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THE GENERALIZED p~-NORMAL OPERATORS
AND p-HYPONORMAL OPERATORS =
ON BANACH SPACE

WEL GUoQIANG (4 [H78)* SHEN YOUQIANG ‘(‘,'ff, A

Abstract

In this paper, the authors discuss the generalized p-normal and p-hyponormal
operators on Banach space. Some results in this paper are the generalization of Sen’s results
on generalized p-selfadjoint operator and some open questions of Sen’s are answered.

For the generalized p-normal opérators, the fol_lowing formulae are obtained:

oI =|1l, ||<T—’M>“1ll'=m,la<—m'

§ 1. Introduction

We recall from Nath™ that a complex Banach space X is called a complex:
'generalized semi-inner product space if correspooding to an arbitrary pair of
elements », y € X, there ig-a complex number [#, y], which satisfies the following
properties for any =, y, 2 X and AEC0 (O denotes the complex field):

D [at+y, 2lp= [, 21,7+ [y, 215 [A, yl,=Alw, yls

@) [=, #1,>0, for a+#0;

-1

@) | )| <[s, €157y, 41,7 , 1<p<oo.
A generalized semi-inner product (briefly g. s. i. p)[», y], which generates

1
the norm |,| means that for any s € X, |o|= [, «]7.
Sen [7, Corollary 1 and 10, Note 1.1] has proved the following result.
Proposition 1.1. If X és a complex Banach space with norm [+|, then for

each p& (1, +o0), there ewists a g. s. 4, pla, yl, which generates norm ||, and in
this case we have :
o, Ayl,= | AP 3w, yl, for any o, yEX, AEC. (1.1)
Moreover if p¥p’, p, ¥ €(1, +o0) and [ 1oy [T 5 1y are respectively the

, then for all », yEX, y+0

corresponding ¢. s, ¢, p which generates the norm
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[, y1o=9]7"" [2, y]p- (1.2)

Milicié [6, Theorem 4] has proved that if X is a smooth stnotly convex and
reflexive Banach space, then there is a unique g¢.s. 4. p [ , 1, which generates
the norm and for each f € X ™ there is a un1que yE X such that f (@) = [z, y], for all
# € X, and in this case we have

| | 1 £l =1yl o

From Milicié’s result and Proposition 1.1, we have

Proposition 1.2. For each f € X* and p'€ @, +o0), there is a unique ¥y €X
such that f(@)=[», ¥y foa~ all € X, where the g. 8. &. p[ , 1y generates the
norm. ' -
 Throughout this paper, we shall always assume that X is a Banach space which
is smooth, strictly convex and reflexive. We also assume that the g, s, 5, o[ , 1,
which appears in this paper always generates the norm.

Sen™, by the above result of Milicié, has defined the generalized adjoint
operator I'; of an operator 7' on X.

Suppose p€ (1, +o0). For T€B(X) and y€ X, by 9(2) = [T, yl,, we obtain

~ a linear continuous functional g€ X*. From Proposition 1.2 there iy a umque

y* € X such that
[Tm ylp= [, ¥"1,. ' | (1.8)
Therefore, T;y —y* well defines a mapping which maps X into X, T, is called the
generalized p-adjoint operator of 7. .
Generally, T is not a linear operator and is depending on p For any mappmg
4 which maps X into X, let

| e
[al

| 4] = sup

i w*‘O

Evidently, we have o
Proposition 1.3. Let TEB(X). p€ (1, +o0). Then

@ |T5l=|T|7

@ IITZTH<HT§|HITII,-

@) TTR<IT]]Ts].

T is cclled a generalized p—self-adjoint operator ¢f Ty=T.

Sen™” has discussed some spectral properties of generalized 2-selfadjoint
operators and hag given some open problems. In this paper, we shall introduce the
concept of generalized p-normal and p-hyponormai operators which extends the
concept of generalized p—gselfadjoint operators and answer the Sen’s questions.

