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REFLECTION ON BOUNDARY OF SINGULARITIES

Hone Jiaxing (k%) *

Abstract

This paper discusses the reflection on degenerated surface of singularities for Tricomi
operator. Two kind of boundary conditions: Dirichlet condition and general first order
boundary conditions have been investigated.

§ 1. Introduction

[1, 2] studied the reflection of singularities on noncharacteristic boundary
for operator of principal type and later, [3, 4,5] considered the glancing case. The
present paper is concerned with the same problem for Tricomi operators, which is bf
real non-principal type. Let us consider a differential operator of second order

n~1 7%—1
Py=Dlu—t 2 D2 u+ ﬁ a; Dy p+aw a1.1)

defined in R%=R"1x RL. Through any point (@, 0, &, 0) €T*(R%) there is a
Hamilton flow, denoted by y(ws, £o) and tangeniial to the boundary t=0. The
problem we are interested in is how the singularity developes along (%o, £o).2'(R%)
is the dual space of {u€ 0% (R") | supp v R%}. In this paper, we shall often use the
notations and notions given in [5]. Denote by T(R%) the vector bundle on R with

0/0x; (j=1, +-», n—1) and v, 8/0w, as a base. lts coordinates may be expressed as .

(@1, *+*, Tay @, **, @) = (2, @). The smooth map m: T (BL) D (&, a)r>(w1, +++, Ty, @y, *++,
w0s) €T (R%) induces a natural map w* from T*(R%) into the dual vector bundle of
T(R), T*(R.). The range of x*, R(w*) is homeomorphio to 7*(R%) UT*(dR%).
Therefore, later we will always identify R(w*) with T*(R%) UT*(0RY).

If u€ 9'(R%) and Pu€O=(R%),it follows that WF,(u) CR(x*). By 2EWF,(u)
we mean that sEWF(u) if z€T*(R%) and v is smooth up to the boundary ¢=0 at
point z if 2= (w,, &) €T*(ORY), i.e., there is a pseudodifferential operators A (v, D)
elliptic at (w,, &) such that Au is smooth near (2, 0). Our main result is the
following '

Theorem. Assume that u€ D'(R%) and Pu€ O near (o, 0). If either of the
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Jollowing two conditions:

D) (@0, £6) EWF (u(a, 0)),

(2) BCOPS(R*1) s elliptic at (o, o) or BEOPSY(I") for a conical neigh-
bourhood I' of (wo, &) such that (wo, §o) EW F(Dau-+Bulimg), is fulfilled, then there
exists an interval oonméfnifng (o, £o) of orbit v(, &) cT*(RL), denoted by y(®o, &o)
still, such that the alternation of 7(wo, ) NWFy(w)=¢ and (@, o) CWE(u) is
valid.

After the present paper was accepied for publication, the author recently see
Hormander’s new book (The Analysis of Linear Parhal Differential Operators IV),
in which the part (1) of the previous theorem was obtalned for more general
differential operators of 2nd order.

§ 2. A Special Differential Operator

This section studies the special cage of (1 1) of the form
Pyu=D2y— t;} D2y, >0, @.1)

Whloh is a degenerated hyperbolic operator. Application of the energy esmmates
introduced in [7, 8] and the technigue of mollifier glves at onoe

Lemma 2.1 Assume that u€ D'(R) satisfies Pu=0 in a neighbourhood in B2
of (@0, 0), O(wo) X (0, 3), where & is a positive constant and that u(w, 0)=0, du/dt
(@, 0)=0 on O(w,). Then u=0 in another smaller neighbourhood 0’ (w,) x (0, 8").

We also have a regularity theorem in microlocal version of Cauchy problem
for (2.1).

