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ON ALGORITHMS INVARIANT TO NONLINEAR
SCALING WITH INEXACT SEARCHES
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Abstract

Among the researches of unconstrained op}‘,imizq.tion_ invariancy to nnolinear sealing is
‘an interesting subject. But the discussions which have been so far made were all under the
" assumption of exact line searches. Hence there are some essential defielency in' theory and
practice. In this paper, using more generalized concept of inyariance, the . invariant -
algorithms not depending on the accuracy of line searches are established for the model -
presented by Boland et al. in [2].

' Differing from most unconstrained optimization methods derived from 'quadratie
functions, it is an interesting subject 1o construct the algonthms derived from
nonquadratic functions, in Whmh the algorlthms mvanant to nonlmear scalmg
have been presented™ . Because of the difficulty of caleulating the factors Pr (see
balow) the invariant algorlthms were all researched under the assumptlon of exact
line searohes up to now. The a]gonthms invariant 0 nou]mear sea]mg are fruitful
if exact 11pe searches are available, otherwise they are mefﬁcuent In order to
overcome these esseniual deficiency in theory and practice, the algonthms invariant
to nonlinear SGa,lmg, which do not depend on the acouracy “of line searches are
discussed in this paper. ‘ v

Definition 1. Suppose thai some algorithm is used to ménimize the funetions
- f@)=F (g(=)), ™

rwhefre Function g(x) is fiwed, F is arbitrary but -—(%——>0 If the sequenoes of poinis

generated by the above algorithm for all F with the same injiial conditions are identical,
then this algorithm is refered to an algorithm invariant to nonlmewr scaling or invariant
algorithm. , _ - .
Definition 2. Suppose that a vae sewrch fmethod 8 applwd ﬁo minimize the
Sfunetions f(z) and f (@) with the same contowrs, and denote the siariing points as Ty,
and Ty_1, the search directions as Py ond Dy_y respectively. If the terminal points m,
and 7y, obtained for f(x) and f(é;) respectively are the saume when Ty_y =3y and Dy-1=
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Dy_1, then this lime search method is referred to be consistent.

Obviously the consistent method is not necessarily exact. When the line search
is 1nexact _we ocan regard the lme search a8 pomt—to—set mappmg A conmstent
both starting’ pmnﬁ,and-_search d:;rgotmn are the_,same, ..r_Usmgﬁthe_qqngepj;__.of oonmstent
method, we can establish the invariant algorithm which does not depend on the
acouracy of the lihe searches. I -fiot; a sufficielit’ condition for - PRP method and
Beale’s method to be invariant to nonlinear scaling is that vecior yy—y=gy— g1
is replaced by #_y= pugu— Gu—1, Where 770 =

e Fg(o)) AL G ()

In addﬂuon to replacmg Yr-1 b‘y Pty 85= —?v;(gm, p,)/(y;, p,) is reploed by &=
~Mi0iltse1, DY/ <G, ip. - Nazareth’s method which construects conjugate directions
withotit line searches can also be invariant, Therefore, it is always possible t0. make
the algorithm be invariant to nonlinear secaling no toatter 'iavheiﬁlier the line searches
are exact. So the problem is reduced to calculatmg the values of o, defined by formula,
(2) Beoause the known methods of calculatmg pi are all under the eond.uuon of
exach 11ne searches the oxaot values of Pr. can not he obtained frequently when the
11ne searches are inexact (for example, m=1 for f (@)= F(q(a;)) —-q(w), but the
eomputatlon values of Pp Ay be different from 1) Thus the mvanancy to nonlmear
scalmg oan be destroyed Th1s is why the invariant algorlthms are 1neﬁ’101ent W1th
rough line searches Now we derive & formula of calculatmg Px ] ‘not dependmg on the
'aecuraey of lme searches for the model considered by Boland et al"”’ Conmder an
'ob]eetlve functlon deﬁned by (1) ) where F (q) can. be explessed by

F(qg) =eo+ siq—}- 8aq® (ﬂ>0) : (3)
in some interval of ¢, ¢(#) is any strictly convex quadratio function
B 4(8) =L Gt 1T+, )
:Suppose that the quantﬂnes o o o | R e
‘ o Jur=f (1), o4- 1’-<gzo-1, Dy 1><0 (5)

L my= gyt MeaPec,  fi=F (@) <fu-1, w=CGu Posd

are known. Let us try to caloulate gy according to the data above,
“Theorem 1.  Oonsider any funciion defined by (1), whore (o) is deﬁned by (4),
and moreover F(g) can be ewpressed by (8) when g€ [g(ak ), _q(wk_i)] The quadmtw
equation v _ :
o+ [“k'l'“k 1+————-—~—<‘f’6 L fk)] '1‘0% =0 ®)

M1 '

g8 consiructed according to the data in (8). If aﬁéO tlwn Px 8 one froot 0 f equat@on (6)
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“and the other root 38 Z=pu*/ (W' — N._1), where w* is the mq)némq)zea* of p(A)=gq(wp1-+

Mpg-1)-
Proof At first we prove that py is the root of equation (6). According to (3),
we have :

fimfus=(a@) ~g@-D) L P @D tal@ gD, O

ea(g (o) ~g(on-)) = 5] 0= F(o(@)) —- Fla(ona)) | ®
Additionally, @(A) is strictly convex and quadratio, s0 that

2() = a(0-2) =5 o[- Flg(anr))]| <then, poce>
+[ & Pa@)] < ps). ©
Substituting (8) and (9) into (7), we have |
o —fn-1=—1— 7»:«-1{[—‘—1— F (Q(wk‘d))]—l {g4-1, Po-0+ [% F (q(wk))].1 {9n m-1->}
[ Flo@))+40Fla@m-)]- o o)

