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AN ANALYSIS OF A FINITE ELEMENT
METHOD OF LOW DEGREE FOR THE
NAVIER-STOKES PROBLEMS**

L1 LigANG (& 3 &)*

Abstract

There are many papers in which approximate solution of Navier-Stokes problem is
-diecussed by finite element method. Their error estimates are optimal, but degree of
piecewise polynomials for pressure p or degree of piecewise polynomials for velocity u are
not the lowest. In this papre a new element is given. Its degre for p and degree for u are
the lowest and error estimates are optimal. . ' '

§1. Introduction

Let 2 be a bounded open domain in R? and its boundary be I, In this paper we
consider the siationary Stokes problem and Navier-Stokes problem

I —vdu-+grad p=f, in Q, : (1.1)
divee=0, in Q, (1.2

lu=——0, ' on I, (1.8)
—vdu+ (w-V)u+'grad p=f, in Q, (1.4)
div =0, in Q, _ (1.5)
u=0, on I (1.6)

Let Q be a convex polygon. There are many papers in which Navier-Stokes
problem is discussed by finite element method. In [1], an element of lower order in
# is used, namely: a linear approximation for # and a linear approximation for P,
where each triangle of triangulation for p is actually a maocroelement made of four
triangles of triangulation for # (see Fig. 1 in [1]). The approximations have H?
error of h and I? error of A? for #. They did] not point out that the approximation
has I? error of & for p which we can easily ebtain. In [2], the finite element spaces
for # and p are (W4,)? and M, respectively, where W5, is the set of piecewise poly—
momials of degree 2, each element of Wy, is equal to zero on I', M, is the set of
piecewise constant. Fach triangle of triangulation for p coincides with each triangle
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of triangulation for #. The approximations have H* error of # and L? error of 4? for
@. The approximation has L? error of A for p. In[1] and [2], these approximations
are optimal, but the degree of piecowise polynomials for p in [1] and the degree of
piecewise pdlynomials for u in [2] are not the lowest. We prdpose the following:
question: LetX ) and @, denote the set of ‘piecewise polynomials of degree 1 whoss
element is equal t0 zero on I" and the set of piécewise constants respectively. We:
take (X7)? and Q=@Qs\R as the finite element spaces for # and p respectively. Can
we conclude that the approximations have H! error of 4 and L? error of 42 for @,
the approximation has L? error of 4 for p? If the conclusion can be reached, then the
approximations are optimal, the degree of piecewise polynomials for # and the degree
of piecewise polynomials (piecewise constants) for p are the lowest. Obviously, this
question has practial meaning. It is well known (see [2] § 2.2, Chapter 2) that the:
above conclusion does not hold as the triangulations for # and p are the same. In
this paper we point ount that the above conclusion‘i‘é right as the triangnlations for
@ and p are different. The other object of this paper is to extend the above conclusion
to problem (1.4)~(1.6) with sufficiently smooth domain .

The results obtained are organized as follows: In § 2 we give the triangulations
for # and p and construct finite element spaces. In § 3 we prove Bpezzi inequality.
In §4 we give the error ,e_stiinate _fo_r stokes problem. In §45 we give the error
estimate for Navier-Stokes pr.oblemf

§ 2. Triangulations and Finite Elemeqt Spaces

Mok

| Lot {K} be a triangulation of Q (see Fig. 1). We have 0= ni K, where K4,

eery Ky, are all boundary elements, K 7,;,0+_1, =y Koo, are all
interiore lements, Triangulaﬁion sat_isﬁesﬁhe regular condition
in [8]. Define } o .
Qu=1{s! . € L*(Q), ¢, on each K, is a constant
- S TRUE S ) |
Let K be an interior éleme’np._K by , K, is a triangulation