Lemma 2. 2. If PucC~(a,, 0), where u€ D'(RY) and (w0, £o) € WF(Diu[s-0))
(6=0, 1), it follows that for some 8>0,

WE,(u) Ny (wo, €0) N{0<<t<<8} =0, . (2.2)

Proof By the uﬁiqueness theorem of Cauohy problem for (2.1) it suffices to
prove the cage that v _ _
S and u are compactly supported, respectively, in R% and R"? | (2.3)

and

fis smooth and A(D,)Diu(w, 0) EHL(R™Y) (5=1.2) (2.4).

for some pseudodifferential operator 4 € OPS°(R™), elliptio-at (@, &o). Lot w(€, 1)
denote the Fourier transformation of u with respect t0 variables (@s,++, #p_1). Then
we have |

Bu(€, )+ E1%(E, = —Pu(&, H=f(& ), (2.1)
?2(5, O) =ﬁ0(§>; ut(f} O> ui(é.) (25)
Split the solution into two parts: u=¥ +W, where
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V(& =] 0ol [T yal 3 1€18 Jio(§) + Osl€ | T F1£ 187 )its(®) ],

¢ (2.6)
W, t) =t1/2,[o 0231/2[.]1,3(% G )J_1/3<§§ {5[33/2)

T Z1E 12 W a2 [€187)] 6, s .7

Here Oy, 01 and U, are all constants independent of £, £, s. In the sequal, without
otherwise statement, all O; have just the same meaning. HEvidently, the first is the
solution t0 Pu=0 with u(z, 0) =u,(2) and u,(a;, 0) =u4(»), and the second is that to
Pu=f with u(w, 0)=u(w, 0)=0. In view of the property of Bessel’s funotions:
| J2(2) | <O.|2[* if Re A>—1/2, and by means of (2.8), (2.4) it is not difficult to
prove that A(D,)V and W € H,y(R"*X% (0, 1)). The theorem on partial hypo-
ellipticity provides that A(D,)V and W € H..(B**x (0, 1)), whioh implies (2.2)
immediately. This proves the present lemma,

As ig well known, the usnal way to analysis the propagation of singularities of
Cauchy data is to construct a parametrix for Cauchy problem by Fourier integral
operator. But at tho glancing case the phase function of this Fourier integral
operator is not smooth up to the bourdary ¢=0. In order to overcome such a diffi-
oulty, we shall study some properties of the asymptotio expansion of Bessel’s
functions. Referring to [9, p. 526], we have . .

Ji(2) =27Y2(e7%(A, 2) +e"g(, 2)). (2.9)

Here when 2#%0, e(d, 2), q(A, 2) have the asymptotic expansions, respectively,
o(d, &) ~eo(W) + - 0a(A) + o+, (28)

90 2)~go(A) + 2 gs (W), | (2.9)

with ' :
eo(A) %0, go(A)#0 for all ACCL (2.10)

Let us denote by H.(¢) and Q.(¢) the pseudodifferential operators with ¢ as
smooth parameter when >0 and with ¢(£1/3, (2(£]t%*)/8) and ¢(£1/8, (2]£[:%%)
/ 3) as their total symbols, respectively. Hence, we can rewrite (2.6) in the form

V@, 8) =14 (|§| B (2)0a()+ 1€/ B (&)

08 g (18 G (D) + |€) 1T (D))

=4~ VALI_(A VB g+ A~ Byty) + T (A7°Q o+ A™°Qu)],  (2.11)
where ¢, =x-£1(2|£]8¥/?)/8, A% is the pseudodifferential operator with the total
symbol [€|* and E,, Q. ave elliptic pseudodifferential operators because of (2.10).
Obviously, I, are the Fourier integral operators with phage function (z—y)-{+
(2]€]t%*)/8 (sometimes, we denote them by @. still). The homogeneous canonical
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relation associated with I, o
Aos () ={(, 1, y, &) |lo=yF (26¢*%)/8/£], =&} (2.12)
If we regard I, as the Fourier integral operators from &’ (R"“i) into 2'(R*1x
(0, 1)), thls relation may be written in
Aou={(2, 8, m, 3, 9, &) |o=yF (268**)/8|€], 9=§, v= £ |§]#7}. (2.18)
Integration of the Hamilton equation for (2.1)

dw _ d§ _
“ds 246 a0
gy e
T=om, Sl (2.14)
with the initial data =y, t=0, £ =§,, =0 gives its Hamilton flow
Y, €0) ={y— (2661€0]%*) /8, lfolzsgg §o, 1€0l%s}, SERI« (2.15)

With 7.(y, €o)={7(y, £0)} N{#=0} and by (2.18), (2.15) we can conclude that
for I.(g), where g€ &’(RBR*?), the smgulamty of g at (y, &) developes along
7:(¥, &o) only.

