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REFLECTION ON BOUNDARY OF SINGULARITIES

H ong J iaxdto

Abstract
This paper discusses the reflection on degenerated surface of singularities for Tricomi 

operator. Two kind of boundary conditions: Dirichlet condition and general first order 
boundary conditions have been investigated.

§ 1. Introduction

[1, 2] studied the reflection of singularities on nonoharaoteristic boundary 
for operator of principal type and later, [3, 4 ,6] considered the glancing case. The 
present paper is concerned with the same problem for Tricomi operators, which is of 
real non-principal type. Let us consider a differential operator of second order

Pu= Щи- t  21 D%u+ ^3%DeiM+ au (1 .1)

defined in R l= R n~1X.R\. Through any point (oa0, 0, 0 )£ # Г * *(Е+) there is a
Hamilton flow, denoted by y(a>0> £o) and tangential to the boundary i= 0 . The 
problem we are interested in is how the singularity developes along 7 (®0, £0).&'(R+) 
is the dual space of {u £ 0 “ (Rn) | supp udR +}. In this paper, we shall often use the 
notations and notions given in [6] . Denote by T(R+) the vector bundle on R+ with 
8/dXj ( j = 1, •••, те—1) and a>„ d/dxn as a base. Its coordinates may be expressed as 
(colf •••, %n, ai} •••, an) =  (ж, a). The smooth map гг: T(R%) Э (a>, «)(->(%, •••, <p„, a1} •••, 
oona„) £T(R%) induces a natural map гг* from T*(R\) into the dual vector bundle of 
T(R+), T*(Rn+). The range of гг*, RQ>r*) is homeomorphic to T*(R+) \JT*(dR%). 
Therefore, later we will always identify R(m*) with T*(R+) UT*(dR+).

If u€@'(R%) and P u £ 0 ”(R%),tt follows that WFb(u)cR(vc*). By z£W F b(u) 
we mean that z(fW F(u) if z£T*(R%) and и is smooth up to the boundary £=0 at 
point z if z~  (%0, £o) £T*(dRn+), i.e., there is a pseudodifferential operators A(%, D) 
elliptic at (a?0, £0) such that Au is smooth near (x0, 0). Our main result is the 
following

Theorem. Assume that u£3>'(Rn+) and Pu £  0" near (аз0, 0). I f  either of the
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following two conditions’.
(1) (% ^o)6 F J K ® ; 0)) ,
(2) S ^ 0 P S 1(i2"_1) is elliptic at (x0, £o) or В £  OPS0(JT) fo r  a conical neigh­

bourhood Г  of (x0, £0) mch that (x0, £o) ^W F(D tu+B u\t=0), is fulfilled, then there 
exists an interval containing (xQ, £0) of orbit y(x, f 0) CT*(R+), denoted by y (x 0, f 0) 
still, such that the alternation of y (x 0} fo) f\W Fb(u) =ф and y(x0, i 0)czW Fb(u) is 
valid.

After the present paper was accepted for publication, the author recently see 
Hormander’s new book (The Analysis of Linear Partial Differential Operators IV), 
in which the part (1) of the previous theorem was obtained for more general 
differential operators of 2nd order.

§ 2» A  Special Differential Operator

This section studies the special case of (1 .1) of the form

P u —DtU— t 2  D%u, t > 0, (2 .1)

which is a degenerated hyperbolic operator. Application of the energy estimates 
introduced in [7, 8] and the technique of mollifier gives at once

Lemma 2.1 Assume that u(z@'(.R%) satisfies P u = 0  in a neighbourhood in R \ 
of (a?0, 0), 0(xо) X. (0, 5), where 8 is a positive constant and that u(x,  0) =0, du/dt 
(x, 0) = 0  on 0 (xf). Then «= 0  in another smaller neighbourhood 0'(xо) x (0, 8'),

We also have a regularity theorem in mioroloeal version of Oauehy problem 
for (2 .1).

