Ap=(4,)sG* and in fact K@,/ p4/PA=KG’ where we have used the image.
of the cooycle deseribing the structure of Ap. If we prove that Ap is an Azumaya.
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algebra, then Z((4,)r G*) maps to Z (K' G*) and Z(A) maps to a subring B of
Z(KG*) such that KR=K®,,/»p BR=Z(KG"). The centre of KG* consists of linear
combinations of ray-elass sums(ef. [10]) and such a sum in Z (K'G*) may be written
as ; M@y, with MEK, y;,€Z (4/PA), bedause KG is obtained by central

localization of A/PA; hence ? AXy; maps o 12 MRy €Z (A) /M and so Z(A)/M

is the image of Z(KG*). Then Z(KG") separability of KG* entails that 4/MA is
Z(A)/M -separable and by the globalization property of separability: A is separable

over Z(A). 8o we have to establish that (4,)sG* is Azumaya. Since the localization

is central and A satisfies the identities of n X n—matrices, we. use Proposition 3.4 to
reduce to-the case where @ is finitely geherat_ed. Since G is a Pl_”?g,ljoﬁ]e by the result
of Section 2, [G: Z(@)] <oo. Since ray- olass sums are central in (4,)» G* (even if
A, i not a domain this holds but then one cannot easily show:that the oentre is
freely generated by such ray-class sums), we may reproduce Proposition 14 of [10],
modified in a very trivial way in order to deal with the fact that Q(4,) is only
semigimple here, and conclude that the U-regular elements, G, say, in Z(@) have

finite index in @. S0 (A4,)p G4y, is central in (4,)pG and then we invoke Theorem

3.1 to finish the proof.
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