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ON ALGORITHMS INVARIANT T 0  NONLINEAR 
SCALING WITH INEXACT SEARCHES
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Abstract

Among the researches of unconstrained optimization invarianey to nnolinear scaling is 
an interesting subject. But the discussions which have been so far made were all under the 
assumption of exact line searches. Hence there are some essential deficiency in theory and 
practice. In  this paper, using more generalized concept of invariance, the invariant 
algorithms not depending on the accuracy of line searches are established for the model 
presented by Boland et al. in [2].

Differing from most unconstrained optimization methods derived from quadratic 
functions, it  is an interesting subject to construct the algorithms derived from 
nonquadratio functions, in  which the algorithms invariant to nonlinear scaling 
have been presented11’23. Because of the difficulty of calculating the factors рц (see 
below) the invariant algorithms were all researched under the assumption of exact 
line searches up to now. The algorithms invariant to nonlinear scaling are fruitful 
if exact line searches are available, otherwise they are inefficient. In  order to 
overcome these essential deficiency in theory and practice, the algorithms invariant 
to nonlinear scaling, which do not depend on the accuracy of line searches, are 
discussed in  this paper.

Definition 1. Suppose that some algorithm is used to minimize the functions

К * ) - П Ф ) ) ,  (1)
dFwhere function q(x) is fixed, F  is arbitrary b u t~ ^ ->  0. I f  the sequences o f points

generated by the above algorithm fo r  all F  with the same initial conditions are identical, 
then this algorithm is re f wed to an algorithm invariant to nonlinear, sealing or invariant 
algorithm. \ ;

Definition % Suppose that a line search method is applied to minimize the 
functions f { x )  and J (x )  with the same contours, and denote the starting points as £cfc_i
and Xys-x, the search directions as Pn-i and р%_% respectively. I f  the terminal points Хц 
and X]c obtained for f  (a;) and f  (x) respectively are the same when a^-i= and рц~% =®
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Ph-i, then this line search method is referred to be consistent.
Obviously the consistent method is not necessarily exact. "When the line search 

is inexact, we can regard the line search as point-to-set mapping. A consistent 
method will be restricted in  selectihg the sarnie point frbrn the image set 'provided 
both starting1 point arid searbh direction are the same. Using the ooncOpt of consistent 
method, we can establish the invariant algorithm which does not depend on the 
accuracy of the line searches. Ih  fhict' a shffibielrip condition for P B F  method and 
Beale's method to be invariant to nonlinear scaling is that vector ya -i^  9a—9u-i 
is replaced by Уи-1= Pk9u~ 9k-i, where

у  ;; • ;  ; ;■ (2)

In  addition to  replacing yh-i by fa-i, s<= -X K gi+i, р(>/<Мь Pt>& replced by
p i} / (f}i, Pi}. Nazareth's method which constructs conjugate directions 

withotit line searches can also be invariant. Therefore, it is always possible tO make 
the algorithm be invariant to nonlinear scaling no matter whether the line Searches 
are exact. So the problem is reduced to calculating the values of pfc defined by formula 
(2). Because the known methods of calculating pfc are all under the condition of 
exact line searches, the exact values of p*, can not be obtained frequently when the 
line searches are inexact (for example, pfc==l for f ( x )  =F(q(%')) =q(%), but the 
computation values of рц may be different from 1). Thus the invarianoy to nonlinear 
scaling can be destroyed. This is why the invariant algorithms are inefficient with 
rough line searches. Now we derive a formula of calculating p*. not depending on the 
accuracy of line searches for the model considered by Boland et alQ3e Consider an 
objective function defined by (1) , where F (q)  can be expressed by

FCq) = 80-be1q+82q2 ( ~ L > o J  (3)

in  some interval of q, q(x) is any strictly convex quadratic function

q (x) = -i- xTGx+ r Tx + 8„ (4)

Suppose that the quantities

/ » “ / ( % )  < / f c - 1, (xkt= (ff!s, Pls-l}
are known. Let us try  to calculate p  ̂according to the data above.

T heorem  1. Consider awy function defined by (1), where q(x) is defined by (4), 
and moreover F (q ) can be expressed by (3) when q G [<?(%), The quadratic
equation • •

«fcP2+  Jp+«fc-i—0 (6)

is constructed according to the data in  (5). I f  then рй is one root o f equation (6)
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and the other root is Z = /л*/( / /  — ^- f ) ,  where p* is the minimizer of <p(?C) — q(xй_ 1 +  

fapic-i) .
Proof At first we prove that p*, is the root of equation (6). According to (3), 

we have

Additionally, <p(X) is strictly convex and quadratic, so that

г ( я » ) - г ( % - 0 - - |-

+  [ A j ? ( g ( %) ) ] " 1<S,»,f t _1>j. (9)

Substituting (8) and (9) into (7), we have 

/ f c ~ / j s - l = = - ^ -  V - l j  •^’ ( 9 , ( a5f c - i ) ) ]  (die-It Рн-1У+\-Щ-Р(.я(.хк))~\ (.9b Pk-i ) |

. \ ^ F ( g ( x i) ) + ± r ( g ( ^ i ) ) ] .  (10)

I t  is easy to see that p  ̂satisfies equation (6), that is, pfc is a root of this equation.
Now we show that the other root of equation (6) is Z —p,*/(p*—Кц-i). Rewriting 

equation (6) into

Аь_:■ft-1
and using

where %ь=% _!+  (2/л*—Яй- i) ^ - ! ,  we obtain

hi-i
where

- ( * ■ £

1— «В-1------ ЩРкPk ( i i )

<ff(%k), #*-*>“  “ <% (12)

1 .«fc-1 + akPu, 
Pk

(13)

\ - l
1) • (14)

According to (11), (13) and (14)

<% pit
is the other root of equation (6).

