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ON METHODS OF SOLTUION FOR SOME KINDS
OF SINGULAR INTEGRAL EQUTIONS 

WITH CONVOLUTION* *

Lu Jia n k e  (Oh ie n - K e  Lu) (j?g-E *T)**

Abstract
Methods of solution for some kinds of equations containing Cauchy principal value 

integral together with convolution are discussed. The general solutions and the conditions 
of solvability are obtained.

There were rather complete investigations on the method of solution for 
equations of Cauohy type as well as integral equations of convolution typea,2;i. The 
invertibility of Wiener-Hopf operators with discontinuous coefficients was considered 
in [3]. For operators containing both Oauohy principal value integral and 
convolution, the conditions of their Noetherioity were discussed in [4, 6] in more 
general cases. For applications, the problem to find their solutions is very impor­
tant. In this paper, we give effective methods of solution for certain basic kinds of 
such equations, including, besides the Oauohy principal value integral, equations 
with one or two convolution kernels, equations of Wiener-Hopf type and dual 
equations, in normal oases.

Some special kinds of Riemann boundary value problems with discontinuous 
coefficients appear in the course of solution, which are solved in the same time. It is 
necessary for us to introduce certain new classes of functions in advance and to point 
out some of their properties.

The Fourier transforms used in this paper are understood to be performed in 
La(— oo, +oo) and the functions involved certainly belong to this space.

§ 1. Some Classes of Functions and Their Properties

In [2], the concepts of classes {0} and {{0}} were introduced as follows. A 
function F  (s') belongs to {{0}}, if the following two conditions are fulfilled.
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1) F ( s ) 6 # ,  that is, it satisfies the Holder condition on the whole real axis, 
including oo, i.e., ±oo (notation used in [6]);

2) F (s )£ L a( -c o ,  +  oo).
f ( t )  £  {0} if its Fourier transform

F(s) = V/=— i . [  f ( t)e mdt, -o o < s < + o o , (1 .1)

belongs to {{0}}. On maintaining condition 1) , we strengthen condition 2) slightly 
to

2') F(s) =  О(1 /(s|^), where |s| is sufficiently large.

Then we call F(s) €  ((0)) or ((O))'4 and f ( f )  £  (0) or (0)*4. From 2)' it is assured 
that 2) is valid. If we strengthen 2)' slightly again to

2)" F(s) £  Н й(N»), i.e., it belongs to Л  in the neighborhood of oo,

and J ’(oo) = 0,
then we call F(s) £«0» or «О»'4 and f ( t )  £  <0) or (O)'4. From 2)" it is assured that 
2)' is valid. Hence

«0» с ( ( 0) ) с {  {0}}, <0> C (0) C {0}.
For two functions Jo(t) and f ( t ) , if we use the notation of convolution

**/ “ *(*“■*)/(*)<**> 0L.2)

then it is well known that
V Q o*f)= K F ,

where К , F  are the Fourier transforms of Ъ, f  respectively (we always use the 
capital letter represents the Fourier transform of the corresponding small letter). 
We know that Jo, / € { 0 }  implies Jc*f£{0}m. Obviously, when at least one of Jo and 
/  ̂  (0), then Jo*f £  (0); when both Jo and /  £  (0), then Jc*f £  <(0>.

We also introduce the operator T of Oauohy principal value integral

Т / - Д - Г “ -^Ц -*г, -o o < £ <  +  oo. (1 .3)ш  J-oo t —i
From [1, 7], T maps {{0}} and «0» into themselves respectively and T2= I  (iden­
tity).

