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SINGULAR PERTURBATION FOR A BOUNDARY
VALUE PROBLEM OF FOURTH ORDER
NONLINEAR DIFFERENTIAL EQUATION

Mo Jiaqr (& £st)*

Abstract

The singular perturbation for a boundary value problem of fourth order nonlinear
differential equation is studied. Under suitable assumptions using differential inequalities
-the author finds a solution of the original problem and obtaing the uniformly valid
asymptotic expansions. ‘

We consider the boundary value problem of fourth order nonlinear differentiak
equation '

&y =f(m, 4, 9", &), 0<a<i, o @
y(o: 8)=-A-1(8); y(l: 6)=Bi(6)3 (2)
y"(o: 8)=A2(6): y”(]-: s>=BQ(8>: ' (3)

‘where & is a small positive parameter. The case for second order differential equation
has been studied (e.g. [1—6], [12—14]). For fourth order differential equation,
only first approximation of the solution has been obtained. In this paper, a boundary
value problem (1)—(8) of fourth order nonlinear differential equation is discussed
by using differential inequalities. By introducing two functions that possess boundary
layer behavior we obtain uniformly valid asymptotic expansions to any degree of
precision for the sought function and its second order derivative on the entire
interval 0<<a<1,

§ 1. Constructing Formal Solution

‘We now construet the outer solution of the original problem (1)—(8). The

reduced problem is B
| f(@,9,¢", 0)=0, 0<a<i, (4)

y(0)=4:(0), y(1)=B4(0). (5
We assume that its solution is yo(2) and the known functions f(s, y, ¢, &),
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A;(8), Bij(e)(j=1, 2) all have continuous partial derivatives with respeot to
the variables involved up t0 (n+1)th-order and there is a positive constant m such
that fyu>m. Thus .

f(m; Y, y", 8) EF(S) == g F;si—l—fl", (6)
Ai(s) = g A!£3£+'r51 (.7= 1, 2)7

By(e)= §B1¢8‘+Ti9 (j=1, 2),

where
Fo=F(0)=f(, yo, o, 0), M

1 ’ |
F‘EE_' FO0) =f (o, Yo, yg? O yi+£u(2, Yo, ¥o, Ogit+e(x) (4=1,2, <, m), (8)
A,;-—=-@1~, APO)  (5=0, 1, -, m; j=1, 2),

B,¢=_ElTB,<*>(0) (4=0, 1, +v, m; j=1, 2),

r=0(g"") (0<skl),
ru=0(e") (4, j=1,2; 0<ekl),

while ¢;(#) can be obtained by » and y,, j=0, 1, -+, 4—1 successively.
' We now assume that the outer solution of the problem (1)—(3) has the
following formal expansion: '

| Y (@, &) =yo(a) +ys(a) e+ ya(@) ¥+, ©)]
where y,(w), é=1, 2, «-- are undetermined functions.

Substituting (9) into (1), we have

s Y "
& -Elzr=f(w, Y, Y ’ 8). (10)

From (4), (6)—(8), collecting the terms of like powers of & and equating the
coefficients to zero, we have _

For(®, Yo, 40, OVyi+1u(®, o, 40, O)gito(w)=y22 (0<o<1; §=1, 2, <, u), (11)
where y_1=0. In order to obtain y,(¢) from (11), we need the suitable boundary
conditions #,(0) and g, (1). They will be given below, Substituting y:(«) into (9),
we obtain the n~th approximation of the outer solution of the problem (1)—(3).
Qlearly, its second order derivative with respect t0 & may not satisfy boundary
gonditions (8) approximately. Then we shall construct the funoctions possessing
boundary layer behavior near =0 and #=1 respectively.

