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THE ANALYTIC INVARINT SUBSPACE OF THE
n-TUPLE OF COMMUTING OPERATORS

Zou CuENGzU (&RAM)* LI LI_ANGQI_NG FriH*

Abstract

* In this paper, the authors extend the concept of analytic invariant subspace to the case
of n-tuple of commuting operators. The dnalytic invariant subspace is better than spectral
maximal space in some aspeets. This provides a class of invariant subspace, which is helpful
to the study of decomposable theory for n—-tuple operators.

Let X be a oomplex Banach space and a=(ay, * a,.) be a eommutmg n—~tuple
of bounded linear operators on X. We denote by Lat @ the collection of all subspaces

which are mvanant under a; (4=1, - g n). Obviously, Lat a= ﬂ Lat a;.
§=1

If GCC" is an open set, we denote by &7 (@, X) and 0 (@, X) the spaces of
X~valued analytio functions and O“-functions on @, respectively. It has been
proved in [1] that 0° (€, X) =% (@G, X), where % (G, X) is the space of all

continuous X —valued functions on @ being infinitely differentiable with respect to

24, **, 2, in the distribution sense.

If o= (8, -, 8») is n—tuple of indeter minates and ¥ is one of the spaces X,
(G, X) and 0~(@, X), we shall denote by A?[c, Y] the set of all exterior forms
of degree p in ¢, having coefficients in ¥'. We define

A?[o, Y]1=0, when p<O0.

For z€C", lot o (2) =2—a;, (¢=1, -+, n) and

a(2) = a1 (2)81+ o+ +, (2) 80,

=0 _dz, 4ot aé iz,

21 Zn
of: A?[o, Y]—>A2* [0, Y] is a homomorphism in the sense that a”dn =aA{ for

every i € A*[c,Y]. Usually of is written as .
Moreover, if ¥ =2/(G, X) or Y=0" (G, X), then (ap)(2) =a(2) AP(z) VzE
G, yEA?To, Y]. We define aP?: A?[oUdz, Y]->A** [0 Udz, Y], where
dz=(dzy, -+, dz,),
by a@8p=ap +p=a A+ A for € A*[o Udz, ¥']. Alo, ¥]is a Koszul complex
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and the cohomology of Afc, Y] is the graded module H(Y, a)={H?(Y, o)},
where H?(Y, oa)—-Ker a”/Im o, By J. L. Taylor ta . the Jomt spectrum of ¢ is
defined as
' 8p(a, X) ={2|2 €C". 3P such that H”(X ) #0}
and the resolvent set of @ is r(a, X) =0"Sp(a, X). For #€ X, 8. Frunzi™ defined
the local spectrum of @ at & as Sp(a, @) = O0"\r(a, @), where (@, v)={2[2€C
there exists an open set G—>z such that T € A" 1[oUdz, 0°(G, X)] having the
‘property that sw~as, A+ A s,=(a@®d)P on G} is the local resolvent set of a ab
‘8. Frunzi® introduced the decomposable theory of n—tuple of operators too.
A% present stage, it seems to be imperfect because some of the properties in the
decomposable theory of single operator can not be extended. The property of spectral
maximal space for n~tuple of operators is not as good as that for single operator. In
this paper, we extend the concept of analytic invariant subspace to the case of
n-tuple = (ay, -+, @,). The analytic invariant sub-space is better than spectral
maximal space in some aspects. This provides a class of invariant subspaces which
is helpful to the study of decomposable theory for n—-tuple operators that will be
done in another paper.
Definition 1. Y €Lat g will be called analytic invariant subspace of a, if for
any polydisc DCC®, integer p, 0<p<n—1 and P € A?[o, L(D, X )Jwith ap € A2 [o,
(D, Y)], there are p € A?[o, Z(D,Y)] and & € A*[o,/(D, X)] such that
_ - P=p+ad.
Definition 2. « is said to have the single valued ewtension property, or a€ (A4)
for short, of H?*(f (D, X), &) =0 for all polydisc DCC" and each p, 0<p<<n—1,
I should be noted that if n=1 then property (A) of #=(ay) and of the single
operator a; coincides.
- Proposition 8. Ifa=(ay), then the analytic invariant subspace 0 f a s evactly
the analytic invariant subspace of a;.
Proof Let G be an open set in C" and f € .o7 (G, X) such thai
G~a)f@R) EY, Vz€G,
where Y is an analytic invariant subspace of . Then for every polydisc D@,
FESA(D, X)=A0,4(D, X)]
and af € Ao, (D, Y)]. By Definition 1, there exist
p€dlo, (D, Y)]=4(D, Y)
and £ € A% o, (D, X)] =0 such that p=f—af=f. Hence f(z) €Y, Vz€ D. Since
D is arbitrary, f(2) €Y, V2€G. . :
Theorem 4. Let a€ (4) and ¥ be an wrmlytw invariant subspwoe of a. Then
ay & (A) and
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Sp(a, y) =Sp(ar,y), Vy€Y,
where ay=(a1|Y, >, a,|Y").. .