We also introduce operators № and S:
N / ( 0  “ / ( - * ) ,  S /( i)= /( t )sg n t . (1.4)

Obviously N a—S2= I  and SN == — NS.
For the inverse Fourier transform operator V ”1:

V~*F =  —~ к  Г |  (s) e~itsds, - o o < t< + o o , (1.6)
v  2ov J

it is evident that
V -1 =  N ¥  =  V N ,  V a = N . ( 1 . 6 )
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It was proved in [2] , that when applying to functions in {0}s
V S -T V . (1.7)

The following lemma plays an important role:
Lemma 1. When applying to functions in {0},

V T - - S V ,  (1.8)
i.e.,

Proof From (1.7), T —VSV-1 and so, by (1 .6),
V T = V W ^ - N S N V - - N aS V - - S V .

Note that, from /€ { 0 } ,  (0) or <(0>, generally we could not assure that Т /  
belongs to the same class. However, we have

Lemma 2. ! / / € { o}, (0) or <(0> and F (0) —0, then Т / belongs to the same 
class.

Proof By supposition, V /G  {{0}}, ((0)) or «0». From Lemma 1
V T /=  — F(s) sgns.

Noting that F(oo) = F (0 )  = 0, we know V T /£ { { 0}}, ((0)) or «0». Therefore 
T /G {0}, (0) or<0>.

Besides, we note that, for the class (0) or <0>, the index g  is invariant, provided

~ < g < ± .

Moreover, i i f ( t )  GLi ( — -foo),  then F(Q) —O is actually
f+M

f ( t )d t—0.

§ 2. Singular Integral Equations with One 
Convolution Kernel

Let us solve the following equation

a<p (t) ■ ш - Г 2 & . Л , -J —00 *tt "t ’ J ~oo-t s /  •
Ъ Ф О ,  — o o < i <  +  co, ( 2 .1)

where a and b are constants, Is, g £  {0} and the unknown function <p is required to 
be in {0} too.

Taking Fourier transforms of both sides of (2.1), by Lemma 1, we get
la — b sgn s+ Ж  (s) ] Ф (s) =  G (s),

which follows 6r(0) — Ф(0) =0  since (?(s) is continuous at s= 0.
Restricting ourselves to the normal type, i.e.,

— (a —b), 0 < s <  +  oo,

•(a + b ) , — c o < s< 0 ,
(2 .2)
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we obtain
0>(s)=----- — . (2.3)a —bsgn s+ K (s)

Since (t(0 )= 0  and GT(s) 6  {{0}}, we conclude 0(s) G {{0}} and hence p = У _1Ф is: 
truly the unique solution of (2 .1) in {0}.

We also see that <p G (О)'4 if g G (0)А and pG <0 *̂ if To, g G (ОУ1, provided ju»<1„ 
Thus, we obtain
Theorem 1. I f k ,  <7G{0}, in erne of normal type, i s .  (2 .2) to be valid, then.

(2 .1) is solvable i f  and only i f  6?(0) = 0  and has the unique solution in {0},
where Ф is given by (2 .3). Moreover, </€(0) implies #>6 (0) and To, </G<0)  implies.
<P €  <0>.

After simplification, <p may be written as

<p(f) “ StoOO Too(t-v)g0(r)&t, (2 .4 )

where ^o—V -^ o, 0̂ ==V- 1A"o, in which

<?o(s)■
0 QO
« —6 *

e +  &*

s > 0,

s < 0;
* 0  (»)«

^ 0 )
a -h + A C s)’

A ( s )
й+б +  А ^ ) ’

s > 0,

s < 0.
(2 .5 )

Noting that, although A 0(s) is discontinuous at s = 0, it would not influence the 
property /fco*#oG{0} since (?(0) = 0.

§ 3. Singular Integral Equations with Two 
Convolution Kernels

•Let us solve the equation

a<p(t)-\—~r"f - cfaH— i = f  #*(£—т,)0>('г,)й'гЧ— i =  f k<i(t—r)p (r)dvr w  m i -со v - t  s /  2m Jo v /гч ' V23rJ-«
= 000, &¥=0, —oo<tf<+oo, (3 .1)

where a, b are again constants, kt, Toa, g G {0} and the unknown functions (p± and 
hence q> are required to be in {0}. Here we have denoted

{pit), t>  О, . . ^ / 0 ,  t>  0,
10, t< 0; ^  l -cp(t) i< 0 .