Fig. 1

L . of K; by dividing K, into 4 equal subfriang_les (by joining the
mid-sides, see Fig, 2). Let K, be-@ boundary element. Ky, -+, Ky isa triangulaﬁog,
of K, by dividing K; into 4 Siibtriangles (see Fig 8). In Fig. 8 D and B are
midpbints of sides OB and OA respectively, For simplieity, we assume EC / OB?,
Define ' :
Xp={vs| 1 €O0°(Q), v, 0n each Ky (i=1, ++», mo-+my; j'-—v-'l',‘ ,4)

- is a linear function},
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Fig 2 Fig. 3

Let 4y, - Ag,,,,o be all boundary nodes of trlangulahon {K i,} Define
——-{fv;,,lfu;,EX;., v3(4;) =0 (4=1, «-, 2my)},
X0=Xx X3, Qu=@\R,
Vi= {'Uh['vhe 5y (div O, ua) =0, Vi € Quo}-
‘We shall not give the definition of Sobolev space H™(Q), H(Q), -, which are
well known. We denote the norms and the seminorms of Sobolev spaces H™(Q),
HY(Q), »+, bY |+ |my |*|ny **- We denote H® (Q) by L*(Q) and

L) = (o0 € L2(2), [, 0da=0}(=IHD)\R),

‘where do=dwidws. Let 0 € H™(Q) N L5(Q). We denote the norm and the seminorm
of H*(Q) N L(Q) by | *[mua and || respectively.
Define

a(u, V) =L Vu-Vods, b(u, p)=@iva, p),

fv)= I fevdo=(f,0), (u, v)= Ju@dm.

Variational problem Py of (1.1)~(1.8): Find (#, ps) € X7 X Qs satisfying
| {m(u;., vy) —b(vy, p)=F(vy), YU,EXY,

b (s, pn) =0, Vi, € Qo
Variational problem Py of (1.1)~(1.8): Find u, 0}, satisfying
va(thy, Un) =F(Vy), YO,EV]. - (2.2)

Lemma 3.1. XY and V3 are Hilbers space. The mapping u, € X3 (or Vi)~ a4
=q (U, W, is @ norm over space X3(or V7). Inaddition, we have V= {0}.

We skip the proof since it is easy.

Theorem2.1. Variational problem Py has a unigue solution.

Proof Sine the linear functional v~ (v,) and the bilinear form (m,, v,) >
wva(u,, U;) are continuous over ¥} and V7 x ¥V} respectively. Theorem 2,1 holds from
Lemma 2.1 and Lax-Milgram Lemma.

Theorem 2.2, Variational problem Py has @ unique solutwon

Proof To prove the existence and uniqueness for (2.1) we need only show
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the only solution of (2. 1) when f=0 is (#;, p,) = (0, 0).

Taking U=, pma=p'in (2.1), we obtain a (&, u,,) =0, Hence #,=0 follows

from Lemma 2.1. By (2.1) we obtain
- b(os, 2)=0, VO,EX}
Then by the following Brezzi inequality (8.1) we have [2afoa =9, i. e. p,=0.

Both Variational problems Py and Pys can be characterized by the followmg
Theorem 2.3. _

Theorem 2.3. i)et &, be a solution of (2.2). Then there ém)sts a unique py, such
that (U, py) is @ solution of (2.1). C’onversely, let (W, py) be a solution of (2.1), then
&y, is a solution of (2.2). : -

‘We skip the proof since it is easy.

§ 3. Brezzi Inequality

Lemma 81, LetK, bea bounda,m/ element v,,EX,, We have

‘vhlo:w;<0hi (U1, 4=1, +++, mp; =8, 4,
where yy=KyNT, O is a positive constant independent of k,;, h,—dlam (Ky).
" The proof may be found in [4].
In this paragraph we would like to show

b (v,
l

sup %) ooy, Y€ Qs (8.1)
U1

VhEX
where « is a positive constant.

In this paper, O denotes a generic constant with possibly different values in
different contexts.

