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Abstract

' Tet K bean algebraically closed field of characteristic 3. Let s, Ag, A denote all‘the
fundamental dominant weights of GL(4). Then the K-dimension of the irreducible GL(4)-
module ¥ with the highest weight Ay -4, is equal to 16, and it is- denoted . by V(16). In
this paper, the following results are proved: : : :

@) (GL4), 43+4,, V(16)) i is a regular. 1rredue1b1e prehomogeneous vector spaoe.
The deglee of its meduclble relative mvamant is 8, the associated character is

‘ | #(g) = (det g)®. _ ' S
(2) There exist only one 6-dimensional GL(4)—~orbit and one 9-dimensional GL(4)-
orbit in ¥ (16). When m=7, 8 or 1<m<5, there are no m~dimensional GL(4)-orbits.

Sato and Kimura ™ have completed the classification of irreducible prehomoge~
neous veotor spaces in characteristic 0. The author investigated the irreducible
prehomogeneous vector spaces in characteristic >0 and found that almost every
irreducible prehomdgeneous vector space could be obtained by reduction mod p from
the corresponding one in characteristo 0 (see [2]). One of the exceptions is (GL(4),
Ay+4s, V(16)) (p=38). When the characteristic of the base field is 0, the triplet
(GL(4), Ay+As, V'(20)) is nob a prehomogeneous vestor space. The purpose of this
paper is to investigate the triplet (G‘L 4) , A1+ 4y, V(16)) (p=8). This triplet can
be proved o be a regular irreducible prehomogeneous. vector space with the

“irreducible relative invariant of degreo 8. Then we can prove that there are no other
orbits of dimension less than 10 in -this space _except' a 9¥dimenéional one, a
6-dimengional one and a O-d1mensmna1 one {0} |

1. Preliminaries.

Let K be an algebraically closed field, ¥ be a finite-dimensional vector space
over K. Let G be a connected affine algebraic group over K and p: G—GL(V) be a
rational representation of G.. Then G acts on V' by p. If there is a Zariski open G-orbit
in V', then we call the triplet (@, p, V) a prehomogeneous vector space (abbrev.
PV). All the triplets (G, p, V) in this paper are assumed to be a PV. If thera
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- exists a nontrivial rational function P € K (V) such that- *

 P(o(9)2)=1(9)P(), VgEG, o€V,
then P is called a relative invariant, x: G—>K* is a character of G called the chara—
oter of P. o '

Now we denote the dual G-module of ¥ by V* with the corresponding contra—
gredient representation p": G—>GL(V™*). Taking a dual basisin V*, we can define a

morphism
grad P: Q »V*
oP , .
owy (w) L
o | E . |=grad P(a).
)
azv,, (w

Here 2 denpte the Zariski open orbit. If the morphlsm (grad P)/P: Q->V"is
dominant, then (@, p, V') is considered o be regular. If the representation p is
irreducible, then we call the (G, p, V') an irreducible PV,

Please refer to [1, 6] for the detail.

2. The construction.of (GL(4), ./11+/12, V(16)) (p=38).

From now on we assume that the characteristic of K is 8. Let k=G.F (8)be the
prime field of K. We are going to construct the irreducible representation As+ Ay
ofG=GL(4) (=GL(4, K)). , : ‘

Take a 4-dimensional vector space over the complex field C:

_ V1(C)={(w1, s, w3, @) |5 €C, $=1, 2, 8, 4}
Wwith a canonical basis '

f1=bt(1; 0, O: O)’

fa=%(0,1, 0, 0),
f:=%(0,0,1, 0),
f —*(0, 0, 0, 1).