Lemma 2. 2. I f  Л ^ С " (%  0), where u £ @ '(R n+) and (x0, io) £WF{fD\ «[*=<>)) 
( i —0, 1), it  follows that for some S>0,

№ ( « ) n r ( % ^ o ) n { 0< ^ < S }= 0, (2 .2)
Proof By the uniqueness theorem of Oauohy problem for (2.1) it suffices to

prove the case that
/  and и are compactly supported, respectively, in R+ and Rn~x (2.3)

and
/ is smooth and A(JDf)I)\u{x, 0) GiZ^lS"-1) (6= 1.2) (2.4).

for some pseudodifferential operator AGOPS°(12”''1), elliptic at (x0, £0). Let u(fi, t) 
denote the Fourier transformation of и with respect to variables ®n-i) • Then
we have

uu(£> *)"  ~ P u (i, t) - f ( jg , f), (2 .1')
« ( £ 0 ) -& (£ ) , & (£<>)-& (£). (2.5)

Split the solution into two parts: u = V + W , where
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F (f, t) -  <v[o, | f  | v j . „ . ( I  | f  | #>'•)£,(£)+C, | f  | V i/.(|1  £ | )й(£) ],

, (2 .6)
IF(£, 0 -*wj () 0aŜ [ /1/3( |  If [fw y_1/s( |  If !••'*)

- / i / , ( 4 l f | s 8/3) j ' - w ( 4 l f H 8/a) ] / ( f ,  «)*. (2.7)

Here O0, 0± and 0 2 are all constants independent of i, f, s. In the sequal, without 
otherwise statement, all 0 % have just the same meaning. Evidently, the first is the 
solution to P «= 0  with u(a>, 0) —щ(х) and щ{я, 0) —щ(я)г and the second is that to 
P u ~ f  with u(x, 0) ^щ(х, 0) =0. In view of the property of Bessel’s functions:
|«/*001 < 04 |2[а if Re X>  —1/2, and by means of (2 .3), (2.4) it is not difficult to 
prove that A(DB)V  and Ж 6 Я (0,co)(i2"-1X (0, 1)) . The theorem on partial hypo- 
elliptioity provides that A(JDa)V and W £ Шю{В,п~г x (0, 1) ) ,  which implies (2 .2) 
immediately. This proves the present lemma.

As is well known, the usual way to analysis the propagation of singularities of 
Cauchy data is to construct a parametrix for Cauchy problem by Fourier integral 
operator. But at the glanoing case the phase function of this Fourier integral 
operator is not smooth up to the bourdary i==0. In order to overcome such a diffi­
culty, we shall study some properties of the asymptotic expansion of Bessel’s 
functions. Beferring to [9, p. 526], we have

Л (в ) -» _1/я(в-<*«(Л, »)+e*q(K *)). (2.9)
Here when гф 0, e(A, 2), q(X, 2) have the asymptotic expansions, respectively,

e(X, 2) ^во(^)+ — ei(A) +  (2 .8)%

f ( ^ 2) ^ o W + ~ ? i W + P "  (2.9)%
with

e0(_X) Ф 0, 2<>(Я) Ф 0 for all X £ C \  (2.10)
Let us denote by PJ±(t) and Q±(i) the pseudodifferential operators with t as 

smooth parameter when t> 0  and with e (±  1/3, (2 |f  |£3/a)/3 ) and # (± 1 /3 , (2|£|£3/a) 
/3 ) as their total symbols, respectively. Hence, we can rewrite (2.6) in the form

F(», i) = r 1̂ 4 l £ l " 1/0-^ 5 > o ( O +  If | - 5/6Д ^ ( О Ж

-t-r^ p ^ lf l"1/e635>(f)+ If r /6£C(^i(f))df
(2 .11)

where <p±=co^±  (2 | f  |if3/a) / 3, Aa is the pseudodifferential operator with the total 
symbol | f  |“ and E±, Q± are elliptic pseudodifferential operators because of (2.10). 
Obviously, I ± are the Fourier integral operators with phase function (ж —2/) *f ±  
(2 |£ |i8/a) /3  (sometimes, we denote them by q>± still). The homogeneous canonical
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relation associated with I ±

А ± (0-{(® >  % У> £ ) |® - y :F(2£*e/* )/8 |£ |, «?-£}. (2.12)
If we regard 1± as the Fourier integral operators from i ' ( R n”1') into & '(R n~xy, 
(0, 1)) , this relation may be written in

Д .±“ {(®, t, % % У, 0 1 а5==̂ Т (2 ^ 8/а) /3 |£ |,  ??=£, v = ± |£ | t1/2}. (2.13)
Integration of the Hamilton equation for (2 .1)

dx _ d£
ds m£, ds >0,

| _ _ 2 t, (2.14)

with the initial data x —y, t~ 0 , £»=£0f v = 0  gives its Hamilton flow
7 Ол £>) =  {</- (2fo|£ol V ) / 8, |£0| V , £o, |£o|as>, S£ R \  (2.15)

With y ±(?/, f 0) =  {7 (2/, £0)}H {v^O } and by (2.13), (2.15) we can conclude that 
for I ±(g), where '(/£#'(-R"_1), the singularity of g at (y, £0) developes along 
7±{y> £0) only.