Let by=diam (Ky), h=1 max ;. Assume %\0 Let K De a reference eelment,
<& <mo+my 6

Let K; be any interior element. Then there exists an affine mapping

Fi(la= 1fv+b¢) R—>k,
Let K be any boundary element. We construct a triangle K; such that three
vertexes of K; coincide with three vertexes of K; Then there exists an affine
mapping Fy: K—>K, Each F,is an invertible mapping. Let A/il?; in K, denote an

- aro on I" and 9K;=F;* (@) Wo construct 4,048 = a ourved triangle 4B (as

shown in F1g 4), it consists of segments O4 and 0B and arc 408 such thab
ORN (40AB) =4 (i=1, -, mp),
where A° denotes the set of interior points of set 4. Sinoce I i sufficiently smooth,

there exists such 4; OAB.

Let ¢, € Q. According to Lemma 3.2 (see [21, Chapter 1), there exists one
function © € (H})? such that
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A’;B:;

(2 A&
Fig. 4 . _
div o=g;, [v]1<O0|@]oz- . (8.2)
According to Lemma 2.1 and Lax—Mﬂgram lemma, there exisis a umque w, € X?
satisfying

a(w,—v, yh) =O; Vs € X3, SO - (8.8)

Moreover, we have ' ' '
|ws] <[V o : (8.4)

Then we define v, € X} by: : .

1. Ki(G=mo+1, -+, mo+my)is an interior element. Let 4;=0, A:=A4, A3 B,

Agg=0, Ayg=D, Aja=H(seo Fig. 2) v, on K, is defined by ’
| {v;.(A> =wy(4;), J=1 2,3,

[ (@-vyis=0, 1j<h<s. (3.5)

2. Ki(i=1, -+, myp) is a bounary .element. Let 41=0, da=A4, A3=B,435=0, A=
D, Ap=H (see Fig. 8). b;, on K, is defined by

Ui (4y) =wi(4y), j=1, 2,8,

v;,(Ag5) =0, ' - (3.6)

j‘TZ"(vh_'v)dS:O, (.’i)k) =(1) 2)7 (lJ 3)"

We can easily prove that there exists a unique @y satisfying (3.5)and (3.6).
Lemma 8.2. The function v,€ X} defined by (8.5) and (8.6) satisfies the
Jollowing inequality. A
|04[1<<O| g2 o\2- (8.7

Proof Let ¢,=v,—w,( €XY), e=v—w,. By(8.2) and (3.4) we have
|03 1< | |1+ | €3] 10| g v+ | €] 1. (8.8)
On each K; (i=1, »--, mo+m1), e, is the form of . '
= .2 e(dn)om, (8.9)

where py, is a linear function on each K (I=1, -+, 4)(see Fig, 2 and 8)defined by
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{Pm(Am)=1s pr(4n) =0, (m=1,2, 8),

. (8.10)
Pu(Am) =0.  (m, n) % (4, k). -

It is easy to prove _

| D] 1., <O, 1<j<k<<8. (8.11)
Let f be a function on K. £ is a function on K;=F;1(K,) defined by .

f=f -Fb ) L3.12)

‘where-denote composﬂnon of function. By (3.9) we have
€, = ;} e(4x) Py = (8.18)

2<

Obviously, pp(€ H(K,), where K;=F;1(K;)) is a piecewise linear function. By
(8.18) we obtain:
1. K, is an interior element. We have K,=X and

en(Az) = Ufa’ Buds| k\z epds, 1<j<h<3. (3.14)
K 4.
By (3.5) we have '
,“ﬁ e,,ds—k\/eds 1<]<70’<3. (3.15)
By (3.10) and (3.12) | |
n -1 . v
U@/ puds|  <O. (8.16)

"Then by (8.13), (8.14), (8.15) and (8.16) we have
les(4s) [ <O e]o, 5% (by (1.2.8) in [3])

s ,
<O(|e|s 2+ leliz)? (by (8.1.20) in [8])