Proof Choose any € A*[a, o (D, Y)] with oy=0, where 0<<p<<n—1 and
polydisc DcCr. Since a€.(4), there exists p € A7 [0, L (D, X)] with ap=1).
Therefore ap € A?[o, o/(D, ¥)]. Because ¥ is an analytic invariant subspace of @,
we oan choose 0 € A**[o, &/(D, Y)] such that an=ap=1). It follows that

H*(A(D,Y), oa) =0, ¢.O<p<n—1.
That is ay € (4).

If € X and p(a, )= {zleC" there exists 2€D and fl, ooy fu €& (D, X)
with (L1—a2)f1(0) + oo+ (La—an)fo(L) ==, V{ € D}, then o'(a, @) =C"\p(a, ) is said
t0 be the analytio local spectrum of @ at #. It follows by J. Eschmeier™ that

o(a, )=8p(a,x), VocX.
Therefore we only prove that o(a, y) =0 (ay, y), VyEY.
Choose any polydisc Dp(a, y). Then there are f, -, f,€ (D, X) with
(#1—a1)f1(2) + -+ (n—a) fa(®) =y, V2E€D.
Let lp = f181— f282+ o (—1)""1f,s,, where
§i=81 A ASica ASiga Ao A8a=83 A+ /\3;/\ *A s
Then € A" o, (D, X)] and a =8y € A*[o, «/(D, Y)]. Since ¥ is an analytic
invariant sub-space of a; it follows by Definition 1 that thers is a form
pE Ao, .sa{(D )]
with o =agp. ¢ can be writien as
P =81 — ¢2s2+ A (=1)"1g,8,, ngM(D, Y), i=1, o, m
Hence -
y= (zi'_“:l)%u(z) Frevet (2, “»)Qpn(z)’ V€D,
and Dcp(ay,y). It follows that p(a, y) Sp(ay, y), or o(ay, y) Co(a, y).
On the other hand, it is clear that ¢ (a, y) Co (ay,y), Yy €Y. Therefore
o(a, y)=0o(ay, y), Vye¥.
Thus the proof is completed.

It can be seen from the following example that Theorem 4 is not generally true
for any invariant subspace of . This is one of the differences between commutmg
n~tuple operators aud single operator. ' '

Example. Let s# be a Hilbert space and {;}5-—.. be one of its orthogonal
bases. a;, as are two operators defined by the following

oy =P, Gai=,4.4, Tor all %, §.
Olearly @i, as are all bilateral shifts of infinite multiplicity and @103 =as@;. Thus
(@1, @;) is commuting 2-tuplé of normal operators. . '

@y, @y are all identity decomiposable and thus (@, aa) is 1den1:1ty decomposable

2-tuple(see [7]). Hence (a4, as) € (4).
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Let ¥ be a subspace of 52 and {i;}i-0U {i}i-o its basis. Define
p(hs, M) = Zo PuhsAz’

Then @ is analytlo in the polyd1so
D- {(xi, mmec |m< i=1,2), peA(D, 7).

But ~ :
(7*1 “1)40(7‘-1, Ao) = ;(WM‘“ g — ¢4+1.;M 7\-2’)

L ; ‘I" 7\'_5+1M-j g 4’”7“16“7\'2
=~ %lpiﬂ\é— 134

Similarly, we obtain
(M"‘“Q)‘P(M, Ag) = “%‘Pu%i" €Y.
Hence
op =081+ 0apSa € A[o, (D, Y)].
But if ap=an for € (D, X), then p=7. Thus there isno n€ (D, ¥) with an
=ap. On the other hand, olearly a(ap)=0. It follows that(a1 |y, as|v) & (4).
This example shows that the restriction of a commuting n~tuple @ having
property (A) on its ordinary invariant subspace may not have the property (4),
even if ¢ is identity decomposable. It also shows that the difference between the
property(A) of eommliﬁng n~tuple a= (ay, ++-, @,) and of each @ is very large. In
the above example, (@i, @) is identity decomposable and hence ‘decomposable.
Therefore for every amalytic function f on Sp((a. @), ), f(as, as) is
decomposable (see [3]). Thus f(ay, wg) [r€(4), since f(ay, @2) is a single operator
on 7 and Y €Lat (ay. as). So for every polynomial P=P(z, %,)
' P(ay, @2) |y= P(“i[Y: | v) E(A)
- Bub (ay, aslv)=(as, a2) |z & (4).
Corollary 5. If a € (4A) and ¥ is an analytic invarians subspace of a, then
Sp (4, Y)=| | Sp(s, y)<Bp(s, X).