Lemma 2.3. Assume that P u = 0  where w £ ^ /(-R+)- Then
(1) ( ® o ^ o ) G ^ ( ^ 1/6Q-(i*)Mo+ Л -5'« Q+( i > i )  (W F(A-v«E_(i*)«o+

(t*)u1))  f or some positive constant f  i f  y +(x0; £0)(y_(a;0, £<,)) does not meet W F(u ),
(2) (x0, £0) does шй meet W Fb(u) i f  y+(x0, £0) (y~(%o, £0))  f)WF(u) =  0  and 

(x0, £0) £W F (u(x, 0)) or (x0, £0) (f.WF(RDtu + u \t^ )  for a pseudodifferential 
operator R £  OPS”1 (H”_1) .

Proof Let us first prove the assertion (1). From the hypothesis: WF(u) П 
y+(x0, £o) =  0  it fillows that there exists a constant 2*>0 (indeed, any t*>0) such 
that

(* • -  (2£o(i*)s/a)/3j£oi, f ,  £0, |£0| < /F )
- (»*, *•, Г , -О € r* (« *  £o), (»*, **, £*, » •)€ ^ ( « )  (2.16)

and
(® V , £% **, 2/, £) €^>. for all (2/, £) G27* (^ -1) \ { 0>. (2.17)

From (2.11) we can get

1+(Л-1̂ _ ( 0 «о+^-5/^ ( 0 ^ - ^ - 1-(^"1/в-®-(0 «в+^-в/0-®н.( O O ,
which implies

in view of (2.16), (2.17).
Let map i  be the inclusion of t = f  into 12", Using (2.16) and the well known 

fact that W F(u\t û)czi* WF(u) one can derive
(»*, £*) e W F i i M - ^ Q ^ ^ + ^ Q M u ^ ) ) .

From the ellipticity of J+ and the homogeneous canonical relation about the 
propagation singularities of J+: WF(I±(<j)) ^  A,f,/W FifJ), it is easily seen that

(®o, £.) (2.18)
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which proves the assertion (1).
Now we turn to the verification of (2). Assume that y+(ooo, io) does not meet 

W F(u). Then the assertion (1) provides
(«0, io) e W F (A ^ 6Q -(n ^ o + A -^ Q +( t > i ) .

By means of the ellipticity of Q+(f) and the hypothesis: (x0, £0) £WF(u(a>, 0 )), we 
have («о, io) &WF(uf). Now the assertion that y(x 0) io) does not meet W Fb(u) is 
the immediate oonsequenoe of Lemma 2.2. Assume that (x0, £0) GW F(Ru1+ u<)). 
Substituting —Rui for щ in (2.18) we can get

(050, io) e W F iU - ^ Q - in R - A - f Q + Q r ) ! * ) .
The principal symbol of (A~1/eQ - ( f ) R -  A~5/eQ+(t*)) equals |£ |_s/6g+(1/3) mul­
tiplied by a non-null constant. So this is also an elliptic pseudodifferential operator 
and (x0, io) €.WF(Ui), which implies that WF(w0) ^  WF( Wo+ But—Ru±) £  (ж0, £0)» 
The remainder of the proof is the same as the preceding one.

Remark. If (x0, £0) QW F(Btu+Ru) |*=0) with R £0P S°(R n~t) instead of the 
hypothesis in (2) that (®0, io) GzW F(uq), then y(x 0> io) does not meet WFb(u) 
either.

The oruoial step of proving the main theorem is
Lemma 2.4. For any given £o€-Rn-1\{0} and any given neighbourhood in R% of 

(x0) 0), 0(xо) X [0, 8), there exist pseudodifferential operators smoothly depending on t, 
A (t) £OPS-1 (B - i ) ,  and B (t), G(t) GOPS°(JSn_1), where 5 (0 ) and G(0) are elliptie 
at (x0, io) swh that

(_ADt+ B )P ~ P (A D t+ G )+ R l„ D I+ R l„ D t+R-.„, 0 < t< 8 1} (2.19)
and

Supp <r(A)(<r(B), cr(O), <r(BU) (« -0 , 1, 2))cO'(®0) x [0, 8J  (2 .20) 
for a smaller neighbourhood 0'(xo) X [0, 8j) czO(x0) X [0, 8). Here P  is the operator 
of the form (1 .1), Bi.,*, (= 0°°(5+, 0PS-oo(Bn-1))  and a (A) (<r(B), cr(G), etc.) is the 
total symbol of A(B, O, etc.).