-1 1
<O|det(B:) *(|le[3 a+]B:]* |eliz)?, (3.17)
‘where [e,(4y)| denote the Euclidean norm of e(A;,Qm R Usmg Theorem 8.18 in
[3], from (8.11) and (8.17) we have :

€] 1,2 <O(R:*%|e|3 2+ e Iiks)%- (8.18)
2. K,; is a boundary element. We have R#RK and €,(433)=0. Thus we only
ovalute €,(A1a) and €,(A4s3). Using the above method (8.18) — (8.17), we obtain
(G, k)=(1, 2), (1, 3))
les(4m) | <O e]o,ass20(Fig 4, by (1, 2, 4) in [3])
<O(lel} so1s-+ e [£.u02)"

. 1
<O(h:®|e|3 x~+ |e|ix)® (3.19)
By (8.19) and (8.11) we obtain

len] 1,5, <O(hi?|e]o,x,~+ Ie[m)’*’. (8.20)
Thus, by (8.18)_(8.20)_(8.2) and (3.4) we have 2

. 1
leal1<O(2~*|e[§+ |anl3/2)%. (8.21)
Now we evalute [e[,. Since I” is sufficiently smooth, is iy well known: that there
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exists a unique 2 € (H{N H?)? :sﬁoh that
—4dz=g, in Q, . (8.22)
where g € L?)2, Moreovere, there exists a positive constant O satlsfymg
lzla<0l gl (3.23)
By §5in [4] , there exists a unique 2, € X} such that
| a(2z, U) = (g, v;), Vo,eXL. (8.24)
Moreover, we have
| it —Z»II1<OhHZII2<Oh||9Ho (8.25)
From (8.22) we obtain
a(z, 0)=(4g, Vs) +-f _gg_ v;.ds Vo, € X3 (8.26)
We‘_ha,ve S
J e-z dm' (‘3 : .
efo= sup 22 L 2
| " "o ge(m)’ | "g" )
By (8.8) we have
L) e-gdv=a(e, z)=a(e, 2—2).
From above equality, we have | o o
(ngmrgmwwmm (3.28)
From (8.27) and (3.28) we derive
lelo<<Ch|e|:<Oh|g|ou. (3.29)

From (8.8)_.(8.21)_(8.27)_ (8. 28) and (8.29)we obtain (3.7).

Let Ss be an arbitrary oloment of Q.. Let 8 denote the value of S, on K.
Qiving ¢, € Qu, from (8.2)—(8.6) we obtain v;. By (3.5) and (3.6) we have

Moty

2 Sm'f (diV v;.—d.ivv)dm
=3 - K; .
Mo 4
-—-—LEl E SM-J‘M (U~ v)d_sl
my 4
| < Oihﬂ?_;, ;; | Sl |Onlax,y

(divvh-—q;,,, Sh) { ==

e

| ,.<01h(2!;5’m|2‘meas(K )) <§;]vﬁ,m)

<Osh|gnlov |0/ _
Takmg Si=g, in (3 20), from Lemma 3.2 we obtfain

(div v, Q;J = ﬂ%l}o\i—l- (Aive,— g, kk)>|l%”ou"01h|”h| UQhIO\i
||f1h||0\1]”hli Oihlv,,l lan]ovt-

When h is sufficiently small, there exists a positive constant a>0 satisfying -

(8.30)
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_ (dixoy, gu) =>a|ga]ow | sl
From here we obtain (8.1).

§ 4. Error Estimate of Stokes Problem

Theorem 4.1. Let u C (H§)? and div =0, Then there ewists a positive constont

O satisfying

inf |#—0y|1 <O inf |W—vy)s. - (4.1)
VREVE vrEXS ’

Proof Let wy be an arbitrary element of X7. By Lemma 2,1 and Lax-Milgram
Lemma, there exists a unique #, € V} satisfying .