Assume that equation (3.1) has a solution. Taking Fourier transform, by Lemma 1* 
we get

(a -  6 sgn s) Ф (s )+ A* (s) Ф+ (s) -  A 2 (s) Ф~ (s) ~(?(s), (3.2)
where (^(s) are respectively the Fourier transforms of (p±(t), which are the 
boundary values of the (seotionally) holomorphic function Ф(г) in the upper and 
the lower half-planes respectively, and $(s) =  (P+(s) — Ф~(£)т. In order that 0 ±(s) 
and then $(s) are continuous at s = 0, it is necessary that Ф(0) = 0, i.e., Ф+(0) =Ф~(0)»



No. 1 Lu, J. K. SINGULAR INTEGRAL EQUATIONS WITH CONVOLUTION 101

(3.2) is the Riemann boundary value problem with discontinuous coefficients:
0 *(s)=D (s)< l>~ (s)+F ts)) — o o < s < + o o ,

in which we have put
D( A -  a - b s g a s + K a(s) F { , &(s)

 ̂ . a - b s g n s - b K ^ s ) ’  ̂ a — b sg n s+ K ^ s)

(3.8)

(8.4)

j - 1, 2. (3.5)

and restricted ourselves to the normal type case
(а —Ь), 0< s <  +  oo,
(a + b ) , — o o < s < 0 ,

Noting-that ^ ( ° ° )  = 0 which implies D(oo) =  1 and F (со) = 0  since 6?(oo) = 0, 
we know that $=oo is not a nodal point of the problem. Its unique nodal point is 
« = 0. We require that the solutions of (3 .3) should be at least continuous along the 
whole real axis and Ф(оо) =*0.

According to the method used in [1] , take a continuous branch of logD(s) such 
that it is continuous at s=oo, e.g., logD(oo) = 0, and denote

7o—oo+ifto—’2^ ' ^ 0̂ ‘̂ (~ ^ ) Ж + 0 )} . (3.6)

Then choose an integer и, the index of the problem, such that 0< a = a 0—x < l.  
Denote 7 = 7o—« “ cH-tySo. Since we require Ф (оо)=0, so we get: when и > 0, the 
general solution of (3 .8) (without considering the behavior of Ф±(э) at s= 0  for the 
time being) is

F (t)dt (3.7)2i X +( t) ( t—z) *
where

Q«-i(^) —Oo+Oig+*,*+0 _̂iS,<-1 (3 .8)
is an arbitrary polynomial of degree x—1 (in the sequel we understand Qfc==0 when 
i:<0); when — 1, the problem is solvable if and only if the conditions (3.9)

F ( t)d t '
J — 00

=0, j - 1, — x
I—

are satisfied, and then the problem has the unique solution (3.7). Here

x ( s )  =
0m

(■F ±±y er<°)
\  z—ъ *

Re 8>Q> 

Re 2< 0,

(3.9)

(3.10)

where

(ЗЛ1>
in which we have taken the definite branch of

t-\-ilogD0(t)= k log t —i -log D(i),

. provided we have chosen log 

Is easy to prove

t + i
t —i .£=00

>0, what is the same, log t-\-i
t —i t=±o

(3.12)

= ±iw . It
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(3.14)

Х+ф-ч/Л оСО *™ , X - ( t ) = e r^ /s /D 0{f)} (3.13}

where ^-О0(()= ех р |А  log J)0( i) l  has definitevalue. By (3.7), we get

®+ W - ^ ( » ) + r  (s) { r ( 8) +

® ' « ~ j S § +x ' (s) h s)+7 t $ } ’
and thereby

« » - ^ [ 1+ д ^ у ] + [ х ч 8) - д - « ] { а д + - ^ ^ } .  ( з л е )

Since X +(s) are bounded and =£0, it is easy to verify Ф*(s), 0(s)  G £а(—oo, + 00} 
and G IT on any closed interval exterior to s = 0.