Lemma 3.8. Assume that Pu=0 whare u€ ' (R). Therm

D) (wo,€0) EWF(A7Q-(#")ro+ A7 Qu(#")us) (WE (A B_(8 )+ A°E,
(tuy)) for some positive constamt t* if . (a0, &o) (7-(wo, &o)) does not meet WF(u),

(2) (wo, &o) does not meet WFy(w) 6f 74(wo, Eo) (7~ (@0, £0)) NWEF(uw) = and
(w0, o) EWF (u(w, 0)) or (2o, €)E WF(RDu-+ulm0) for a pseudodifferential
operator REOPS(RY),

Proof Let us first prove the assertion (1). From the hypothesis: WF(u) N
v+ (®0, o) = it fillows that there exists a constant £*>>0 (indeed, any £*>0) such
that
| (wo— (2§o(t*)3/2)/3|fo|, t*, €o, |€ol \/F)

. = (o, 1", &, 7") €Ey: (@0, &0), (&%, ¢*, &%, v")EWF(u) (2.16)
an :
(&%, &, ", y, ) EA,. for all (y, &) €T*(RY)\{0}. (2.17)
From (2.11) we can get

L,.(A7Y%Q_ ($)ug+.A75%Q, (8)ry) =t *u— I_ (A E_(t)ug+ A~%CE.($)uy),
which implies
(", ¢, &, 7*) EWF (L. (A7/°Q-(Duo+ 47°Q, ()uy))
in view of (2.16), (2.17).
Let map 4 be the inclusion of {=¢* into B", Using (2.16) and the well known
faot that WF (u|s,) Ci* WF (u) one can derive
(@, €) EWF(L.(AQ (Do AQu(B)us]er)).
From the ellipticity of I, and the homogeneous canonical relation about the
propagation singularities of I.: WF(I,.(g)) =Z,,,+oWF (9), it is easily seen that
(@0, §0) EWF (A™/Q- (" )uo+ A75/°Qu. (8 )uy), (2.18)
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which proves the assertion (1).

Now we turn to the verification of (2). Assume that 7, (:vo, o) does not meel
W F (u). Then the assertion (1) prowdes

(@0, &o) EWF(AQ_(1)uo+ A7%°Q, () uy) .
By means of the ellipticity of @,(¢*) and the hypothesis: (@, ) EWF (u(w, 0)), we
have (@, §o) EWF(uy). Now the assertion that y(my, &) does not meet W F,(u) is
the immediate consequence of Lemma 2.2. Assume that (@o, &) E W F(Rug-+uy).
Substituting — By for 4, in (2.18) we can get
(@0, £0) EWF([A™°Q-(#") B~ A7°Q, (#*)]us).

The principal symbol of (A~V°Q_(t")B—A7%°Q.(t*)) equals |£]|~5/%,(1/8) mul-
tiplied by a non-null constant. So this is also an elliptic pseudodifferential operator
and (w0, £) EWF(uy), which implies that W.F(ue) =W F(uo+ Ruy— Ruy) € (w0, &o)-
The remainder of the proof is the same as the preceding one.

Remark. If (wo, &) EWF(Du+ Ru) |¢mo) with REOPS°(R*Y) instead of the

hypothesis in (2) that (o, o) EWF(up), then y(wy, &) does not meet W Fy(u)
either.

The crucial step of proving the main theorem is .

Lemma 2.4. For any given £, € R\ {0} and any given neighbourhood in R% of
(%o, 0), O(wo) X [0, d), there ewist pseudodifferential operators smoothly depending on ¢,
A(t) €OPS™ (B*1), and B(t), O(t) €OPS°(R*1), where B(0) and C(0) are elliptic
at (wo, &o) such that

(AD,+B)P-——-15(AD,+O)+R?.”D2+Rl_.,.,D,+R_,,, 0<§ <8y, (2.19)
and
Supp o(4) (¢(B), ¢(0), o(Ri.) (i=0, 1, 2))CO' (a) X [0, 81] (2.20)
for a smaller neighbourhood O'(w,) X [0, 81) O (=) % [0, 8). Here P is the operator
of the form (1.1), RL..€0"(RL, OPS~=(R"* 1)) and o(4)(c(B), o(0), ete.) is the
total symbol of A(B, O, ete.).
" The proof of Lemma 2.4 is rather long and is postponed until in section 3.