The next problem is to discuss how-to choose p» from the two roots of equation 
(6). We will first ask whether pft can be determined uniquely by the data (6). The 
answer is negative from the following example.

E x am p le . Consider the family of one dimensional objective functions

/ ( » ) - « « ( » ) ) ,  (15)
where
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F (q ) = 81q+6‘iq* ( - ^ - > o ) ,  q(x) =<г(ж-рв)3+& («> 0).

Suppose that the data in (5) are given by
ajfc-i =  — 2, Ри-I ~  1,
Л -1 -2 0 ,

0,
Let

Щ-1

a

P*-------2 ’ a ~^>

in (1<8), I t  then follows that

36, /ft =  2,

1, 5 = 0

ъ - 1 - i4

h t-i= I? 
% = -

8j “ l ,  8a = 1,

\ / 6 , 6i =  2 \ / 6,

(16)

(17)

ea! A
2

/(a?) =£B4 +  £B3,

7 (® )'
32 ( , + ! ) ‘ + f ( , + i ) V 19

32'

(18)

(19)

Both the functions satisfy the condition (17), but
Pie ~  3 Ф 2 = рк.

The following theorem indicates the case in  which pfc can be determined 
uniquely.

T heorem  2. I f  c%=0, then pfc caw be determined uniquely from  equation (6) as
Рй=  — aft-i/ [a»-i+4(/fc_i —/») /  .

I /  ajs>0, the» the two roots o f equation (6) Л«г>в different sign, the positive root is р&; 
I /  «й<0, then at least one root o f equation (6) is greater than 1 and the other root in. 
case which is not greater than 1 is p».

Proof I f  «»—0, the conclusion holds obviously. From this, it is very easy to. 
obtain the main result of [2]. For other cases, the conclusion can also be proved by 
Theorem 1, according to the relationship between the two roots and the relationship 
between pfc and рЛ The proof is omitted.

Theorem 2 indicates that рй cannot be determined uniquely only when the 
two roots of equation (6) are all greater than 1. In  this case we can use other 
information of objective function to determine pfc, such as a value of objective 
function at another point ж=%_1+р-р»_1 (p->0),

/  “ / ( « )  i + f*Pk-1) О* Ф h - i ) , (20)
which may have been calculated in  the process of line, search, p*. can be determined 
by the data in  (6) and (20). In  fact, suppose that the objective function is defined 
by (1), (3) and (4). We can prove that /(% _}+ A ^*) can be expressed by

(21}
where p,* is the minimizer of <p(A) =#(%_i+hpu-f) and

«fc-i(Aft-i—p>*) +Р'*«Й
-AGO1

* G O -

—4p>*Aft_i(Aft_i—p-*) (2p*—Aft_i)5

P>*8« ft+  (Aft-jL—  р Я)8«й-1 
2p/*Afc_i(Aft_i—p»*)(2p*—Aft_i) ’

(22)

(23)
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0 < j k ' ) - f n - A W p P - B W ) ? , '* .  (24)
Therefore, according to Theorem 1, if we denote the two roots of equation (6) as p 
•and p, the minimizer of q>(h)=q(a;k-1+Xple-.t) is either — 1) or h - iP /(p —l)>
In  the light of above discussion, it is not difficult to establish a computational 
method defining p».

As another more general approach, pk can be defined by the additional gradient 
of objective function at another point co-oc^- i +P-Pr+i (p<>0),

. g -V f(£ ) .  (25)
I n  fact, we have

(26)

where
(27)

Ы П Ь \'-  (28>
Thus we can construct algorithms invariant to nonlinear soaling, no matter whether 
the  line searches are exact or inexact. To do this, it is sufficient to replace

with рьдк—g]c-i, where pft is defined accrding to above discussion. As an 
example, the following conjugate gradient algorithm is briefly described. 

Algorithm
Step 1. Select an xx and set # =  1.
Step 2. Compute /» = /(% )  and ()r=V /(:cr) . If <fe=0, Stop.
Step 3. If  &=1, set j8ft_i=0, go to Step 11.
Step 4. Compute «fc-a=<pfc-i, Pr_i> and ай= < ^ , p»-i>.
Step 6. If  ай=0, set p*, equals the unique root of (6), go to Step 10»
Step 6. Compute two roots p and p of (6).
Step 7. If  ай>0, set pR=max{p, p}, go to Step 10.
Step 8 . I f  min{p, р}<1, set pft=mid{p, p}, go to Step 10.
Step 9. Compute рй according to (26).
Step 10. Compute =  <Pr, p ^ - ^ - i ) /  Ifr-il*»
Step 11. Set рй=  - gh+fiic-iPic-i-
Step 12. Starting from ®r, line search is executed along p& and ®r+i is obtained. 
Step 13. Set Jc—Jo+1, go to Step 2.
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