Ve, Vo,) = (Vw,, Vo,), Yo,e V). (4.2)

Arguing as in the proofs of Theorem 2.1—Theorem 2.8, we see that there

oxists a unique py, € @y, satisfying _
{(Vuh, Vo) — (divos, p) = (Vw,, V0,), Yo,E XD,
(dives, pn) =0, V€ o '
From (4.8) and Brezzi inequality (8.1) we know that (w, — #,;) and p, are

(4.3)

simultaneously different from zero or equal to 0.
From (4.8) we obtain

Hn V (1, —w;) -V, dml ='{ fgp,.div v, dwi

Vo, € X3. 4.4
l'vhll |'vh|1 ’ h.E k ( ’
Using (8.1), from (4.4) we derive -
|2y — 01|10 pn ] ova. | (4.5)
Taking vp=u;—w, in (4.8), from (4.5) we obtain |
IQ p,."div(u,.—w,.)dw= |u,,~—w,,| %?0!”},410;,]1]'%]!0\1. (4:.6)
Since div #=0 and L or div 8, do=0 we have
j o div(u,,—w,,)dw=jg o Aiv(8—w,)do. 4.7
Erom (4.6) and (4.7) we derive
| 05— s [ 1| D] 01 <O 88—t ] 1 21 o1y (4.8)
[t —w, | 1 <O |8 —wy| ;. (4.9)

. Using triangle inequality, we obtain

: i?;f, |— 0|1 < [0 — | 1< | U — Wy | 1+ |80y — W, |, <(1+O) |[u—w, [5. = (4.10)

Since w, is an arbitrary element of X7, from (4.10) we obtain (4.1),
Theorem 4.2. Let p© HY\R. There ewists qn € Qno satisfying

|2 guloa<OR|p| 1/1. (4.11)
Proof of Theorem 4.2 may be found in [3].
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Theorem 4.8. Lot u € H? Hi. There ewists u, € X9 satisfjing

|~ <Ohlul,. (4.12)

Proof of Theorem 4.8 may be found in [4].
Theorem 4.4. Let I be sufficiently smooth and f& (I?)%. Let (w, p) and (8, p,)
be solutions of (1.1)—(1.8) and variational Py, respectively. Then we have
|2 — w1+ [~ pu] e <O (| 28] 2+ | pf 2:2) <Oh[F . (4.18)
Proof By hypotheses and Proposition 2.2 in [5] (see Chapter 1) we obtain. %
€ (H?N HY)?® and pc HY\B,

| |-+ [ 2114 <OAI . (4.18)
Let w; be an arbitrary element of V?. Thus ©,~=u,— w; € V?. Then we have
»a (’v;,_, 'v;,,> = (f, U},) - pa (wh, v,,). (4. 15)

Using Green formula, from (1.1) we obtain

va(®, #) —b(am, p) =, 21) +Vf ﬁ;’i.zhds - Lﬂ?(zn”ﬂi)d& V2, € X3,

r on
5 . (4.16)
From (4.15) and (4.16) we obtain
va(Oy, Uy) =va(—w,, U,) —b(Vs, p— ) |
- VJ %ﬁi e 'v;,,ds +J p(b},‘ ‘fb) ds, V].bh E Q]w. (4: . 17)

Usmg Lemma 8.1 Cauchy mequahty (4.14), from (4.17) we obtain
v|os|I<v [ —wy [ 1| On |1+ |p— ual o [Vn]1 +Oh§|lfﬂ0|”h|1
|03 :<O1(| e —wy |1+ [p—palot) + Ozhzﬂf”o-
By above inequality and triangle inequality, we have '
| —u, |1 <(1+0y) <wf£t£h |0 — 2w | 1+ “fgé ) HP_f pafo) + Osh% [Flo.  (4.18)

By(2.1) and (4.16) we obtain
- (diV Zhy p;,—,uq.) =Vﬁ(u— %, Z;.) — (diV Zn,y p"‘]la;.)