The only thing required to be considered is their behavior near s=0. In Order 
that they belong to {{0}.}, they ought to be continuous at s = 0. We prove that it is 
then necessary for (?(0) = 0.

First, let s= 0  be an ordinary node, i.e., 0 < « < 1 . Then уфО. It is known that,, 
in the neighborhood of s—0,

X +(s) -  j D 0(s)Sve™ \ Г  0(s) G H,
where, by (3.12)

V A )(± 0 ) - e x p 4 { ± ^ + l o g l ? ( ± 0 ) } ,  -*-***•' (3.16>
•" v  Do( —0)

On the other hand, from [1], § 26, 4°, when s > 0, 
e-ro(5)JotgygF F (+ 0 )  е ~ у я *W (s):

* - \ - у  У Щ Щ - V A ^ ) ' } + y ( s ) l  (3д7>
where W*(s) =W**($)/\s\a', 0< « '< «  and W **(s)£H : Then, by (3.16), after 
Simplifying (3.14), we may get

a y  eti
Ф *(+0) = —A ------ [ F (+ 0) - e - 3̂ F ( - 0) ] . (3.18}2 i sin y%

When s < 0, instead of (3.17), we have
<TFc(3) ( ey*t _ F ( + 0) _ _  ctgT^ F ( - 0) fQ i«yy

sy b a s i n g  -ч /Ж +оУ  2i n/ Д Г - о}) K K }
and then

<F(s) =  -

o%y<xi
Ф* ( -  0) -  9 - № (■+ 0) -  e ^ V  (■- 0) ] ■ (3.18)'M sm y%

On comparing (3.18) with (3.18)', we know that <&(s) is continuous at s=0 if  
and only if (regarding eyxi ф 1)

F (+ 0 )= e~ SymtF (~ 0 ) .  (3.19)
And then we have Ф+(0) = 0. Since we require Ф(0) =0, we must also require Ф“(0) 
=0. Returning to (3 .2), we know that we must have F(0) = 0  and hence 6r(0) =0. 
But once (?(0) = 0, we really have Ф±(0) =Ф (0) = 0  and Ф*(в), Ф(в) G S  in the 
neighborhood of s = 0, and therefore Ф±(в), Ф(в) belong to {{0}}.
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Now, let s= 0  be a special node, i.e., «=0. Then y =  i/30. If /80#  0, then (3.17) 
and (3.17)' remain valid, with W*(s) € H 0, i.e., ^ * (± 0 ) exist but 'do not equal to 
each other possibly. In place of (3.18), we have

0y<xi
Ф+( + 0) —2i sin ysv [ ^ ( + 0) _ е- з у ^ ( _ 0)]

where

+  ч/ Д >(+0) er’(0> lim s‘*[?r(s) + Л ] , 
8-»+0

f 0 Q/i*, « > 0,
10,

and a similar formula for Ф+( —0). In order that Ф+(± 0 ) exist, we should have 
^ *(± 0) =  — A0. And then we are back to (3.18) and (3.18)' and hence again to 
(3.19). Thus, we have 6?(0)=0 again.

Once (?(0) = 0  is fulfilled, then F(0) = 0  and therefore W (s)£ H  near s = 0. Thus, 
in order that $ +(s) is continuous at s = 0, the constant term of Q*_i(g) should take 
the value

Oi _  j"+i (4
1 2jt J-

,*«+1 f+oo
X +(t)t

if » > 1; and an additional condition of solvability
f+°°
i:

F (i)d t _  о 
X +(t) t

(3.20)

(3.21)

should be supplemented if «<0. When O0 is taken to be (3.20) or (3 .21) is fulfilled, 
it is readily seen Ф*(0) =Ф(0) =  0.