First, we construct the function £(z, &) possessing boundary layer behavior
near #=0. Let

Y=Y (2 8)+&(v ¢), (?=%>’
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where 7 i3 a stretohed variable. We assume that {(v, &) has the following formal

expansion. _ s . : :
£(7, 8) =8 (€o(v) +&1(v) 6+ Ea(w) 874 2), | (12)
Substituting ¥ into (1) we have ,
29T 1, 7, 7", o). (18)

From (10), (9) and (12) we get
1 df - ny. L &€ \_ sy
Lo, Y&, 74 L8 )= f(er, ¥, 77, )

82

EF(8>=§F¢8‘+F, o S (14)

where

Fo=F(0)=1(0, yo, t5+222,0)=1(0, o, 4, 0)

=fy”( y Yoy y0+01 d §0 )d é:o, ) O<01<1,

d =79 d 3 s
F F(i)(()) =fyu<0 Yo, y’0+ ((iifzo, 0)?15; +0¢('D’), (Q:=1, 2,"', ﬂ’b),

while ¢;(7) are defined successively by polynomial of z and y; (§=0, 1, -+, ¢) and &,
(j=0, 1, «, 4—1). Equating the coefficients of like powers of & will yield

g oo ap
-é-g”—=fw”<:yo,?lo‘*‘ilzioyo)?z%‘*‘ct('ﬂ), (6=1,2 -, ). (16)

We shall give the suitable initial conditions of ¢; below so as to solve for &(w) (6=
0,1, «--, n) from (15) and (18) successively. |

Second, we construct the function (o, s) possessing boundary layer behavior
near =1, Let '

F-Trn=Y (2, )+£(s, )+uo, &) (o=122), @
where ¢ i a stretched variable t00. We assume that n(c, 8) has the following formal
expansion:

_ n(c, 8) =8*(no(0) +n1(0)e+ns(0) 8 +++). (18)
Substituting ¥ into equation (1) we have ‘
@ T, 0.

From (18) ,} (9), (12) and (18), we get

:2 gan —f(i 80, ¥ +&t, Y”+—~< gig“’ ) do? ) 8)

—-f(l go, Y+¢, Y"—l—812 g%,s)

=F(g) = gﬁusi—l—ﬂ (19)
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where
Fo=F(0) =f(1, Yo, yg-i— d §° + ‘; 10 0) ( , Yo Yo-t- (flgso: 0)
~fr(1, vo, st L2010, ‘; T,0)91, 0<gi<1,
Fim & FOO) =fo(1, o, v+ 550+ T22,0) PUAT(0), (=1, 2, =, ),

while ¢,(¢) are defined successively by polynomial of o, g, &(§=0, 1, -+, 4)
and n;(§=0, 1, -+, 6—1). Here we have assumed that £; are functions possessing
boundary layer behavior. Equatmg the coefﬁmlents of like powers of g, we have

d d d? d?
To =fﬂ"( s Yo, y0+ dé? + 04 dng’0> d::g! ' (20)

M"fy"( ’ ?/0:‘ Yo+ d §°+ d*no O\d U +ei(0), (6=1,2,«,m). ~ (21)

dv?  do?’ "/ do?
We shall also give the suitable initial conditions of #; below so as to solve for (e)
(6=0, 1, +-, n) from (20) and (21) suecessively.
Now we glVe the boundary condltlons of yi and the initial conditions of &; and x,

as below. |
'We first define the initial conditions of &o(z) and no(o):
*-—-'-——dggggm =-A2(O) -—yZ(O), (15,>
P1ol0) - By(0) ~ (D). e

In (15’) and (20"), we have deleted the small quantities of higher orders. We note
that & and 7, satisly the equations (15) and (20) respectively. It is not difficult to
see that there exists a pair of the functions &,(7), 10(0) €O pessessing boundary
layer behavior™; '

BE®) o (Fssmy (531, §=0, 1, 2)
F1o(0) _o(e107) (@31, §=0, 1, 2),
where %, is an arbitrary small positive constant.
Next, we define the conditions of y;(#), &:(z) and n,(0) (6=1, 2, «:«, n):

%:(0) =A1,;—§5_2(0), yi(1) = By—1:-2(0), (11"
d §;§°> = Aa—4i(0), | (16")
I0) 2;(20) = Bay—yi (1), _ (21")

in whioh the letters with negative subseript are taken to be zero. In (11'), (16") and
(21), we have deleted the small quantities of higher orders, From the equations
(11), (16). and (21) the gi(w), £:(v) and n(c) can be obthined successively, where
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& and 7 satisfy also the conditions
djé 3 — V(1=K
X i( ) =0(6 Vn(l—Fke) ),

diog (E?‘ ). - O(e‘*’T”“"-’“)") ,

(v, o1, 4=1,2, s, m, j=0,1,2),
where k; (§=1, 2, +++, n) are arbitrary small positive constants,