It is eagy to see that pk samsﬁes equation (6), that is, py i8 a Toot of this equation.
Now we show that the other root of equation (6) is Z =pu"/ (,w —A-1). Rewriting
equatlon (6) into :

4jkl—f-—k'+an+0% 1= — O 1—1-—"0%Pn (11)
Ay o Pr
and using ' ‘
9(@)=q(z), F(w)=fn <9 (-’EJ; Du-1)= — 0%, (12)
where §k=wk_1+ (2}1:*—.7\.;‘; 1) Py—-1, WO obtain '
4—‘&_——]&-“"0%'*'% 1= = O 1—1—-+0‘1«P1a, (18)
- Mgy P
where : ’
u=(25-1)" @
According to (11), (18) and (14)
Bt/ (= hat) = (1) / (1—w) =Bt L.
) L 7

is the other root of equation (6).

- The next problem is to discuss how.t0 choose p; from the two roots of equation
{6). We will first ask whether p; can be determined uniquely by the data (5).  The
answer is negative from the following example.

Example. Consider the family of one dimensional objective functions
f(@)=F(q¢(®)), (15)

where
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F(q) =819+ 820" (—%>0>, (@) =a(s—p)*+b (a>0). (16)

Suppose that the data in (5) are given by
Tpm1™ —"2, %_1=1, fl}]g=1, ?\,16_.1'-—"1,

17)
S1-1=20, op_y=—386, fr=2, o= —06. 7y
Let 3 _ _ -
[1:*:"0, a==1, 5=0, 81=1, 82=1,
=, G=1, B=T-2V%, &-2VE, G=3
in (16), It then follows that ,
J (@) =a*+a?, (18)
8/ , 1\, 21 1\?, 19
F@)=5(o+g) +3(or3) +g- (19)
Both the funoctions satisfy the condition (17), but
pu=8%2={y.

The following theorem indicates the case in which p, can be determined
uniquely. ‘

Theorem 2. If a,=0, then py can be defermined uniquely fffom equation (6) as

pp= = 0g—1/ [atp—1+4(Fr-1— ) /Mn-1].
If a,>0, then the two roots of equation (6) have different sign, the positive root is py;
If 0, <0, then at Teast one 700t o f equation (6) is greater than 1 and the other root im
case which is not greater than 1 is py. '

Proof If a=0, the conclusion holds obviously. From this, it is very easy to
obtain the main result of [2]. For other cases, the conclusion can also be proved by
Theorem 1, acoording to the relationship between the two roots and the relationship
between py and w”*. The proof is omitted.

Theorem 2 indicates that p, cahnot be determined uniquely only when the
two roots of equation (6) are all greater than 1. In this case we can use other
information of objective function to determine py, such as a value of objective
function at another point &= my_s+ ppp—1 (w>0), _

F=F(@) =f(mpstppe-r) (#Nees), (20}
which may have been caloulated in the process of line search. p, can be determined
by the data in (5) and (20). In fact, suppose that the objective function is defined
by (1), (8) and (4). We can prove that f(ay-1+ Apy_-1). 0an be expressed by

| Fy 1) =A(u") (A~ ") +B(u") (A~ p)*+0(u"), (21)
where u* is the minimizer of p(A) =g (@p-1+Apk-1) and

Al = fk—i(}‘k—i"'lb*z'l‘lb**ak 293}

2 ~ 4" Mgy (A — ) 2" — D)’ (22)
*3 —.#\8

B(u*)= gt (Mgp—g~— ") P01 (28)

. 200" M1 (-2 — ") (2" — A1) ”
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O(p") =fro1— A(u") " — B(p") "2, (24)

Therefore, according to Theorem 1, if we denote the two roots of equation (8) as p

and g, the minimizer of p(A) =g (w,_1-+Apy_y) is either Ay_yp/(p—1) or Ay_1p/(p—1).
In the’_ light of above discussion, it is not difficult to establish a computational
method defning oy, o

As another more general éppranh, pw can be defined by the additional g:adient
of objective function ab another point &=+ wop.s (w>0),

: A=V A- . L ' 25
In fact, we have ‘ Z f)(a;) o o (25)
= (1=2){gus, B
o by (26)
‘where ) |
=|o—ap-a|/|o— 1], " @n
h=gy_1~< -1, 39/ 171* ' (28)

Thus we can construct algorlthms invariant to nonlinear scaling, no matter whether
the line searches are exact or 1nexact To do this, it is sufficient to replace yy_.== g%
~ u-1 With §y_s=pu0%— gy_1, Where py is defined acerding t0 above discussion. As an
example, the following conjugate gradient algorithm is briefly deseribed,

Algorithm _

Step 1. Select an z; and set k=1,

Step 2. Compute fi=f(ax) and gr=VFf (). If gy=0, stop.

Step 3. If k=1, set By-1=0, go to Siep 11.

Step 4. Compute oy_y=<{gx_1, Py—r> and & =<gx, Pp-17-

Step 5. If o3,=0, set p, equals the unique root of (6), go to Step 10,

Step 6. Compute two roots p and 5 of (6).

Step 7. If 0,>0, set p,—=max{p, p}, go to Step 10.

Step 8. If min{p, p}<1, set py=mid{p, o}, go to Step 10.

Step 9. Compute p, according to (26).

Step 10. Compute By_1=<gs ords—

Stop 11. Set pp= — gu+ Br_1Dp_1-

Step 12. Starting from ay, line search is executed along py and @y, is obtained.

Step 13. Set k=k+1, go to Step 2.
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