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ON METHODS OF SOLTUION FOR SOME KINDS
OF SINGULAR INTEGRAL EQUTIONS
WITH CONVOLUTION™

Lu Jianke (Crien—K= Lu) (% 1 T) **

Abstract

Methods of solution for some kinds of equations containing Cauchy principal value
integral together with convolution are discussed. The general solutiong and the conditions
of solvability are obtained. '

There were rather complete investigations on the method of solution for
equations of Cauchy type as well as integral equations of convolution iype™ . The
invertibility of Wiener—Hopf operators with discontinuous coefficients was considered
in [3]. Por operators ocontaining both Cauchy principal value integral and
convolution, the conditions of their Noethericity were discussed in [4, B] in more
general cases. For applications, the problem to find their solutions is very impor-

tant, In this paper, we give effective methods of solution for certain basic kinds of
such equations, including, besides the Cauchy principal value integral, equations

with one or two convolution kermels, equations of Wiener—-Hopf type and dual
equations, in normal cases. _ _

Some special kinds of Riemann boundary value problems with discontinuous
coefficients appear in the course of solution, which are solved in the same time. It is
necessary for us to introduce certain new classes of functions in advance and o point
out some of their properties. '

The Fourier transforms used in this paper are understood to be performed in
Ly(— o0, +00) and the functions involved certainly belong to this space.

§ 1. Some Classes of Functions and Their Properties

In [2], the concepts of classes {0} and {{0}} were introduced as follows. A
fanction F (s) belongs to {{0}}, if the following two conditions are fulfilled,
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1) F(s) Eﬁ, that is, it satisfies the Hilder condition on the whole real axis,
including oo, i.e., +co (notation used in [6]);

2) F(s) €Ls(—o0, +00).

f (%) € {0} if its Fourier transform

7() =Vf=712»__; ﬁ: F)e*ds, —oo<s<too, (1.1)

belongs to {{0}}. On maintaining condition 1), we strengthen condition 2) slightly
t0

2) F(s)=0(/|s|*), y,>—;—, where |[s| is sufficiently large.

Then we call F(s) € ((0)) or ((0))* and £(t) €(0) or (0)¥. From 2)’ it is assured
that 2) is valid. If we strengthen 2)’ slightly again to

2)" F(s) €cH*(N,), /J,>%:, i.e., it belongs to H in the neighborhood NV ”_pf oo,
and F (o) =0,
then we call F (s) € «0» or «0»* and f(t) €40> or {0)~. From 2)” it is assured that
2)’ is valid. Hence

<O ((0)) ={{0}}, <0><=(0)={0}.

For two functions k() and f(t), if we use the notation of convolution

lo*f-=\/——%;[i: b= f (¥)dr, @
then it is well known that '
VU"*f )=KF,
where K, F are the Fourier transforms of %, f respectively (we always use the
capital letter represents the Fourier transform of the corresponding small letter).
We know that &, f € {0} implies k=f € {0}™. Obviously, when at least one of % and
f €(0), then kxf € (0); when both % and f €0, then kxf € {0).
‘We also introduce the operator T of Cauchy principal value mtegral
Tf——-mj_m fv('”; dv, —oo<i<+oo. (1.8)
From [1, 7], T maps {{0}} and «0» into themselves respectively and T?=I (1den—
tity).
We also introduce operators N and 8:
Nf@® =f(=1), 8f@)=f(@sgni. (1.4
Obviously N?=8?=I and SN=—N8.
For the inverse Fourier transform operator V1
1

oo o
V-1F=:/—?;[_mp(s)e-mds, —co<t< o0, (1.5)

it is evident that _ '
V-1=NV=VN, V2=N. : (1.6)
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It was proved in [2], that when applying to functions in {0},
VS=TV, . @€.m
The following lemma plays an importé.nt role:
Lemma 1. When applying to functions in {0},

° VI=--§V, | | (1.8)
é.e., .

_V T L@ gy ——F(s) sgns. : (1.8)’

o) - v—1
Prroo f From (1 7) T=VS8V~* and so, by (1 6),
VT V"SV'1 NSNV = -—NQSV-— —-8V. :
Note that, from fe{o}, (0) or <O>, generally we could not assure that Tf
belongs to the same class. However, we have

Lemma 2. Iffc{0}, (0) or <O> and F(O) =O then Tf belongs to the same
class.

Pfroof By supposition, Vf& {{0}}, ((0)) or «0», From Lemma 1
VTf=—F(s)sgns.
Noting that F(o0) =F(0)=0, we know VTj‘ € {{O}}, (( 0)) or «0». Therefore
Tf € {0}, (0) or <0 o
Besides, we note that, for the class (0) or {0), the index w is invariant, provided

1

Moreover, 1f Vi (t) € Ly(—oo, +00), then F(0)=0is a.ctually
| J f(&)dt=0.

§ 2. Slngular Integral Equations with One
Convolution Kernel

Let us solve the followmg equation

O e I GO O

b0, —oco<i<+oo, (2.1)
where @ and b are constants, », g€ {0} and the unknown funetion ¢ is required to

be in {0} too.