The proof of Theorem From the bypotheses of the present lemma, it follows
that there exists a neighbourhood A =0(=) X [0, 3) such that PucO0=(A4"). The
theorem on partial hypoellipticity gives u € H .4 (A") for some real s and all real
k. With ADu+Cu=W , applying Lemma 2.4 to .4/ we have

- (ADt+B)Pu——§_,(‘) BL.Diu€O™(Bx [0, 84)). (2.21)

‘We need only to prove the case of PW =0 since the explicit formula (2.7) enables
us t0 make (2.21) homogeneous without affecting the conditions and the conclusions
of the present theorem.

Let us now oonsider (1). If (wo, o) EW F(u(w, 0)), then application of the
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original equation Pu=f shows thai on the boundary ¢=0,
n=1" : .
(0 +DtA)Dtu== DgW - .A.<f - g a,,D,,-— w)u—- (DtO)u= DtW+ g3 (2 .22)

Here g;€ 9'(2R%) and (mo, £0) EW F(g,) and later all 9:(4=2.8, --+) have the same
meanmg By (2.22) and the ellipticity of O(0) we have
D= (O-+D,A)*DW +ga. ) (2.28)

The equality that A(O+D;A)*D,W ~W = g; follows from inSerting (2.28) into the
expression of W. Therefore Lemma 2.8(2) provides .y (=, 55) NW Fy(w) = . This
means that DWW is smooth up to boundary at (o, &) and (@, &) EW Fp(DW |i-0)-
In view of (2.28) we have (@, &) EWF(Du|:0). Now the asseriion: (wo, o) €
W F,(u)is the consequence of Lemma 2.2. .

The proof of the case (2) Let b;(w, &) be the principal g ymbol of pseudodifferen-
tial operator B. After substituting g — By for Du in (2.22) we get

—~[(0+D,A)B+A’g @;Dey+ Aa— DO Ju=DiV + ga (2.24)
and : S
(—AB+OQ)u=W +gs. (2.25)
The principal symbol of the operator in the left hand side of (2.24) is
—bico, ' (2 26)

where ¢, is that of operator 0(0). The ellipticity at (w,, fo) of B guarantees — bicoa1E
0. So there exists R_; € OPS such that
u=R_1DW + ge.

The remainder of the proof is similar o that for the case (1).

If B€OPS° (I ) for a conical ne1ghbourhood I of (w,, &), then the equality

: u=(0—AB)'W-+g;: mnear (m, &),
follows immediately from (2.25), After inserting it into (2.24), no doubt, we can
see that there exists a pseudodifferential operator By, OPS°, such that

DW +BoW =gs, mnear (@, &).

The proof of Theorem will be completed if we note the remark of Lemma 2.3 and
repeat the argument in proving the case (1).

§ 3. The Proof of Lemma 24

Let operators 4, B and O have, respectively, the asymptotic expansions o (4)
~G_y+G_gteee, 0(B)~bo+b_y+b_g+eccand o (0) ~oo+0-3+c_g+---. We write (1.1)
in the slightly general form ’

: P=D;+R, : 1.1
where B € OPS? has the asymptotio expansion o(R)~ra+ry+e-e. With R being in
OPS? with ry as its total symbol, we evaluate
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(AD,+B)(Di+R) - (D+£) (ADt+d)
=(B-0-(2D,A))D?+(AR—RA— (D“’A+2D,0))D,

+(BR- RO+ A(D,R) — D30). (3.1)

Hence the transport equations are of the form .
bo=cq, (3.2)
20a_,/8t+ ~/ —1(6_,— b_;) =0, ) (8.3)

1 :
do_,/ot+ '2—{Th,¢_z_1}— 5 'G_1_1'7'1=‘F;1, o B (34)

- \/_— (0—1—1’*5-1 z)’l‘é {ra, 03} + ~ ——Ib—zﬁ'*'w—i—za’fz/ 3t;=F e (3 5)
Here F‘ (4=1, 2) depend only on e_;x, b_yp, G_psu-1 (I>k>1) and the operator P,
moreover, Fi=F;=0. Seiting ry=—¢|£|? and ri=ai; in (3.4), (8.8) and
combining (3. 3)—(3 5), one can get the systems of differential equations:

{ac o481y~ Y € =,

- _ D) (306)t
i9(a s i81)/001 S 0. om,~ (SRt 00l€1) g,

which are degenerated symmetric systems.
Let us consider the Cauchy problem of (8.6); with initial data

0w, B, &) limo=0_1(m, §) EO~(R*x R1\{0}), - (8.1,
homogeneous in & of degree —1I. The proof of Lemma 2.4 is based on the existence

- of 0 solutions of (3.6),, (3.7)..