If /Зо=0, i.e., 7 = 0, then D(s) is continuous at s=0. Sinoe ЬфО, we know at 
once A"i(0) =ATa(0) = 0. Bo D (0) = 1  and hence again we must have _F(0) =0  and 
then (?(0) = 0  in order that Ф(0) =  0. Thus, s= 0  is not a nodal point at all. There is 
no problem in this case.

In all of the above oases, ®*(s), Ф(в) £  &  undoubtedly.
Thus, we have
Theorem 2. Under supposition, in the normal type case, equation (3.1) is 

possibly solvable in class {0} only when 61(0) =0. Assume that this is fulfilled. I f  s= 0 is 
an ordinary node, then, when the index «>=0, it  always has the solution q>=У - 1Ф, where 
Ф is given by (3.16); when « <  — 1, it  has the (unique) solution as above, provided the 
conditions of solvability (3.9) are fulfilled. I f  s = 0 is a special node and К t (0) =  
.йГа(0), the above statements remain true; in case К±(0)Ф К 2(0), then, it has the 
solution as above with O0 to be taken as (3.20) i f  1, and it is solvable as above i f  and 
only i f  the conditions of solvability (3.21) and (3.9) are fulfilled i f  sx< 0 (the latter 
disappear when и= 0).

R em ark In applications, we often have real equation (3.1), in which a= A
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is real, 6=1% is purely imaginary (^=0) and h±, Jc2 are real functions. In this case

D (± Q )~  A + h W ^ B i  
v J  A + h {0 )T B i

are conjugate to each other, and «0= 7̂ —{arg D ( —0) — arg D (+ 0)} so that a0 is not
2ov

an integer. Thus, s= 0  is an ordinary node for the real equation (3.1).

§ 4. Singular Integral Equation of Wiener-Hopf Type

In this section we consider the method of solution for the equation

6^ 0, 0 < i< + o o , (4 .1)
where a, b are constants, h, g= g+ €  ФУ and <p=<p+ is required to be in {0}.

Let &, ££«)>* (± .< f ju < iy

On extending (4.1) to — oo< t< 0 , the right-hand side of (4.1) is augmented 
with an unknown function $>_($). Taking the Fourier transforms of both of its sides, 
by Lemma 1, we get

[a—b sgn s+  К  (s)] Ф+ (s) — (t(s) + Ф~ (s).
Restricted to the normal type case, i.e., RT(s) satisfying (2.2), it can be written as
(3.3) with

W - a - b J s + K(.sy  * « - * > « « « .
Denote

where log Z>(s) is taken to be continuous for s> 0  and s< 0  respectively such that 
0< aeo< l .  Note that since ЪФО.

Then take y0=ao+&A>, 0< a= «o—ж<1, у = а + ^ 80 as in § 3, n being the index 
of the problem. We also have у  ̂ 0  since 6 =£0.

Therefore both s= 0  and s=oo are nodes. Note that Ф~(оо) —Ф(оо) =0  since we 
require Ф* (00) =0.

Let s= 00 be an ordinary node at first. From [1] , we know that, the general 
solution of (3.3) is

® (« )-Г (* ){< ?а( « ) + . ^ Ш ,  Шг{г)

when и>  —1, where Quiz) — O0+ 0& + •

1 [*” z+i 
2m  J-

F (t)dt (4.3)t+ i  X +( t) ( i—z ) ’
+0^zx is an arbitrary polynomial of degree

a: and X (2) is still given by (3.10)®. Since then X  (s) = x+(s)/sY", %+(s)

ф  However, a factor (s+ i)/(£ -H ) should be multiplied in the integrand of (3.11).
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hence we write Qx(z) in (4.3) instead of Q ^ (z ) ,  which is sufficient for Ф(со) —0„ 
Moreover, it should be noted that Wt (z) cannot be separated as, in general