Taking Fourier transforms of both sides of (2.1), by Lemma 1, we get
A [a—bsgns+K (8)]D(s) =G(s),
which follows G(0) =@(0) =0 since G(s) is continuous at s=0,
- Restrioting ourselves to the normal type, i.e.,
| K(g)%{—(a—b), 0<s<+o0,
: — (a+b), —oo<s<0,

(@2
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we Obtain

P = a— bsgn(:z-K ®" @.8)

Since G'(0) =0 and G(s) €{{0}}, we conclude ®(s) E{{O}} and hence p=V-1P ig
truly the unique solution of (2.1) in {O} , ' :

We also see that o € (0)* if g€ (0)* and p€OM* if &, g €<0D*, provided w<to

Thus, we obtain :

Theorem 1. I fk, gE{O}, in case of normal type, i.e. (2.2) to be valid, then
(2.1) ds solvable if and only if G(O) =0 and has the unique solution o=V"1D in {0},
where D is ywen by (2 8). Morreowq', g€ (0) famplfbes @€ (0) and &k, g€K0> wmplws
I ONEE

After simpliﬁcation, @ may be written as * -

o =00(0) —=| ko= a()i, 2.4
-where go=V~Gy, ho=V 1K, in which R .
G(s) . . K(s) -
DN = T e TR (s sy ey y
Go(s) = - Ko(s)= o (2.5
GGs) - s, __EG) <o
a+b’ 7 +b+K( )

Notmg that, although Ko(s) 'is discontinuous at s=0, it would not influence thea
property koxgo © {0} since G'(0)=0.

§ 3. Singular Integfal Equatibns'With Two
- Convolution Kernels

-Let us solve the equation

b_(* 2(») 1 (" g L p-
“¢(t>+“,{im o~ 'b‘t dv+ \/271;‘[0 bi(3—2)p(z)dv+ ¢§Ej-w ba(t—7)p(7)dv
=g(t), b%0, —co<i<+ 00, , (8.1

where @, b are again constants, ki, ks, g€ {0} and the unknown functions @ and

hence ¢ are required o be in {0}. Here we have denoted
1), =0, >0,
?+(8)= {sv( $<0; P-(8)= { p(t) <0,
Assume that equation (8.1) has a solution. Taking Fourier transform, by Lemma 1,
we get _
(a—bsgns)D(s)+ K i(s)DP*(s) ~ Ka(s)D(s) =G(s), (8.2)
where @*(s) are respectively the Fourier transforms of ¢.(¢), which are the
boundary values of the (sectionally) holomorphic function @(3) in the upper and
the lower half-planes respectively, and @(s) =0*(s) — D (s)*. In order that &*(s)
and then ®(s) are continuous at s=0, it is necessary that ®(0) =0, i.e., &*(0) =3~ (0).
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(8.2) is the Riemann boundary value problem with discontinuous coefficients:

Ot(s)=D(s)D"(s)+ F(s), —o0<Lg< +00, (8.8)
in which we have put ' .
D)= A, PO g (3

a—bsgns+K(s)’

and restricted. ourselves to the normal type case - B

(a—b), 0<s<+oo, | o

. )*{ (a+b), —oo<s<0, j=12. BCE

Noting that Kj(c0)= 0 which 1mp11es D(o0)=1 and F(o0)=0 since G (c0) =0,

wo know that s=oo is not a nodal point of the problem. Its unique nodal point is

$=0. We require that the solutions of (8.3) should be at least continuous along the
whole real axis and @(co) =0, ‘ '

Aceordmg to the method used in [1], take a continuous branch of log D(s) such
that it is continuous at s=oo, e.g., log D(o0) =0, and denote

{logD( 0) - log D(+O)} (3.6)
Then choose an integer. x, the mdex_, of the problem,, such that 0<o=op—x<1.
Denote y=1,—x=a+iBo. Since we require @(co)=0, s0 we get: when %>>0, the

general solution of (8.3) (without conmdermg the behavmr of ¢* (s) at s=0 for the
$ime being) 'is

= Qx(%) } - 1 te F(t)d'ﬁ ' :

() =X (2) {w<z>+ S YO wgresy G
, Qn—i(z) 00“}‘0124‘ T O - (3.8)
is an arbitrary polynoxmal of degree x—1 (in the sequel we understand Q;,__O when
%k<0); when »<<—1, the problem is solvable if and only if the conditions (8.9

’)’o=ao+?'f.30—

where

e F(H)dt e, e, —n
@G I - (8.9)
are satisfied, and then the problem has the umque solution (3 7). Here
' ) &, Rez>0,
= % - (3.10
X () {(———-H”.’ ) e'®, Rez<0, G0
2—i
where ‘
log Do(t) 44 .
I@® =5 LQ 000 a1, Do() = ( Y D, W
in which we have taken the dgﬁnlte branch of '
log Do(t) =xlog jj: +log D(&), (3.12)
. prowded we have chosen log H—q’ lt_ =0, what is the same, log Z+Z vo :tfwv It

is eaSy to prove
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X*()=a/Do()e™®, X~(3) ="/ Do(?), o (8.18)
where ~/Dy (%) =exp{—é— log Dy (t)} has definite value. By (8.7), we get

Dt (s)- =g F(s) +X*(s) {Zl’(s)-l— Q,,_1(s)}’

(s+4)*
(3.14)
O ()=—L Jggsg +X(s) {@I”(s)—i—-z————Q"_}‘_i()sz}, R

and thereby

()= C [t 5]+ 1 -2 @) {W(s)+ L@l 1)

Since X *(s) are bounded and #0, it is easy to verify @*(s), @(s) € Lz(-—oo +oo)
and € H on any olosed interval exterior to §==0.