Then the natural represantahon p1=A of GL(4, C) on. Vi(C) is deﬁned as
pi(g). v=gv, VgEGL(4,C), vE€V(C).
Thus, V4(C) is an irfédﬁcibie GL(4 C)—'module with the highest weight 4.
Put Vo(€)={X € M{(4,Q)[*X=-X } and deﬁne & representation pa=A of
G’L(4 C) on VQ(C) as follows:

ox(9) X =g X'y, VgéGLG ©), xeh(@)

Obvmusly, dlmc VQ(C) =6 and V4(C) is an irreducible GL(4, C)-module with the
highest weight 4,. Denote :




24 - . CHIN. ANN., OF MATH. , *Vol. 8 Sex. B -

0 ‘1 3
. 0
o= o |, %4 4,4=1,28 4
i g

Then {e;;]|1<é<<j<<4} form a basis of V3(C) and e;= —e;;.
‘The tensor representation 4;®A, of GL(4, C) on Vi(C)®Va(C) is defined
as | ‘
p1®pa(9) (v@X ) =pi(9)v®p:(9) X = go@9 X"y,
VgEGL(4,C), v&€V1(C), X €V ,(C).
As a GL(4, C)-module, V1(C)®V 3(C) has a decomposition to direct summands
V1(C©)R@V2(C) =W1(C)+Ws(C),

where

W1 (C) C f1®e1a+C f1Pe13+C f1®e1s+C fa&ear+C foeas
 +C fa®e2s+C fs@esy+C fs®esa+C fa®esa+C fs@eas
A+ Cfi®@ e+ C Qe+ C( fo®eis+f®en)
“+C(f1®ess+2fa®@e1s+fs@e1a) +C( fa®erat fs®eia)
+C(f1@eas+2f s®ess+f1®e1a) +C( fe@esu+faQess)
+C(f1®ess+2f @614 fe®e1s) +C( fs®eost+fs&eas)
7 HC(faDess 2 fs®east+ faRoss), :
WQ(C> =C (f1®eas — fa®e1s+ fa®e1a) -+ C(f1®eas—fa&e1s
+fa®e12) +C(f1&@ess— fs@e1a+f1@e1s)
+C(fo®ess— fs@eas+fo@eas),
dimg W4(C) =20,
dimg W4(C) =4.
In fact, W4(C) is the irreducible G.L (4 C)-module with the highest weight -+ A,
Now we take a lattice G.L(4,Z) in GL(4, C)and take an admissible Z-form of W,(C)
as follows:
W:t; 2= L f1®e12+Zf1®e13+ L f1R614+ Z f5Res1+ L f2@eas
+Z fa@eas+Z fa®ea1+ L fs@esa+ Z fs@eas+Z f4&eas
A Zf iR+ ZfRess+Z( f 2@61_3 +fa®e1s)
+Z(fa®e1s+fs®e1a) + Z( fs@e1sa+ fa@ess)
+Z( fs@tastf 4®ess) + Z( f1@Deas+2 fa®ess+ fa@e1a) _
+ Z( f1Qe2s+2f s@e1s+ fa®e1a) + Z(f 1®634_‘_F 2fsXe1q ‘
+fi®ess) + Z(f a®esa+2f s®east+ fa®eas).

Let GL(4, K)=GL(4, Z)®z K and Wy,zg=W4,,®z K, then W, x is an indecompo-

sable G (4)-module. In fact, Wy, x is a Weyl module of GL (4) with the highest

weight A+ A,. There exists a unique maximal GL (4) -submodule M in W,z as

follows:

S ——



No:. 1 Chen, Z.J. A PREHOMOGENEOUS VECTOR SPACE OF CHARACTERISTIO p 25

MU = (f1®@eas+2fa®ess+fsRe12) O K + ( f1®eas+ 2 fa®esa+f1Re12) O K
+ (f1®ess+2fsQe1s+f 4®Q13) XK + (fa®esat+2 fs@eos+f «Reas) DK
The quotient module Wy,x/M =V is an irreducible G (4)-module with the highest
weight /11+_/12._:Wede'notea basis of ¥ by - ' :
ou=(f@e)@L+M, i#j 6j=1,238 4
ein= (f1Qen+1®e) @1+ M, 1<i<j<h<4.
Then dimg V" =16, Let p denote the representation of GL(V) on V(=¥ (16)).
Let : ’ . , - A
o - g=(94) €EGL4).
Then. .
P<9) em— 2(913694: !]mgp!gqi)eppq + 2 ("'.%tgqvgri gmgqagn gpagqogﬂ)@pqn