U 4*00 F (i)dt JLf
4©o F (t)d t

2 » J X +( t ) ( t - z )  2 m ) - ~ X +( t ) ( t+ i ' )>
because the integrals in the right-hand member may be divergent. When « < —2, 
the conditions of solvability read

In this case

r  n m  , - o  i - 2 .
J-CO X +(t)(t+ i)} 3 *•*, '—it. (4.6)

ф+is)= i  F(s) +  X*  ( s ){ r i( s )  4 Ш  1 
(*+»)*}•

(4.6)

Since .F (oo)=0, we know that ^Fi(s) ='$ri ( s ) / |s | ) “', «'<« and Wl(s) in the 
neighborhood of s= 0. Hence it is sure that Ф+(оо) = 0. We consider the following 
two cases.

I е Let aco>-^-. If fi>cc„, ^ i(s )  is bounded and so X +(s)?Fi(s) = 0 (1 /  |s |a") near 
A

s —oo, And since J|,( s )= 0 ( l( j s j ' ‘), ^ +( s ) = 0 ( l / |s ) ,t). If ^ < « 0=, again by [1], we
know X +(s)Wi(s) =  0 ( l / | s | “”-8) with s > 0  arbitrarily small. Take s such that aM—

1  18 > ~ .  Therefore, in any case, Ф+ (s) = 0 ( 1 / |s |*'), v —min{p, ax— e )>-«-•
A A

2° Let aoo<-4- Since F (t)  €  H ,l{NS), so, by [1], § 6, we know that F ( t ) /X +{t) 
A

GLp-^JVe,,). In this case, (4.4) becomes valid, the integrals in which are convergent
now, and thereby X+(s)W (s) being of 0 ( 1 / |sI'4). In order to guarantee
$ +(s) €L a( — oo, + o o ), we are obliged to take

п  -  1 f+” F (t)d t
* 2m)-„  X +(t) ( t+i)

in (4.6) when x> 0, that is to say, (4.6) may be written as (3.14) in this case. 
When «<0, there is an additional condition of solvability

F (t)d t _ 0
■ J —©о x +i_t) ( t+i)

which should be supplemented to (4.5) if и<  — 1. Thus, the conditions of solvability 
return back to (3 .9 ).

Next, let s=co be a special node: «^=0, у^-гР^фО. In this case, (4.4) remains 
valid and the discussion is the same as 2° above.

Thus, Ф+ (s) satisfies our requirement near s=oo; Ф+(s) £  H  and £ La( — +°° )

factually being of О(1 / 1 s | *'), v >  — •

Now we consider the situation near s=0. The discussion is similar to that in § 3. 
By the requirement Ф+(+ 0 )  =Ф+( —0), we may get (3.19) again. But since we have 
A ( ± 0) =(?(0) D ( ± 0) now, it may be rewritten as
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<?(0) [D( +  0) - e 3̂ iD ( - 0)] - 0.

By noting that D (—0)/D (+Q ) =e2yai and у^У о—кфО, so

D (+ 0) - е3У *Щ -0) = Z)(+0) ( l - e - ^ <) =?&0 

and then again we get G(0) = 0.
The remaining discussions are the same as in § 3. But we should note that, in 

case «„>-1 , if « > 0, sinpe 3>+(s) is then given by (4.6), the constant term in Q* must

be taken as
Oo- vy.-l /•+» F (t)d t

2oc X +( t ) ( t+ i ) t  
instead of (3.20), and if —1, there is an additional condition of solvability

г+~ F (t)d t

(4.7)

r. =0, (4.8)X +( t ) ( t+ i ) t  
Finally we get Ф+(0) =0, $ +(s) GJ&.