Substituting the above defined y;, & and 7(6=0, 1, -, n) into (9), (12), (18)
and (17) successively and replacing the stretched variables by @, Wwe obtein the
sum ¥, of the first n terms of formal asyniptotic expansion which is the solution
y(z, 8) of the problem (1)—(8):

7= 3o+ (6 (2)+m (222))]et 22)

§ 2. Estimate of the Remainders

Now we prove that under the suitable conditions original problem (1)—(8) has
a solution y(w, &) €O® which can be represented by the following uniformly valid

‘expansions:

v@, ) =3 u@ +o (&(2)+n(122))]e+ By O<a<i,  (23)

and

! = S d? w) d? 1—2 ¢
y' (@, &) %[ys(w)—i'w f&(;‘ +-EF 7’];( " )]8 +Ry, O<o<<l, (24)

where By and R, are remainders satisfying
_ R=0(e"") (0<o<l, 0<sk1;i=1, 2).
We first state a lemma ag follows.
Lemma. We consider the boundary value problem for system of nonlinear’
differential equations ’
{yf =fa(@ 93, 90), (0<a<1)
y2=Ffa(@, ¥1, ¥a),
v1(0) =43, y:(1) =By,
¥2(0) =4,, ya(1) =B,
If there are functions as(w), Bi(w) EO®[0, 1] (¢=1, 2), which satisfy the following
conditions
{ a(0)<4i<B:(0), s=1. 2
a(1) <B<B:(D), Y

{ 06'1’(517> >f1<w, a:l(m): (?/2),

0<o<l, o(@)<pa<B(2),
1)< fils, Bu(@), g), 0a(2) <ya<Ba()
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{ a2 (@) =fa(w, y1, 0a(®)),
2(2) <falw, y1, Ba()),
and fi(x, 41, ya) EOP(D), where |
D: {0<<w<<1, (@) <yi<Bi(w), i=1, 2},
then the original problem can besolwed by o pair of functions yi(w), ya(w) EOP[0,1]
which satisfy the following conditions:
a;(w)<y¢(w)<,8;(w), 0<w<l, i=1, 2.
For the proof of this lemma please refer to [8—11].
Using the above lemma, we oan prove the following theorem,
Theorem, Assume:
[I] reduced problem (4)—(B) has a solution yo(x) € O**4[0, 1];
(1] f(=, 9, ¢", 8) €O™D(D,), where
Dy {0<o<<l, |y—F,|<dy, |¢"—F|<do, 0<e<ey} (&:>0, >0, i=1, 2);
[IL]  fyr=>m, (@, yo, ¥, &) €Dy, where m is a cortain positive constant;
[IV1 Ai(e), Bi(e) €00, &4].
Then the boundary value problem (1)—(8) has a solution y(x, &) E0® (0<w<1, 0<s
<s&o) where 8o i3 @ cortain positifve constant which can be represented by the uniformly
valid asympiotic expansion (28), and whose second order derivative by (24), in 0<z<1.
Proof Lety'" =2, Thus the original problem (1)—(8) becomes the following
boundary value problem;

0<w<l, oy(®)<p1<Bi(w),

V', )

g% =f(m) Y, % 3): (26}

y(o’ 8) =-A1(8>’ y(]-: 8)=Bi(8)a (27}
Z(O, 8)=A2(8>: z(l: 8)=B2(8)° (28)

Now we construct the oy(w, &) and B;(w, 8) as follows;

ou(a, 8) =¥ (o, s)-—s”“y(cos Q/;n—l:w+cos~/%(1-—m)—1>, . (29)

Bi(m, &)=Y, (w, &)+ s"“y oos J% @+ co8 J%(l—m)— 1), (80)
gl 7l 1 T

os(w, 8) = ?”(m 8)— (cos J%_ &+ cos Jﬁ(l—w)), - (81)

Ba(w, &) =¥"(, &)+ nﬂ,ﬂ Cos «/%w—i—cos«/%(l—m)),_ (82)

where |f,| <1, (%, ¥, ¥", 8) €D, and there is no harm in choosing the suitable I
such thab |