Po"oof Theorem 4 shows that ay € (4) and by the Remark 3.1 of S. Frunzam
we know that if ¢ €(4)then Sp (@, X ) U Sp (@,%). Thus it follows from Theorem™

that . : o o
Sp(a, ¥) =8p(ar, ¥) =\ ) 8p(ar, v) = | Sp(ay)= | 8p(s, 2)=8p(s, X).
For Y €Lat a, let a¥ = (af, -+, an ), where a7 'is the induced operator by a on
X/Y, i=1, 2, +, n. Since - : '
e 0->Y->X X /¥0
is exact, ' o . -
0->0°(@, YV)—»>0"(@, X)—»>0"(G, X/Y)—>0
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is also exact. Therefore, for any s € A?[oU dz, O°(@, X /Y")] there is a form
pE€A?[o Udz, 0°(G, X)]
such that p/¥ =1y, where G is any one of the open sets.in C". Similarly, it can be
proved that for any 1[;6./1’[0,.521 [G X /Y )] there is a form pC Ao, (G, X)]
such that q)/Y . : S
Theorem 6. I f Y ELat a, then Y s an anwlytw imvarient subspwce of @ iff a* €
(4). »
Proof Let w"é (A) Then for every polyd1se DcCr,
- H*(A(D, X/Y), Y) =0, 0<p<n -1,
‘where
o¥ (z) = (zi-w§r)81+°--+ (28— ) Sny
o (Y/Y) (2) = (o) /¥ (2) =" (2) A ($/X) (2).

Now assume € A?[o, (D, X)], 0<p<n—1 and ap € 4™**[o, (D, Y)]. Then
¥ (P/¥ ) = (aar) /Y =0 on D. Because a* € (4), there exists p € A**[¢, & (D, X)]

such that /¥ =a¥ (p/Y) = (ap) /Y on D. Hence n=y—ap€A’[o, #(D, Y)], that

is y=n+ap. Therefore ¥ is an analytic invariant subspace of &.

On the other hand, if ¥ is an analytio invariant subspace of a,
PpEA*[o, (D, X)] |
wﬂ;h (m[;/Y) = (a)/Y =0 (0<p<n-—1), then ap € A**'[o, &/(D, Y)]. Hence
there are p € A?[o, &/ (D, Y)] and ¢ € A? (o, (D, Y)] such that Y=¢p + af.
“Thus ¢/¥Y =a¥(£/Y). That is H*(/ (D, X /Y), &¥) =0, 0<p<in—1.
Proposition 7. If D is a polydisc in C" and p is an dnteger with 0<p<n—1,

‘then H?*(/(D, X), &) =0 iff H*(0=(D, X), a®?) =0.

Proof Let H*(0”(D, X), aP?) =0 andis € A*[o, (D, X)]with afr=0 on D.
Bince =0, we may regard i as a form in A?[o Udz, 0°(D, X)]and («®?)P=0.
Hence there exists o€ 42~ [o Udz, 0~(D, X)] with = (a®d)e. ‘@ can be uniquely
‘written as @ =g@o+ @1+ +@,_1, where @; has the degree 4 in 8}, -+, S,. Since

= (a@d)g,
Wo obtain §=ap,_1, aPy_2-+8py_1=0, opp_s-+Ipp-3=0, *+*, ap1+dpa=0, apo-+ dp;=0
Bpo=0. By the Lemma 2.1 of 8. Frunzi ®, we canfind a form
| £€ 47*[dz, 0D, X)]

:such that ¢p0==6§o Replacing this to the equation agy+dp;=0, we obtain

3(901 o) =0.
‘Successively we can choose fo, &4, +++,&p_a such that

a§¢_1+3§¢, g=1, «», p—-2, _
‘where ¢£; has degree p—2—4 in dzq,++, dz,. Since @y_y — ofy-s has degree 0 in dz,,
9(@y_3—0f,5) =0. Henoe ¢,_1~a§p_2€11”‘1 [o, (D, X)] and
 YP=appi=a(@p1—fp2).
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Thus we have H?(/(D, X), &) =0. The proof is concluded.

It follows directly from the Proposition 7 that ¢ € (A) iff for any polydhse
DcCr, o
H”(O’”(D X)), a@0)=0, 0<p<<n-— 1
This, together with the proof of Theorem 2.1 of S. Frunzi ® shows that a€ (4) iff’
for any open set G Cn, & :

H?(0*(@, X), a@@) 0, O<p<n—1

"For the converse see Proposition 2.1 of 8. Frunzi ®,

Theorem 8. IfY € Lat a, then Y is'an analytic invariant subspace.of a iff, foo*'
any open set G C" and p with 0<p<n—1, the following statement holds: If

|  YEA[oUdz, 0°(Q, X)], apEA*[oUdz, O°(G, V)1,
there must ewist forms p€ A°[aUdz, 0°(G,.Y)] and n€ Ao Udz, O~(Q, X)] such:
that ~
S o=+ (a@®)7.