Proposition 1.4. Let A, BEB(X) such that Aj, Bi are both linear bouoded
operators amd there are constants My, My such that (Ay)y=M 44, (By)y=MpB. Then

(1) [4o, yl,=1[o, Ayl, [430, y1,=|Ma|?**Mslw, Ay]s
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2Lz s
(2 ((4)p)p=M1MyAg

= N
(3) |4zl={2a] > [ Af;
@) (4B);=Bdy |
(B) A is a regular operator if and only if A} is @ regular operator.
Proof We only prove (8). For convenience, write

A*= A4y, A" =(4y); A™=((4p)p)% [=, y]1=[2, yls
Since , : . .
| Az =[do, Ao} =|M4[*"*[A"As, 5] | <|M4|*"*[A4 A, A*Aa)? [, ] 7 ,

we algo have |

1 —~1
| 4o]?= [, A*Ax]<[s, 21° [A*4v, A"45]) 7
Thus .
| do]?<<| M. |*?] A" As]?|5]*,
1

| ’
s0 that [Ao|<|M4| 7 | A*Ao]|o]. Hence |A|<|M4| 7 |4"].
Similarly, since '

-1
| A*s|?=[ A%, A%] = [AA%, o]<[Add, 4407 [z, 517

and
|A*s|?=[=, A A*0] = [o, MaAA D] = | M4|*7*| [0, AA*] ]|

=1

<| M, |7 o, 217 [44%, 44%1%F,
we have | A'|?< | M4|"F || | AA*|. From this, we have
=1
A% <[ M4} 7] 4].

Hence |A*|=|M A|g:5'1'||A||, this completes the proof of (3).

Dnfinition 1.5. Let o, y € X \{0}. The vector = is said to be genemlézed P
orthogonal to y if [y, ],=0. If N is a subset of X, let

Ni={2|[y, 2],=0 for any yEN}.

N* is called the generalized p-orthogonal complement of N.

Proposition 1.6. Let ACB(X), A40. If 4; is a linear bounded operator and
(45)p=MA, where M is a constant, then

(1) N(4)=R(4)",

(2 N(43)=R(4)*,

(3) R(4)cN (454,

(4) R(4)c N (4),
where N (4) and R(4) denote respectively the null space and the range of 4, Q
denotes the closure of Q.

The proof of Proposition 1.6 is completely analogous to the proof in the Hilbert
space, S0 we omit it
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§ 2. Generalized p-Normal and p-Hyponormal Operators

Definition 2.1. Let T €B(X) and let T be a linear bounded operator. If there
4s @ constant M (relative to p) such that (T'y)p=MT and Ty =TT, then T is said to
be a generalized p-normal operator.

Evidently, generalized p-selfadjoint operators must be generalized p-normal
operators.

- Example 2.2. Let X =[?, 1<p<+oo, p+*2. Then X is a smooth, strictly
convex and reflexive Banach space. For arbitrary », yE€ X, o= {w,},ai, y={yi}ties, lob

Lo, yl,= ;wilyil? *Y;. (2. 1)
»Then [#, y]s is a generalized semi-inner product which  generates the norm. For
my fEX*, f={fda €1 (T+5=1) lot
0 if f;=0,
Yi= S
‘f:il p~1g~ins §f f:,: Ifjleim:# 0.

Evidently, y € X and _
f(@)=[w. y], foranys€X,

If o={w,}iL; and y={y,}{s, lot

Tyw={al}iq, Tawv={a]}is,
where
,_{wi b=1, ”__{wg $=2,
@l = @) =
0 4#1, 0 42,

Since [T4. ylp,=m1|y1|? %91 and [o, Twl,=a:|y1|* %Y1, T1 is a generalized p-
selfadjoint operator. Similarly, T, is also a generalized p—selfadjomt operator, Let
T=Ty+ily A=T1—iT,. Since