5% ], @,y =1,2; 3, 4,
P(g D= z(gpagmqu‘*‘ Ioidoudait Ioidoedar) 9ppq+ 2 (gmgqigrk"l‘ gpiqugrf

+ Guifairi + GrifanGri+ Goudaidrit ypkgqf9r£> Cngr
ISi<j<b<4.
This representatlon p: GL(4) —>G‘L(V) can induce a representatlon of the L1e algebra
gI(4) on the same veetor space V° as follows:
3 ' dp 91(4)—991(V)
Let -
A=(ay) €41(D),

- then

dP (A>3w = (“ﬂ — o) 3m — Gjlint 2 “qﬂzia"‘ 2 ( - wpi) Cvifyy

i g, 6,9=1, 2, 8, 4,
dp (A) o= wci@ma‘l‘ @180+ Gixosi+ Upilri+ B+ O+ (@t “ﬁ+ “kk)ema
t @il + ooy T Ay
1<i<j<h<d.
In these formulas, eu =6, Where (i1, is,.43) i a.rearrangement of (p, 4, j)
from less to greater. ' '
3. Lemmal. (GL4), A;+A4d5, V) isa PV.
Proof Let
Bo=€195 €104+ G184+ €22 €V o
Then the stabilizer of G =GL(4) at x, is
G ={9€G|p(g) - m0=w0} .
={By,u,+ a1, Hs,1,+ By — Byyy1~ By 0~ Hiys
—EBi A B st By it Eis| (64, 62,88, ta) .
is an arrangement of (1,2, 8, 4); (Ja, s, Js) is an arrahgemen’u of any 8 numbers
taken from {1, 2, 3, 4}.}, o
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SRR
-Ehf_=(0j )°
j

Thus Gy, is a finite subgroup of G and |G, | =120. Let p(G) mo ‘denote the G-orbit
of w,, then -

where

dim p(@). wo~dim G-dim G¢,—16 dim V.
Therefore p(G) o must be a Zariski open subset in the affine’ space V Th1s proves
that (GL(4), A;+4,, V) is a PV,

4. Lemma 2. There ewist relative invariants in the PV (GL(4), A4+ A4, V),
and all its relative mmmants ha/ve the Jorm Cp fwheq'e cEK*m E Z and P E la [V] s
irreducéble. c e , ' :

Proof(after [7]) Suppose that G is a reductlve algebraic group, H is its closed
subgroup, then G'/H is an affine variety iff- H is reductive (see [8]). Now Gy, is a
reduotive closed subgroup of ‘the reductive group G=GL(4) (Lemma 2), so G/G,, =
p(@). @, is an affine variety. Since p(G). z, is an dpen subset of V, V-p(&). zpisan
a,lgebralc sot of pure codimension 1. Since K[V] is a umque factorization domain,
V-o(®@). 5o=Z(P), where PECK[V]. If Z(P)y=Z(Py)U U (Pr) .is a decomposi-
tion to irredumocible components, then ‘Pi, s, P, can be taken to be irreducible
polynomials of K [V] such that P=P,P,---P,. Hence the relative invariants of the
PV (@, p, V') have the form ¢Pj:--- Py, where ¢ € K* and(my, +++, m,) EZ" (see [1]

or [6]). Since p is irreducible, »=1(see [1] or [6]). So P can be taken o be an:

irreducible polynomial in K'[V] and all the relative invariants of this PV have
the form ¢cP™(¢c€ K*, mEZ). Further-more, since G.L (4) is defined over %, P can
betaken to be an irreducible polynomlal in B[VIW,

5. Let a, denote the centrahzer of the Lle algebra g gl(4) at a;EV Then

{AEGIdP(A) 2=0}.