2K m:<~/ %<(2K + %-)m: (K isa éertain integer),

and 7y is a large enough positive constant, which will be chosen later. |
From (29)—(80), (11), (15"), (16"), (20") and (21’) it is easy to see that
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oz, 8) EOP(0<<o<<l) (i=1,2), - (83)
Bi(m, &) EOP(0<o<1) (i=1, 2), (34)
and from the construction of o, B; and ¥, (#, &) we can get inequalities: '
a0, B)<A(e)<Bi(0, 8) (i=1,2), - (85)
a1, e)<Bi(s)<Bi(1, 8) (4=1,2), (86)
o=z, (oa(w)<e<pPa(®)), | (87)
Bi<z, (as(w)<e<B:(@)), (88)

for small enough positive constant ¢’ and large enough 7,>0 as 0<s<<e’; v=7,.
Since g:(#), §u(v) and n(o) satisfy (4), (11), (15), (16), (20) and (21), taking
into account that y%(¢) and y® (») are bounded, we can easily obtain

F@, o, T 8)=[ £, 4o, 95, 0)+ 2N fyr(a, 50, 4%, O
+£(@, Yo, ¥h, O)gitou(@) - y‘*’z+:t/§92)s]

Py \Pho _ A%, | do
+[(fy"<0: Yo, Yo+01 dv3 "’ 0/ dv®  do* * d* )

(0 8550} S55 58]

B d*6o Pno o\ o _ dno d*no
+[<f”(’y°’y°+d2+a doz’o/da do* +da)

i dgo d®no d*no, \d’fk
+§<f ”"(1’ Yor Yot + e 7 34 0) s

+6(0) ~ =k a* o+ g "”) ‘]+O(s"“)

. =P (g, s)+0(6”+1) 0<ekl.
Tnerefore there exist 8>>0, &' >0 such that the inequality
|f (@, ¥,, 7, &) — 7P (0, &) | <o ~ (89)
holds for 0<s<<s".
From mean value theorem we have
F(@ 9, oa, )=f(2, ¥o, T3, &) +fu(2, Tt b:(y—TF), en, £)(y—F')
+fr (@, y, Ti40:(aa—F7), &) (aa—FD), 0<8s, 0.<1, (40)
f(@, 9, Bs, 8)=F(a, ¥, ¥4, &)+, (2, Tot Bus(0—T.), Bs, 8) (y—Fo)
+f(w, y, P140,(B—F1), s) (Ba—T71), 0<Bs, Oi<1, (41)
When oy (@) <y<Bi(w), we can get

lfu(y—7) | <emyi 0mJ~ﬁ+m[(1 ~a)— 1)

from (29), (80) and |f,|<1. And we have
f(w) Y, oo, 8)<82Y,(,,4)+66“+1—-7Z3”+1’
f(o, y, Ba, 8) 6T ® —damt1 gt
from (39)—(41). Thus we obtain
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2ls—f (@, y, o, &)=(yl—08)e"?,
e'Bs—f (@, y, Bs, 8)<(d—71)e"™
Tuking so=min(e;, &, &), y=max(y,, 3/I) we have
o =>f (@, y, aa, &), (42)
$*Bi<f(2, y, Bs, &), (43)
(on(2) <y<Bi(®), 0<w<1, 0<e<80).
From the relations (83)—(88), (42) and (48), using the lemma, we geb a pair of
functions y(w, &), 2(, &) €0® (0<a<1) for the boundary value problem (25)—
(28), which satisfy inequalities
ou(w, 8)<y(w, 8)<Bi(w, 8), 0<w<l, 0<e<so,
as(m, 8)<e(w, 8)<Pa(m, &), 0<w<1, 0< <60
From (29)—(30) we obtain -

(@, &)= Fn@)+e (8(5) +n(352)) e+ 00,

ag (B 9 (1—@)
2(w, &) =§[ yi (@) + ‘ i;f:: > + & go-ﬁs - >]Sz+0(8n+1)’

(0<e<1, 0<ekl).

Since (@, £)=y"(, &), We then have y € 0¥ (0<e<l, 0<e<gp), and the relations
(23) and (24) hold uniformly in 0<<1.The proof of Theorem is now completed.
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