. Proof In. the same way of proving Theorem 6, we can prove that the sufficient.

condition is equavalent to the statement that for any open set G=C",

7g*(0~°(G, X/Y), a®?)=0, 0<p<n—1,
and this, according to Proposition 7, is true iff a* € (4). Now the proof can be:
obtained directly from Theorem 6. Fl

Corollary 9. Ifac (4) and Y s an analytic invariant subspace o f a, then

Sp (a, X)=5p(a, ¥)USp(a?, X/Y). |

Proof . First of all, from the exactness of

0->Y >X—->X/Y—0

we have | | |

Sp (@, X)8p(a,Y) USp(a”, X/Y),
and

Sp(a¥, X/Y)c8p(a, X) USp(a, ¥).
Sinoce ¢ € (4) and ¥ is an analytic invariant subspace of a, Sp (¢, Y)<Sp (a4, X}
by Corollary 5. Therefore

Sp (¥, X/Y)cSp(a, X) USp(w, Y) CSp(a,, X)
and the proof is completed.
If Y is an analytio invariant subspace of @, then a¥ € (4). Henoe for any & € X

Sp (a¥, X/Y) makes sense, that is, the equation §X/Y = («@?){ has a global.

solution ¢ on r(a¥, X /¥), where X /Y is the equavalent class of s€ X in X /Y.
Theorem 10. Ifac(4) and Y is an analytic invariant subspace of a, then
Sp (a, v) = [Sp(a, =) nSp(w,‘ Y)1USp(e*, X/¥), Vz€X.
Proof - In the first place, for any polydise D Cr(a, ), there exist a form
yEA[o, (D, X)] such that sv=ay on D. Hence SX/Y =o' ($/Y) on D.
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Therefore Sp(a¥, X /Y)c8p(a, #), Vo & X. This shows that .
- 8p(a, )2 [Sp(a, =) NSp(a, ¥)]USD (a¥, X/T).
Conversely, if 2o¢ [Sp(a, ) NSp(a, Y)] USp(a¥, X/Y), then
wEr(a¥, o/T) N [r(a, ) Ur(a, T)1.
If 2o &r(a, @), 20€r(a”, o/Y) Nr(a, ¥). There exists € A" *[c, &/(D, X)] such
that sw/¥ =a¥(y/Y") on D, where D is an open polydisc in C",
wEDcr(a, Y)Uq(a®, o/Y).
Hence so—oaft € A*[o, (D, Y )]. Since Dr(a, ¥), H"( (D, Y),x)=0. There
is a form- q:EA"“ [o, (D, Y)] such that So—oap=ap. Therefore
. se=a(p+)(z), Vz€D. :
It follows that 2 € D& r(a, ). This contradiots the assertion zo¢+(a, ). And the
contradiction shows that if 2, & [Sp(a, ) NSp(e,Y )] USp(a¥, /Y ") then zOEIESp(w, ).
Consequently
8p(a, )< [Sp(a, «) NSp(a, ¥')] USp(a¥, 2/Y).

Proposition 11. Suppose a € (4), Yis an analytic invariant subspace of a, and
suppose that f={fi, -, fm), where fi és analytic on an open set U, Sp(e, v) U < C~.
Then Y is an analytic imvariant subspace of f(a).

Proof Since Y is an- analytic invariant subspace of ¢ and a€.(4), a*€ (4).
‘We can apply Theorem 3.2 of J. Eschmeier ® and conclude that f(a¥) € (A4); since
every-f; is analytic on U and U>Sp(a, @)>8p(a¥, X/Y). By Theorem 6, to
conclude the proof, we need only to prove fi(a¥) =fi(a)¥, 0<i<m.

Let 2€ X, o/Y €X/Y, 1<i<m. Suppose & A" *[cUdz, 0°(U, X)] such

that Sz — (@) has compact support in U. If ¢,= EZ 1%,; , then for every € X,

F@)* @/¥) =(F@)o)/¥ = o | lso— (@O A¥
s L w(so— (a@BY)fo(2) /¥ Nz

=0, [ wIsX /Y ~ (@ @B) b/ )}f(e)ie

=fi(a* (@/Y). | :
In the above, we have used the fact that if q)EO“(U X) and q)(z) —{ (#>%) then
9(2)/Y—>{/Y . But this is true because o ,_
| lo()/Y —={/Y|=[(p()-0)/Y|<|p(z) ~{]>0.
Thus the proof is compteted.
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