If y=p(g). ®,then g,=Ad g. §,. Hence dim- gy——dlm gg. Lot L(G‘a,) denote the Lle
algebra of G, then
L (Gw) T j

So

' dim @,=dim L(Gw) <dim G
Now we deﬁne : :
={z €V |dim dp(g). a<r}= {mEV[dma 8,=>16—r}, 0<r<16.
Then {EMIO<@, j<<4} is a basis of g. Henee {dp(H;,;) | O<@,]<4} generates do(g).
Construet the 16 X 16 matrix , = ', .
o= (dp(Hy,1). @, dP(E4 4) ).
Then dim dp(g). a<<r 1ff all the minors of degree -1 of M, are null. Hence V', i¢



‘No. 1 - Chen, Z.J. A PREHOMOGENEOUS VECTOR SPACE OF CHARACTERISTIC p 27

closed in V. It is not difficult to see that V', is stable under the action of &, Since

31 dp( By =0,
we have - S :
V=Vi=V52V1.2+-2V12¥V,={0}.

- Lemma 3. The degree of the irredusible relative invariant of the PV (GL (4),
A+ Ay, V) is 8 and the ohamcterr assocmted with P is x(g) (det g)6 o
Proof Since R : :

-g‘wo:;—;' : aEK ’.

o © a
Qa © o
§ © oo

<o o & ©

B =125+ G194+ G134~ 6234 € Va5, mO¢V14 HGDGG V14CV p(G). wo, that is, V14CZ (P ),
‘where P.€ k[V] is the 1rredu01ble relative mvarmnt of the PV,
If wo take 1= e11n-t- eaa4+ e,m, then
‘ ey |

@

g v
-

ng = .‘

Ag dim G‘¢;=1,"
L dim p(G) z=15. oo
Smce w1€ V14, p(G‘) SV 1.CZ(P). Since o(@). wand Z (P) are all 1rreduc1ble
closed. subset, conS1der1ng the fact that dim p(G). @, =dim Z (P), ‘we can: .conclude
that e
s (@) w1 =Vyu=Z(P). :
As an orbit of a connected algebraic group, p(G).2; must be a locally closed subset,
80 p(@). @4 is a relative open subset contained in the irreducible closed subset
Y : A Z(P) =V . S \
This implies that p(G). 4 is the unique 15-dimensional orb1t in V
-Now 16t @ be a nontrivial minor of degree 15 of the matrix M,,, then
Z(P)=V1.SZ(Q).
Hence P [Q,' that is,
deg P<deg Q=1b.
Lot deg P=m and let x denote the character associated with P. Then 2(g) =
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(deg ¢)" If: we take
t | ,
g=t. 1= . |ean, €k,

‘then from the relation below

P(o(g). 2)=1(9)P(a), V€@, nEV,

‘we can get - ‘ .
P(p(g). ) =P(#. ) =*"P(z), VYaCV.
Henoce E | o |
=g (g) =t*r.
‘So Sm=4r, '

Supposing that ¢& G, we have x(g) = (det ¢)"= 1, But we know that there
exists some g € G, such that det g= — 1. Hence r must be an even integer. Therefore
m=3§, r==6. ‘ '

6. Lemma 4. Let (G, p, V') bs a PV over an algebraically closed field K of
characterisiic p>0, such that V —Q=Z(P), where P is @ nontrivial relative invariant.
If deg P#0 (mod p), then (G, p, V) is a tregulwr PV.

Proof See [6].

From this lemma we can obtain immediately the following |

Lemma 5. (GL (4) A+ AQ,V) is @ regular PV.