[Ts, ylo=2191]y4]?" 2+W2?12(?/2|p g
(@, Tyl =2191]91] 72— imaga|ya[ ">,
we see that 7' is not a generalized p-selfadjoint operator. But since
[@, Aylp=w:y:|y1|*">+i0ays|ya]*~ = [T, ylo= [, Toyl,
we have Tj=A. Since [Aw, yl,=o1|y1|? 91— i%a |ya|*29a= &, Tyl,, we have (T7);
=T'(M=1). On the other hand, since
TiTo=T5{w1, iwa, 0, -+ }={wy, @, 0, -},
TTyw=T{wy. —i,, 0, oo} ={wy, @9, 0, +-*},
we have T,T =TT’{,, that is to say that T is a generalized p-normal operator.
Definition 2.8. Let T€B(X), p€ (1, +o0). Write
Wo(T) ={[T=, ],| |« =1},
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which is called the generalized p-numeral range of T. If W,(T)C R, where B* denotes
the real field, then T is said to be o generalized p-Hermidt operator; if for any € X,
[Tw, ],=0, then T is said to be a positive operator (briefly writing T>0).

Definition 2.4. Le¢t T€B(X). If Ty is a linear bounded operator and there is a
constant M (relative to p) such that (Th)s=MT and T:T —TT;=>0, then T is called a
generalized p~hyponormal operator.

Evidently, a generalized p-normal operator must be a generalized p-hyponormal
operator,

Example 2.5. Let X =I?, Define ¢, s, 4, o[ , 1, as in Example 2.2. Let II
be the unilateral shift operator, i.e, for any w={w‘},=1€X Hu={0, w1, @, *}.
Moreover, lei

II'g={wy, ws, *++}.
Then II' is a linear bounded operator on X and since

[, y1y=3} 01| 911 |7 *Gusa = o, I

we have II;=II'. On the other hand

[w, (I3 )p@/]p= [Ty, yl,= 2‘”&1[%'? 2.% (@, Oylp

Thus (II3);=II(M=1). But since I Il =1, I, I —III;=T; and [T, #],= | [*>
0, i.e, 7' is positive, we know
I - I I13>0.
So II is a generalized p-hyponormal operator, but is not a generalized p-normal
operator.
From Definitions 2.1 and 2.8, we obtain easily the following result.
" Proposition 2.6. If T is a generalized p—normal (or p-hyponormal) operator,
then for any AEO, AT is also a generalized p-normal ( p—hyponormal) operator.
In what follows, we disouss the constant M in Definitions 2.1 and 2.3.
Proposition 2.9. If T is a generalized p—hyponormal operator and T+0, then
M>0.
Proof For convenience, write 1™ =T, T* = (Ty)s, D=T,T—TT,. Since
1T ||? = [T, T?] = [T, M~2T"*%x],~=[T"*1?s, M~%],
=[T*(TT*+D)Tw, M2z],=[(T*T)%x, M~2%],+ [T*DT», M~3s],
= [T*T's, M~*T"*T%] )+ [DTx, M~'Tx],
= | M1 [ M [T*Tw, T*T'w],~+ [DTw, Tw],}
but D>0, we have M—*>>0. Thus M>0.
From Propositions 1.8 and 1.2, we have .
Theorem 2.8. Let TEB(X), p€ (1, +o0). If Ty is a linear bounded operator
and (T3)3=MT, then
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M= |75,

Corollary 2.8. Let T be a generalized p-selfadjoint operator and p+2, then |T'|
=1 |
Corollary 2.10. Let T be a generalized 2-normal operator, then M =1, so that
(T3)z=T. o

" Gorollary 2.11. Let T be a generalized p-normal operator. If |T| =1, then
(T)%=T, 4.6, M =1. | | I D o

Sen [10, Note 2.5] asked: if T' is a generalized p-selfadjoint operator for any
pE&(1, o0), is T an isometric operator? The above Gorollary 2.9 provides a ‘partial’
answer t0 the problem. e T S

§ 3. The Properties of the Generalized p-Normal Operators
| For convenience, in what follows, we always write briefly

| T* =Ty, T*=(T3)} [z, y]1=1I=, yls
Theorem 3.1, IfT isa geneml@zad p-normal operator, then