The proof of Lemma 2.4 is rather long and is postponed until in section 3.
The proof of Theorem From the hypotheses of the present lemma, it follows 

that there exists a neighbourhood Л г =0(хо) X [0, 8) such that Pu£G°°{A^). The 
theorem on partial hypoellipticity gives for some real s and all real
k. With ADtu+G u=W , applying Lemma 2.4 to JV  we have

PW  =  (ADt+ B )P u -'% iRt-„Dlu€G°°(Rr-i x [0, 8*)). (2 .21)
4=0

We need only to prove the case of since the explicit formula (2.7) enables
us to make (2 .21) homogeneous without affecting the conditions and the conclusions 
of the present theorem.

Let us now consider (1). If (x0, io)€.W F(u(x, 0)), then application of the
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original equation P u = f  shows that on the boundary £=»0,

(O+ Д А ) Дм=-ДТГ- A ( f -  р |а ,В в, - а ) « -  (DtO)u= BtW + gi. (2.22)

Here g1£!3'(dR n+) and (x0) £0) £W F(gf) and later all gt{i = 2.3, •••) have the same 
meaning. By (2.22) and the ellipticity of 0 (0 ) we have

А м = (0 + Н Д )-1Д Ж + ^ . (2.23)
The equality that A ( 0 + Д А )-1ДЖ  — W =  gs follows from inserting (2.23) into the 
expression of W. Therefore Lemma 2.3(2) providesy(x0t £o)C\WFb( w ) ^ 0 .  This 
means that DtW  is smooth up to boundary at (ж0, £0) and (x0, $o)€W Fb(DtW\t=o)‘ 
In view of (2.23) we have (®0, £0) бЮ Х Д м ),^ ). Now the assertion: (a?0, £0) £  
W.F6(M)is the consequence of Lemma 2 .2.

The proof of the case (2) Let bi(co, £) be the principal symbol of pseudodifferen- 
tial operator B. After substituting g — Bu for Дм in (2.22) we get

and
—| ( 0 + Д А ) B + A  ^  ttjDxj+Aa—DtO u— BtW +  gi

(-AJ3+0)tt-fF+$r5.
The principal symbol of the operator in the left hand Side of (2.24) is

-hco,
where c0 is that of operator 0 (0 ). The ellipticity at (w0> £o) of В guarantees —ЪхСоФ 
0. So there exists OPS"1 such that

(2.24)

(2.25)

(2.26)

u^R-tDtW Age.
The remainder of the proof is similar to that for the case (1).

If B£OPS0(.r) for a conical neighbourhood Г  of (x0, £0), then the equality
(O -  A B )~ W + g7 near (x0, £0),

follows immediately from (2 .25), After inserting it into (2.24), no doubt, we can 
see that there exists a pseudodifferential operator R0 £  OPS0, such that

DtW +RoW ^gs, near (&o, £o).
The proof of Theorem will be completed if we note the remark of Lemma 2.3 and 
repeat the argument in proving the case (1).

§ 3. The Proof of Lemma 2.4

Let operators A, В and 0  have, respectively, the asymptotic expansions cr(A) 
о (5 )  &—a-!- •••and o'(O') /4/<?o"i-c_i+c_2-b •••. We write (1.1)

in the slightly general form
Р - А Ч Д  (1 .1')

о
where R  £  OPS2 has the asymptotic expansion cr(I2)/̂ 'ra+'>'i+**“. With R being in 
OPS2 with Га as its total symbol, we evaluate



(ADt + B )(D 2t + R ) - ( D 2+ Il)(A D t+ 0 )
=  ( B - 0 - ( 2 D tA ) )D f+ (A R -R A -  (D2tA+2D tO))Dt 

+  (BR -  R O +A (D tR) -  DIO) . (3.1)
Hence the transport equations are of the form

60= 69, (3.2)
2de>-i/dt-\- s / — l(c_*— &_*) =0, (3.3)

5о_г/ ^ + y { r 2,«-j-i>-----2~~ e>-i-ir-t=F}, (3.4)

— o-iy +  sf-lb -iri+ a -t-id r-j/d t^ F f' (3.5)
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Here F\ (£==1, 2) depend only on <?_*+», 6_,+fc, «_*+fc_i (}> k> ± )  and the operator P, 
moreover, Fl^Fo^O. Setting Га—— t |£ |a and r±= ttj£j in (3.4), (3.8) and 
combining (3 .3 )—(3 .6), one can get the systems of differential equations:

■ a > §  |f| l)]fj" - K
l td { a - i^ i \ i \ ) /d t- t  oo-i/dxj-------- - 2\£\---------—

which are degenerated symmetric systems.
Let us consider the Oauohy problem of (3.6)* with initial data

o-j(®, *, OI*=o=C-,(®, О е С Г ^ х В Г ^ О } ) ,  (3.7),
homogeneous in £ of degree — The proof of Lemma 2.4 is based on the existence 
of 0 “ solutions of (3 .6) г, (3.7)*.