Lemma 8.1. For every | there ewisis a unique solution to (8.6),, (8.7),
1,014 §| €O°(R™* X [0, 1] X R**\{0}) which is homogeneous in & of degree —L.
Proof With Wi=c_i \/ 7@-1_115 | we may transform (3.6),, (8.7); into

N TOWE—1 awW,—“/ 12 Wi=F2t~t F3, (8.6");
I 2 T€[

Wi imo=0_1(, £). (8.7
The uniqueness of (8.6);, (8.7),is equivalent to that of (3.6"), (3,7");. Furthermore,
the solution 0 (3.6);, (8.7); as well as (3.6');, (3.7'), propagates with finite speed
and for any £ every characterigtio curve of (8.6"), is nothing else but that of (1.1).
‘We now proceed to study the existence of (8.6");, (8.7"),. The ocoefficients in
(8.6"); are all smooth in (&, &) € R** x R**\ {0} and continuous in € [0, 1]. Let us
consider the case of 1=0. Integration of (8.6");, (8.7"),gives the solution W§ smooth
as a function of », £ and £>>0 and continuous in ¢>0. Evidently, co=(W§+W73)/2,
a1=W¢=W5)/2~ T |€]| satisfy (8.6) in £>>0, and (8.7);. The rest task is to show
that o, @_4 are smooth up to the boundary ¢=0. From the first equotion of (3.6), it
follows that co€ O*([0, 1], O°(R1x R”‘l\{O}) By means of the second of (8.6), we
can obtain
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w_if%ﬁ 7&*1/2‘(\/2?( L 6o+ g TeT a,,«:o)

whioch implies that a_, € 0*([0, 1], O°(R"*x R**\{0})) too.

Obviously, repeated application of (8.6)o, (8.7)o leads to the conclusion that
the solutions ¢o, a_; We obtained are smooth up to the boundary ¢=0. | |

When 1>0, we can prove the assertion of the present lemma by induction with
respect to §. No difficulty in principle occurs. So the details of the proof need not be
repeated. This completes the proof.

The end of the proof of Lemma 2.4 For given nelghbourhood of (@g, 0), N =
O(wo) % [0, 6), ohoose a cutoff function p(x) € OF (0(mo)) with (p(w) =1 near @o. Set

o=@(z) and ¢_,=0 (I=1, 2, --) ' (8. O
as the initial data of (3 .6.);. Henoce Lemms 3.1 shows that for every [ the system of
transport equations has 0> solution, whioch is homogeneous in ¢ of degres —7. The
property of propagation with finite speed ensures that one can find another
neighbourhood of (@, 0), 0’ () X [0, ;) ©O(w,) % [0, &) such that
-~ Bupp ci(w, 3, &) (a_1(m, t, £)) O () X [0, 81) if 0<E<Hs.

Utilizing (8.2), (8.8) we can obtain b_, (I=0, ---). Now the total symbols of
operators A, B and O expected are determined by the asymptotic sum of {@_;}, {b-;}
and {c_;}. Furthermore, (8.2), (8.7") guarantee the ellipticity of B and O. The
proof is eomplete.

da, - (8.8)

t->Af

Remark 1. Let () be a homogeneous funotlon of degree zero Wlth support
contained in a ceniocal nelghbourhood I'. Take co= (m):,b(§) and ¢;=0 as initial
data in (8.7""),. Then we have v

Supp o(4) (¢(B), 0(0), o(R..)) <=0(wo) X [0, 81) X I, .

Remark 2. The method used here is also applicable for more general

degenerated hyperbolic operators, for example

n—1 i
P=D?— 1 E Q45 (w, t)D@’.DQ"‘I"Ri,
where (ay;) is positive definite and B, €OPS* (R"1) smoothly depends on .
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