(D for any s€X, |To|= _({T*wﬂ and from this, we have N(T)=N(T“)
(2) for any AEO, N(T- AD) = N((T~M)) |
Proof (1) Since . .
|To]o=[Tw, Ta] = [T, M~T"] = Mi'f’[T*Tw 4] = M [TT"s, o
- = M2 [T, ) Mi“"uT*mﬂ” |

we have [Taz|= “[l T*w|. . :
(2) From Proposmon 1.2 and the faot that T is a generahzed p-normal oper-
ator, we have
(T —=AD)*(T—-AI) = (T*(T =AM —A(T -2
=T(T—A)*=MT —AD)*=(T—AI) (T — A"
If o€ N(T'—MAI), then '
1(T—AL)s|?=[(T—A)"s, (T—AD)*s] =[(T—A)(T~A)"s, «]
=[(T-AD*(T—A)w, 4] =0, ,
so that s EN((T'—AI)*). Henoce N(T~A) N ((T—AI)").
Similarly, since
| (T ~ADw|?= [, (T—AL)(T~AI)],
it follows that N ((T—AI)*)cN((T~AI)). Thus (2) holds.
Corollary 8.2. If T is a generalized p-normal operator, then e@geMeotoa‘s
corresponding to distinct eigenvalues of T are orthogonal mutually.
Theorem 3.4. Let T be a generalized p—normal operator for all p€ (1, +oo)

and Ty=Ty for all p, ¥ €(1, +o0). If (T5)p=T and N(T')={0}, then T is an
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esomebric operator on X .
Proof Since _
[T, ylo=[o, T*yl,=|T"y|*~? v, T"yly
and
[Ta, 41, 9177 [To, g1y = ly|** [a. Ty,
it yER(T)*, then |T*y|=|y|. By Theorem 8.1, it follows that |Ty|=]|y|. By
Proposition 1.6, if y€R(T)*:, then yEN (FT*). Thus, from the assumption and
Theorem 3.1, it follows that y EN(T"). But N(T)={0}, so that y=0, the proof is
oomplete. | |
Corollary 8.5. IfT isa generalized p-selfadjoint operctor for all p€ (1, +o0)
and N(T)={0}, then T is an isometric operator on X.
The above corollary partially answers the Sen’s question [10, Note 2.5].
Theorm 3.6. Let T be a generalized p—normal operator. Then N(T)UR(T)
is dense in X. | ) _
Proof If N(T')UR(T) is not dense in X, then by Sen’s result [7, Oorollary
8], there is a veotor 2o, 20%0, such that 2o € (N(T)UR(T))*. From this it follows
that for any 2 € X,
' [w, T%2] = [T, 2] =0.
Thus T*2=0. By assumption and Theorem 8.1, T%=0, Thus 2z €N(T'), But since
%0 € (N (TYU R(T))*, we have |2,|?= [, 20] =0, this contradicts zo#0.
Lemma 8.8. Lot T €B(X), Then on(T)W,(T). Partioularly, we have 8o (T
cW,(T), where 8c (T") denotes the boundary of o (T').
The proof is completely analogous to the proof in the Banach space, S0 we omib
it. |
From Lemma 3.8 and Sen [10, Corollary 2.2], we have
Theorem 3.9. IfT is a generalized p-normal operator, then
on(T) =a(T)W,(T).
From the definition of single—valued extension property of operator and (1.1),
(1.2), we obtain easily the following theorem. '
Theorem 3.10. If T is a generalized p-normal operator, then T has the single~
valued extension property. |

$ 4. Further Properties of Generalized p——No_rmal Operators

In this paragraph, we will prove that for any generalized p-hyponormal
operator T, the following formula holds: ‘
r(T)=[W,(T)| =|T|
and for any gneralized p-normal operator 7', we have
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[(T —AL)-| =1/dist(A, o(T)) for all A€ p(T').
The first result is the affirmative answer to Sen’s problem [10, Note 2.19].

On the Hilbert space, Li shaokuan®™ has defined the concept of class (N)-
operators, Evidently, his definition may be extended to the case of Banach space.

Let T€B(X), T is called a class (N)-operator on X if for any €X ,

|Tol*<|T°||=].
- Proposition 4.1. If T is o class (N)-operator on X, then for any p€ (1, +o0)
r(M)=|T|= WD)

Proof The proof of »(T)=|T| is completely analogous to the proof in [3] we
omit it. From Lume_r [6, Theorem 4] and Sen [10, Note 2.9], it folloyvs that

r(T)<|W,(T)[<ITI, |
which completes the proof. ‘

Theorem 4.2. Let T be a generalized p-normal operator, Then

r(T) = |W,(T)|=|T]|.