fp'fp _g_:%.zhds-{- L‘ p(Znen)ds. Yz, EXR, 1y € Qhoe

Using (8.1), from above equality we derive
3
lon— o <O (|8 —s |1+ [P~ a0+ 2% [ Flo), Vi € Qroe
Using triangle inequalily we have
Ip—m]ou<O(| e~ |1+ #iélof lp—palos +RZFo)- (4.19)

By (4.18)_(4.19)_ Theorem 4.2 and Theorem 4.3 we obtain (4.14),
Theorem 4.6. Under the hypotheses of Theorem 4.8, we have

e~ [o<OR* ([t ]a+ | P12) <OF*|ffo. - (4.20)
Proof We only give a sketch of proving Theorem 4.5. ‘
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mm

Let n& (L)% 'I‘here exists a unique (¢, &,) € (H*NH})? x (HN\R) satisfying
(see [5])

—vd¢,+gradé,=»; in Q, :
{ div ¢,=0, in Q, v (4.21)
¢,=0, on Iy,
[bnla+[€aloa<COn]o. (4.22)
We have , :
(w—w, n)=(U—th, —vdp,+grad¢,)
=va(U—t, b,— ) +va(t—th, ¢s)

—(diV(u‘"uh), f‘,,—fh) "‘VIP aa(’)’ﬁb” /73 ds

- Jpgq(uh"n)ds, V¢h EVI?: fh E Qho: » (4 . 23)
va(U—, ¢,)= (div(¢h—¢n), P—Dr) ,
+ ,,L 24 405 -jp p(Bren)ds, Veps € V2. (4.24)

Let G =Q K;. By (4.28) and (4.44) we obtain
| (e —us, "7.)|<{,01(|”"“n|,1+ lo—21lovt) ([ —a| 1+ [€5—Enlona)
+03 [Flo( | n— s | .0+ [y 1.6)

+0sh% | n]o(|8—t| 1.0+ | ] 1.a). (4.25)
Let ¢, € V) and &, €@y, do suoh that
| y— bl 116~ §h"0\1<0h("¢n"2+||§n||1\1) (4.26)
Using inequality (see [6]) : »
] 1,e<Ohi|u]s, VuEHo(Q) NH2(Q), (4.27)

from (4.25) and (4.26) we obtain
|C—tn, 1) | <OB( =t |+ = palo) Dl O o
<0B|f ol ko | @®)
We have

= [(u—mw, )|
"u uhHO qe(ig-’?—(m ”nno . (4'29)

Using (4.28), from (4.29) we obtain (4.20).

§ 5. Error Estimate of ._Né,vier—Stokes

Variational problem N§: Find (#, p) € (Hj)? x L§ satisfying
[rewo) b e w OG0, WD,
b(u, ,u,)—O V;.bEL ' |

where
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| c(u; v, w) =L(u-v)vowdm, | (6.2)
Define ' | , _ |
yH)= sp L) | (5.3)
w3 (HDI~O) wly
- (u-v)v, w) 54
p(B) z,.v.wil(g)’-m julollwli’ (5.4)
w(H)= sup ot (5.5)
wrexi-o | Whl1 _
- (15, V)0y, wy)
Pih(B') ur..vh,tsul:-GXR—(O) |uh|1|v;,|,1|w;.|1’ . (5.6)
= ((uh’ v) v, w )
pn(B) uﬁ.w;.exxi})l).pvem;)l—cw AR 1]w;,‘lh 1 ®.7)
Theorem §.1.. We have _
im (N =7(f), (5.8)
lim pu(8) =1im pu(8) =5 (B). 69

This Theorem 5.1 has been proved in [7].
Variational problem N8,i: Find (4, p,) € X% % @y, satisfying

{ va (U, Uy) —b(Us, o) +06(thy; s, 0) =(f, ©1), VU,EX], (5.10)
b (e, pn) =0, Yy € Qo .
Variational problem NS;s, Find @, € V) satisfying

va(Uy, Uy)+c(Uy; U, U,) = (f, v,), Vo, e V). (6.11)

Define
Bo= {0l € Vi, |0l: <2 »()},
By ={(Vs, ) | (s, tn) € V35 X Qao, '”h|1<%‘ 7(H)}.