%. Using these lemmas, we can obtam the following

Theorem 1. Let K be an algebmwally closed field of chamotemstw 3, let GL(4)
=GL(4, K), then (GL(4), A1+ As, V') is a regular irreducible prehomogenet)us vector
space. The dégree of its M‘/)’Gd‘u%ble relative invariant P € K[V is 8, the associatod
-character is x(g) =(det g)°. - , _

We investigated the possible irreducible PV over an algebraiocally closed field
-of charaoteristic p>2 in [2].. We found that almost all irreducible PV could be
obtained by reduction mod p from the corresponding ones in characteristio 0. But
there are 8 exceptions, that is: (GL(n), (1-+p")4s, V(n?)) (s>0, n=>2), (GL(n),
Ayt Aoy, V(%) (s3>0, n>8) and (GL(4), Ay+Ag, V(16)) (p=3). The first ones
can be obtained by twisted modules. The last one is the most interesting, We know
that the degree of ils irreducible relative invariant is 8, but it need a lengthy
caleulation to write it explicitely. The determination of this relative invariant
must be very interesling.

8. Let {e};; ¢+ denote the dual basis in V™* with respeoct to the basis {ey;, e} of
V. Let '
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det ( Eauﬁn °°% Ea,,ﬁ,)

* #*
ZRINY Y e (2T Ry

<dP(Eaqu) @, e‘ui;ﬂﬁ>; °*%s <dP(anBr)' z, e:x"iuk1>
=det| 0000 e ' X

{dp(He,,s,). @, emmk), ) dP(Ea,,a,) 64,558, _
" where  is a certain fixed point in ¥V, 4=j+k or i< J j<k. Obvlously, it is a minor of
degree ¢ of M,. '
For a permutation o€ 8y, define a permutatmn maitrix P, as follows:
Ie=Ej,00y+F Ha, 09 +E3,a(a)+E4, o) € GL (4)
Then . ‘
p(Ps) *6ui=toq, ,o'(f);;r(!)): i# 5,
P(Po). em=eimomroan, $<J<b.
Lemma 6. Let o;==6119-F a5y, lob we=0110, then
Vo=p(@). a:Up(G). 210U {0}
Proof Suppose that :vaé 0, s€V, and _

= g @ (@?/j)@m + ; & (’1’.7]‘:)35176

If (idg) =0 for all 1o+ y<4 then there must ex1st some w(fbjk )50, say, m(123) aé 0.
In this case - .
det( E.‘li) \ E12; EiB; EQJ) .E23, EBI) -E32). Eé;l, E42, -E43 ) =im(123)10%0,
€113, €113, €128, €124, €134, ©221, €298, €284, €331, €832 P s
80 @& V. This implies that there exists some #(4¢4) # 0. Put

{6 § & 1\

(7 S,
| ’ (1 2 8 4 ) €5

and denote #'=p(P,). #, then 4'(112) = w(m;)) #0. Hence without loss of generality,

we can assume that #(112) 0. :

Take

1
g _%\(ﬁ?T 1 €GL(4)
x(112)

and put y=p(g1). x. Then
y(112) =0(112), y(118) = y(114) ~0.

We distinguish two cases:
(1) y(881) or y(441) is not equal to 0. We can assume y(331)#0. Take
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1

l ggg=_ A A e '_ 1 / EGL(4)

_y(384) o _ w84
Ty(381) .. y(831)