Proof By Proposition 4.1, we only need to prove that T' is a class (V) —operator
Without loss of generality, we may assume 7T'#0, If D=T"T— TT*>0 and T** M T,
by Proposition 2.6 it follows that M >0 and

7% 2= [T, T%] = [T, M~2(T*)%] = [T*"T”m M - m]
= [T*(TT*, +D)Tv, M~2] = [(T*T)*, M~*2] + [T"DTw, M~*z],
= [(T*T)%s, M~2%5] = [(T"T)z, T*T(M ‘1w)] =M*? ]] T*Tw|?.

Moreover, since

| Ta|?= [T, Tol< [o, &1° [T, T'Ts]"7
and
|To|?=[T*Tw, M x] =M*?[T"T2, 2] <M*?|T*Tz| |=]*,
we have '
|Tal?o< 35| T*Ta|? o),
Thus |Ta|?<|T%|?||?. It follows that
|TalP<|T%] lo].

Theorem 4.3. Let T€EB(X), p€ (1, +o0), If TTy=T,T, then

r(T)=|T].

Proof For convenience, write T*=T,, [ , 1=[ , I,

Since : ‘ ‘
|Tw|?= [Tz, To]=[o, T"Ts)<|s||T*Tz|*"?,
we have HT |?<<|T*T"|*-*, Moreover, since o

TR T T,
by Proposition 1.8 it follows that |T*T|**<|T|?. Thus
|7fe=|T*T | (4.1).
On the other hand, since ' T
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[T Ts|?= [T*Tw, T*Ta] = [TT*Tw, T'x] = [T*T?, Tz]<|T*T%||Ts|*"2,
we have

[T T o< [T ||| T2] = T [P T | 7Ty 7o) = | 7] TR (4.2)
" By (4.1) and (4.2), it follows that

D29

|| <Ir],
i.e [T]P<|T%]. Henoo |T|*=|T*].

In what follows, we prove that equality || T"|=|T|" holds for any positive

integral number n. If for any n<<h, equality |7 =|T'|" holds, since
[T*2|o = [T*s, T*] = [T* e, T*"T"] <|T* o| | T*T%|?*
we have |T¥|#= | T-1| | T*T*|*-1. By assumption, it follows that
|7 < | T
But since
[T T < | T e Tt = T T e,
we have
o | |71t = e, 4.8
On the other hand, since
| T*T*0|? = [T*T"w, T*T"] = [T*T"**w, T*] <|T*||T***a| [ T%[*, (4.4)
we have ,
| | T o< [T | [ T**] | T*] 2 (4.4)
From (4.8) and (4.4), it follows that

Ep—k+1 e
|15 < T T < T T T T e,

Then

P(kp +D1

e I e L

Thus | 7%} = |T'|**t, From this, it follows that »(T) = |T].

Corollary 4.4. LetT be a genefml@zed p-normal opemtor and T+#0, Then for
any ME O, we have

r(T—A)=|T—Al|.
Proof LetT*=MT. From Sen [7, Theorem 8], it follows that
(T—AD)'T* = (T*(T—AL))*=((T—ADT*)*=T*"*(T - A"
Thus
(T—-AD*(T—AD) =M (T —-AD)*T*—A(T—AL)* =M T*(T - AD)*—A(T—AI)*
- =T —-A)(T—-AD)"

By Theorem 4.3, the required result holds. - : :

Corollary 4.6. IfT isa generalized p—normal opemtoq‘, then for amy AC p(T)
we have
| r((T=AD)™)=[(T—-r)™.
Hence by spectral mapping theorem, we have
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[(T—AD)Y| =1/dist (A, o(T)).

Proof Under the conditions of the corollary, we can easily prove that equality

(T —AD) (T =MD )= (T —AD) (T —AD)™

‘holds, Henoce by Theorem 4.4, i follows that

{13
{21
£33
L4]

151

{631

7]
L8]

917

103

r((T - =T -7
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