Theorem 5.8. Variational problem NSus has @ unique solution én By, 4f the
Jollowing condition holds:

2
(P pn(B) < (6.12)
Proof We propose the following problem: Given#;, € V3, find w, € V' satisfying
V“(wh, 'v;,) = (f, vh) "0(“;,,; u;,,, v;,), Vv;, E V%. (5 . 13)

Arguing as in the case of Theorem 2.1, we see that there exists a unique wj, satisfying
(5.18). Let us call F the map: #,~>Fu,=w, solution of (5.18).

In order to prove Theorem 5.2, it suffices to prove that F'is a map from B, into
itself and a contraction on B,. Arguing as in the case of Theorem 2.5 in [8] for
drawing the above conclusion, we may come to the above conclusion.

Theorem §.3. - Variational problem SNy has a unique solution in By, 4f (5.12)
holds. _

Both variational problems NS, and N8, can be characterized by the following
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Theorem 5.4, . .

Theorem 5.4. Let w, be a solution of variational problem NS, then ﬂ;ere_ ewists
@ unique P, € Qu, such that (8, p) s a solution of variational problem NSy, Conversely,
let (s, 1) be a solution of variational problem NS, then t is @ solution of variational
problem NS;a. . :

Proof of these theorems is eagy. We skip the proof.

‘Theorem 5.5. Let I' be sufficiently smooth and f € (L®2. We assume that the
followmg imequalities hold:

PDen® <4, oa(B7(H<L- (5.14)

Let (u, p) and (&, p,.) be solutions of (1.4)—(1.6) and variational problem NS,
Then we have: 1. (8, p) € (H3N H2)2x (H\R). 2.There exists a consiant C such that
| — )1+ |2~ 23] 01 < OR|SF . (5.1B)
Proof The first part has been proved in [B].
We only give the sketch of the proof of the second part.
(a). By Theorem 2.2 there emsts a unigue (w,,, ) € X,‘,’x Qo (m fact, (ws, ™)
EVIXQ) sahsfymg

{m(w,., V) —b(®s, 13) =va(w, V) —b(Vy, 1), Yo, € X, (5.16)
b(ws, pn) =0(=0(w, 1)), V1€ Q.
Moreover, we have
| |8 — a1+ [~ 4] 0ra <OB| Floua- (61D
(b). We have :
va (88— Wy, V) —b(vy, p,, -7y) =0 (%; W, v,,) c(u,., Uy, U)
.'_y[ LR _[ p(vem)ds, Vor€ X5, | (5.18)

b(—~ws, ) =0, Yun€Qu.
Taking ¥, =t —Ww;, we have _
lo(w; u, v;) —o(us; i, 'vh)l
= |e(w—wy; U, V) —c(Vy; 8, Uy)+c(th; U—w;, V)
—c(Us; Uy, V) |
<o1|t—04])1| 8] 1| 0p] 1+ 0a | 1| —03 ) 1 [0 ] 4
_ +pu(B) || 1] s i+ 0 (B) |V |5 | 28] 1. 7(5.19)

Using |u[1<—1—7(f) (see [5]), |u,,,]1<£ vu(F),(5.14), we obtain

o(B) || 1+ pan(8) lul 1 <~ 2 | (5.20)

Taking Oy=u—w, and Using (5.19), (5.20), Lemma 3.1, we obtain

{ |ty — w0, | 1<<Oh|F Yo,

2
lon— 7a] 0 <XOR|f o (6.21)
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where 0 may depends on y(f) and v,(f). From (5.2) we obtain (5.21).
Theorem 8.6. Under the hypotheses of Theorem 5.5, we have
foe—uao<<O%*| f fo. (5.22)
Proo f Argumg as in the case of Theorem 3.8 in [8], we may obtain (5.22).
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