and let z=~p(gg) y Then |
2(112) =y(112),
. z(ll3)—.—-.z,(114)=z(334) =z(134)'=_0, N
Since T
det(-Em, Bas, Easy Feyy Has, Has, By, Hi, Hes, Eu)
€119, €113, O114, €123, C124, 0134, Caz1, €331, Cad1y Cads
= ha(112)%(381)%(441)3, |
this implies #(441) =0. Then S |
det(EQi’ Bss, HBa, Esi, Essiz,:.Eaé,: E@i, By, Eg, .E44)
€113, €113, €114, ©133, C124, €134, ©Ca21, Cals, 0331, G443
= +2(112)° 2(831)%(448)?, '
S0 z(443)=0 In this case o .
aet(E”' Fus, Fas, By Hus, Bos, Bus, Has, Fis, E)
€119, €113, 6114, 3123, €124, €134y ©O2921, ©Case, C331, €334
- =+z(112)4z(331)4z(124)2 S
50 z(124)=0 Similarly, from :
det(Em’ Hsa, Hoy, FHg, bEala,’Es.s, By, ELm, By, E44> "
\ €119, 6118, €114, G123, O124, €134y G221, Cane, 0331, Caq1
= +2(112)%(381)%(442)2, .
we can conclude 2(124) =0. Since. . o .. .
det(Eai’ E22; E31) E32) E33) E34; E41) . '-.E42, Eé&) E44)
0113, €118, €114, €123, €134, €134, Cazi. O2az, €224, G331
= +2(112)%(831)%(224)%,
2(224) =0. Furthermore S . _
det(Egi’ By, _E_za, E24, E_'s;t, Esg- Fgs, Eu, Hys, E43>
€119, €113, €114, €123, ©O124, €134, ©€oa1, ©Gag3, Caaq, €331
= +2(112)%(881)%(2384)?, - :
implies 2(234) =0. At last, we have L
2ot ( By, By, By, Fu, Bw, By, Fuw, B, Es, 'Eg)
€112, €113, ©€114) €128, C124, €134, Coa1, €323, @331, €a32
= :l:z(112)3z(331) [2(112)2(332) +z(221)z(331) 2(128) 2]3
this implies: that
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2(112)2(882) +2(221)2(881) —2(128)?=0,
Now we put '
v=2(112),
wi=2(831), |
wi= — [2(221)2(128) +2(112)2(228)] /ws,,
- [2(221)2(128) +-2(112)2(228)]2  z(221)%

2(112)%(381) Z(112)%
y3= 2(33D) [2(221)2(128) +3(112)2(228)] _ #(128)°
_ T 2(112) 2(112)*’
then . g |
2(221)2(128) +2(112)2(228) = — wiw,,
2(221) = wi —ww,
2(128) = — WiWa — Un?,
2(228) = wiua — wiwok; — UrUav,
2(112)2(832) =2(128)2—2(221)2(831) = wiuiv — wiwauav -+ ujv?
2(882) = whuy — w wats+u3v.
~ Put
‘ 1 0 0 O
go= w v wy O E'GL(4);'
Us. 0 we O
0 0 0 1
Then . .
2=p(0s). ¥7.

This proves that
_ s Cp(@). wr.
(2) Both y(831) and y(441) are equal to zero. Note that y(118)=y (114) =0.
Since _
det(Eu' By, B, FHsi, His, FHis, Hsi, Hy, B, E43>
€119, €113, O114, €193, €124y @;34, €an1, O331. Caa1, ©Ca43
= +¢(112)%(184)5,
y(1384) =0. In this case
det(En’ By, Bos, FEasy Hgi, Es, Hs, Hu, Ha, E43)’
€113, €113, €114, ©133, €124, €221, O34y O332, €334, Cads
— £y/(112)% (334)",
50 y(334) =0. Similazly, y(443) =0.
Let : '
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1
y(221) 4
y(112)
9e=| y(128) 1 €GL(4),
y(112)
w2
y(ll2)

= P(!}D Y.
Then

2(118) =2(114) =2(221) =2(831) =2(334) =2(441)
=2(448) =2(128) =2(124) =2(184) =0.
In this case - | )
det( By, Eia, EHai, EHas, Easy, Hgy, Hga, Hgy, Hi, E’42>-
€119, €113, €114, €123, ©Ci24y €221, Co24, Case. Csa1, Gaa3/
= +2(112)%(442)*, .
It follows that 2(442) =0. By symmetry, We can prove that z(332) =(0. Furthermore
de_b<E11} E12) Eﬂ'l) -E23, ESi, '-E32, -E34) -E41) -E42, E43)
€113, €113, €114, €128, €124, €134, ©O221, Oa24) €333, Caea
= +2(112)%(234)*, ,
implies 2(284) =0. Finally, if z(223)-—z(224) 0, then
2=2(112)ey1a.
So
€ p(G). 1.
Otherwise, we may suﬁpose that 2(228) #0. Let
0 1 0 0