Futhermore, it is seen that actually (E>+(s) G ((0 )).
Thus, we obtain
Theorem 8. Under supposition, in case of normal type, the necessary condition 

for the equation (4.1) to be solvable w  {0} (actually in (0)) is Gt(0) = 0. Assume that

this is fulfilled. In case s= 0  is an ordinary node, i f  ceeo>-q-, then it has the general

solution (р=Ц~Щ^ when « >  — 1, where Ф+ (s) is given by (4.6), and (4.5) is the

condition of solvability when 2; i f  it  is solvable as above when with

Ф+ given by (3.14), and the condition of solvability is (3.9) when « <  — 1. In case s=0

is a special node, i f  Ф+ is again given by (4.6) when и> 0  with the constant

term of Q* taken as (4.8), and when besides (4 .5), the condition of solvability

(4.8) should be supplemented; i f  then the constant term of Q*_i in (3.14) should
£

. be taken as (3.20) when «>1, and when и<0, besides (3 .9), the condition of solvability 
(3 .21) should be supplemented.

Rem ark 1. It is seen from the above discussions, when in fact, the
£

obtained Ф+ G «0» and hence q> £  <0>.
Rem ark 2. When (4.1) is a real equation, as shown at the end of § 3, s=0  

must be an ordinary node. It is also easily seen that the characteristic feature for 
1 1«oo>-n- or<-^-. Denote a = A  and Ъ—Bi as before. By definition of «„, it is obvious £ £

that
1 л. A-\-Bi 0<oc«, = 7T“ arg —;— < 1,2 ни A —Bi



No. 1 Lu, J. Z. SINGULAR INTEGRAL EQUATIONS WITH CONVOLUTION 107

Hence means gr<arg < 2яг, i.e., A + B i  lies in the quadrant II or IV;A A — JM
means A + B i  lies in the quadrant I or III (including the case .4= 0 ).

§ 5. Dual Singular Integral Equations

The above method is applicable to solving the dual singular integrah equations

. , < . ( « ) 0< i< + o o ,

ЯгИ(4) + А Г '^ А Й -
Ш J -oo r — I

(6 .1)
dr+- fa(t—v)cd(V)diV=g(ji), — oo<£<0,

J  —со

where as, bj are constants, Toj, </£ <0> ( j = l ,  2). Find its solution <p£ {0}. Assume bx, 
6a are not equal to zero simultaneously.

Rewrite (6.1) as
a i 6 ) + 5 i T t o + ^ 1'»6> =^ — (p-, I

Щсо +  baEoi+lstfba) — g+(p+} J
where <p± are unknown functions, to be required belonging to {0} too. Taking 
Fourier transforms, we get

(«1— b1s g n s + K 1')Q=Gf+0 ~, l 
(«2— b2sgns+l£<i)Q=G+<l>+. J

Since we requrire Q is continuous at s = 0, we must have £2(0) = 0. Restricted to 
the normal type case:

К
L -  (a,-

(fy-bi), 0 < s <  +  oo,

+  h), - o o < s <  0,
2,

we then have
£(s) g (a )+ g~(g ) (ЭД+Ф+(«)

(6 .2)

(6 .8)61sgns+iT1(s) a2—&2Sgns+A 2(s) ‘
Therefore, we should solve the Riemann boundary value problem (3.3) again, 

in which

° M  * ■ « - № » - ! ] < ? « .  (6.4)

In order that Q(s) is continuous at s=0, it is necessary that ^ ( s )  are continuous, 
at s= 0 and Ф±(0) =  — 6?(0), Discussions may be made fully analogous to thosein § 4. 
Since we also require Ф+( + 0) =Ф+( —0),we get 6r(0) = 0  again. Hence all the results 
as stated in Theorem 3 remain true and co=V_1£2 in which Q is given by (6.3). The 
only difference lies in that y„ or (and) у  may be zero, for instance, 7^=0 if ax/aa =  
Ъх/Ъа, in which oases the analysis will be even simpler. It is also obvious that the 
solution со in {0} belongs also to (0).

Finally we remark that the methods of this paper may be used to solve the 
equations mentioned above in the exceptional oases.
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