Lemma 8.1. For every l there exists a unique solution to (3.6)*, (3.7)*, 
с_,,<г_1_г[£ | £ 0 QO(Rn~1x  [0, 1] x i2n*‘1\{0}) which is homogeneous in £ of degree —l.

Proof With Wi =C -i±sJ t й_!_г|£ | we may transform (3.6)*, (3.7)* into

±  sT t 8tW t - 1 g  | | |  dx}W t ~ ~^r~  | f |  W ?=F?±  V T П  (3 .6'),

TFf|*=o=c_*(aU). (3.7')*
The uniqueness of (3.6)*, (3.7), is equivalent to that of.(3.6')* (3.7')*. Furthermore, 
the solution to (3.6)*, (3.7)* as well as (3.6')*, (3.7')* propagates with finite speed 
and for any £ every characteristic curve of (3.6')* is nothing else but that of (1.1).

We now proceed to study the existence of (3.6')*, (3.7')*. The coefficients in 
(3.6')* are all smooth in (x, £) £ jR"-1 X Дя-1\ {0} and continuous in ££ [0,-1]. Let us 
consider the case of l —0. Integration of (3.6')*, (3.7')* gives the solution Wo smooth 
as a function of x, £ and t > 0 and continuous in t> 0 . Evidently, c0=  (W t+ W o)/2> 
a -1=  (W$ — Wo) /2  s f T |£ | satisfy (3 .6)0 in t > 0, and (3.7)*. The rest task is to show 
that c0, a_i are smooth up to the boundary t — 0. From the first equotion of (3.6)* it 
follows that c0GCfl([0, 1], 0 “(i2n_1 x J2"“1\{0 } ) . By means of the second of (3.6)* we 
can obtain



A' 1/a( iW r <’0+ < § l f i a*'<!'>) | , ^  (3 -8)
which implies that a.iG^CCO, 1] , 0'a(Rn~1 x Вп~г\ {0} ))  too.

Obviously, repeated application of (3 .6 )0, (3 .7)0 leads to the conclusion that 
the solutions Co, a_i we obtained are smooth up to the boundary t —0.

When 2> 0, we can prove the assertion of the present lemma by induction with 
respect to 2. No difficulty in principle occurs. So the details of the proof need not be 
repeated. This completes the proof.

The end of the proof of Lemma 2.4 For given neighbourhood of (oo0, 0) ,
O(®0) x [0, 5), ohoose a cutoff function <р(оо) £0(Г(О(жо))  with < р (я )=  1 near x Q. Set

Co=(p(co) and с_г= 0  (2=1, 2, •••) (3.7")
as the initial data of (3.6.)j. Hence Lemma 3.1 shows that for every l the system of 
transport equations has 0°° solution, which is homogeneous in £ of degree — 2. The 
property of propagation with finite speed ensures that one can find another 
neighbourhood of (x 0, 0), О'(ж0) X [0, 8 ± ) d O ( x 0)  X [0, 8) such that 

Supp c_{(®, t, £) (a .i_i(a, t, f ))  с(У(®0) x [0, 8j) if 
Utilizing (3 .2), (3.3) we can obtain 6_г (2=0, •••). Now the total symbols of 
operators A, В and О expected are determined by the asymptotic sum of {»_,•}, {&-*} 
and {c-j}. Furthermore, (3 .2 ), (3.7") guarantee the elliptioity of В and O. The 
proof is complete.

Remark 1. Let ф(£) be a homogeneous funotion of degree zero with support 
contained in a conical neighbourhood Г .  Take Сов 0>(®)«К£) an(i  с_г=0 as initial 
•data in (3.7")г. Then we have

Supp ct( J l)  (< r (B ) , c r ( 0 ) ,  <r(BLco) ) c : 0 ( x o )  X [0, 8i) У .Г ,

Remark 2. The method used here is also applicable for more general 
degenerated hyperbolic operators, for example

P  = - 1 g  ai} (x , t ) B a(D ej + R t ,

where (бу) is positive definite and Rx £  OPS1 (J2n_1) smoothly depends on to
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