0 0 1 0
S g=l10 .0 0 |EGL4),
2(224
00 —z§223§ !
then .
olgs). 2=
Henoce

o€ p(G). z,.
9. By calculation, we know that

aq b4 b5 bi
0 a4 b@ b2 »
= , bheK
P8 _ be bs o ba @, Oy € )

0 0 0 a
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2w U5 W
0 % 0 u
0 s & us
0 0 0 f# |

8o dim g,,~8 and dim G,,=7. That implies o; €V TV and dim p(G). 27=9.

Moreover. ' '

G, = t, LEK* u €K'}

([as by Dba b

0 @ b O;

0 0 a be

N0 0 b7 ag

(11 w1 Uz Ug
—1

Gy, =1 g t; ::: Z: |4, EK*, w € K},

N0 0 wuy i

o dim g,,,=dim G, =10, w10676§V7 and dim p(@). 219=6.

Theorem 2. There ewist only one 6-dimensional G-orbit and one 9-dimensional
G-orbit in V. They are p(@). w1 and p(Q). ; respectively. In addition, when m="1,
8 or 1<m<5, there are no m—dimensional G-orbits.

Proof We have proved that ‘

Vs=Vs=;7—(§)—;’;;
V2=V s=p(@). %1,
Ve=Vy=-=Vo={0}.
‘Supposing that m<9, if » is a point in a m-dimensional orbit, then
dim g,=dim @,=n~dim p(@). s=n—m>n—9.

ga:m = A

ay, b; EK ’

That is
2 &V .
Hence m=9, 6 or 0 by lemma 6.
10. Other orbits,
By caloulation, we can know that there exist following orbits in Ve
D= 6112+ 03341 €441,
* w 0 0

0 %8 0 O tCK*|
Gm—‘
0 0 t 0 |Jluek
N0 0 0 ¢
fa b —ec¢ O
0 a 0 0 e
=1 a, b,c€EK
Qs 00 ac¢ L
Wo 0 0 ¢
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12-dimensional orbit:

| @y
0
0
0

g¢o=<

11-dimensional orbit:

,

4

gm5=<

10-dimensional orbit:

g¢a =

Our conjecture is:

22 EV 13—V 10.

W4 =E€1191 €334,

wy 0 O

tfi 0 0 t4, Lh,EK*

0 5 u |ju, €K [

0 0 &t
by 0 O
‘:)1 22 :2 a1, Ag, bi) bQEK ]
0 0 a

» B €V 19— V:u-

W5 =614+ €193,

—iftaus —~fUs Wy
ta 0 bota ||t1, 2 EK"
0 il us ||ug,ue,us €K |
0 0
—bs —ba by
@3 0 . by ||a1, s,
0 —ayi—as bs ||by, b, b €K |
0 0 ay
w5 EV 11—V 1.
Pg = €123,
0 0 Uy
ta 0 ug ||tyty, HLEK
0 45t wg ||wg, Us, s €K |
0 0 13
0 0 by
@a 0 by ||a1, ag, @3
0 —ai—ay by ||by, bs, BEK|
0 0 Qg
w6 EVio—Vo.

There are no other G-orbits. Equivalently, we have a chain of closed subvarieties

as follows:

V=Vi= Viaa?Vu;ViaQVmQVnQVioQVs=V8¥V7
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=V V5=V = °'°‘==Vo={0}.
All these V' are irreducible.
It remains to prove that Vo, V1, V12 and Vi5-are irreducible.
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