The only thing required to be considered is their behavior near s=0. In order
that they belong to {{0}}, they ought to be continuous at s=0. We: prove that it is
then necessary for G-(0) =0. ' :

First, let s=0 be an ordmary node, i.e., O<a<1 Then y#0. It is known that,
in the ne1ghborhood of 5= =0,

Xt(s) = \/Do(s)s"e‘""’) I'y(s) €H,
where, by (8.12) o
| ~/ Do(£0) =exp %{imﬂogm}_m}, N D(+0) s (3.16)

v Do(=0)
On the other hand, from [1], § 26, 4°, when s>0,

_eTofday _F(t0) e F(-0) Voo (3147
YO "5 VDor0) Zemyw v D 0)}+w ©, 61D
where U*(s)= '!I/‘**(‘s)/ |8]¥, 0<o/<a and ¥*(s)EH. Then, by (3 16), after

simplifying (8. 14), we may geb

&t __ e L BymE ' '
. @ (+ ) Sisimn 7 [F(+0)—e ™R (-0)]. (8.18)
‘When $<0, instead of (8.17), we have '

_ETO (o™ F(H0) dgym P(=0) | g
W(S) s {29}sin'yar ‘\/Do('l‘O) % JDO(—O)}+W (S), (3~17)

and then

P*(—0)= [F(+0)—e~ 3””“F( 0)1. (8.18)7

2@, sin yaw

- On comparing (8.18) with (8.18)’, we know that @(s) is continuous at s=0 if
and only if (regarding e”’“‘#l)

F(+0)=¢"F(—0). (3.19)

And then we have &*(0) =0. Since we require @(0) =0, we must also require &~(0)
=(0. Returning to (8.2), we know that we must have #(0)=0 and hence G-(0)=0.
But once G'(0)=0, we really have ®*(0)=0(0)=0 and &*(s), @(s) €H in the
neighborhood of s=0, and therefore @*(s), @(s) belong to {{0}}.
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Now, let s=0 be a special node, i.e., a=0. Then y=iB,. If Be#0, then (3.17)
and (8.17)" remain valid, with @*(s) € H,, i.e., ?*(40) exist but /[do not equal to
each other possibly. In place of (3' 18), we have

O (+0)= gy P (+0)= —w-m

2f1, sin y@
+ &/ Do(+0) ¢ hm s [W*(s) + Ao] ,

where v
Ao___{Oo/@“,‘ x>0,
0, #<0;
and a similar formula for @*(—0). In order that @*(+0) exist, we should have
Y*(£0) = —4,. And then we are back to (8.18) and (3.18)’ and hence again to
(8.19). Thus, we have G(O) 0 again.,

Once 'G(0) =0 is fulfilled, then F(0) =0 and therefore ¥'(s) € H near s=0, Thus,
in order that @*(s) is continuous at s=0, the constant term of @,_;(z) should take
the value )

oL (e F(t)dt

Co=5) .. XH(5)E - (8.20)
if x>1; and an additional condition of solvability »
[+ F(®)dt _o |
[ Fg=0 . e

should be supplemented if #<<0. When O, is taken to be (3.20) or (3.21) is fulfilled,
it is readily seen @*(0)=®(0)=0. :

If Bo=0, i.e., =0, then D(s) is continuous at s=0. Since b#0, we know at
onoe K;(0)=K,(0)=0. So D(0)=1 and hence again we must have F(0)=0 and
then G/(0) =0 in order that $(0)=0. Thus, s=0 is not a nodal point at all. There is
no. problem in this case. :

In all of the above cases, &* (s), cD(s) €H undoubtedly.

. Thus, we have :

Theorem 2. Under supposzt@on, in the normal type case, equation (8.1) is
possibly solvable in class {0} only when G(0)=0. Assume. that this is fulfilled. If s=0 is
an ordinary node, then, when the inden x=>0, it always has the solution p =V 2@, where
@ is given by (8.15); when »<<—1, it has the (unique) solution as above, provided the
conditions of solvability (8.9) are fulfilled. If s=0 is a special node and K;(0)=
K5(0), the above statements remain true; in case K (O) #K5(0), then, it has the
solution as above with Oy to be taken as (3.20) if x=>1, and it is solvable as above if and
only if the conditions of solvability (8.21) and (8.9) are fulfilled if »<<O0 (the latter
disappear when x=0).

Remark. In applications, we often have real equation (8.1), in which a=A4
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is real, b=Bj is.purely imaginary (+0) and %, k, are real functions. In this case

o A+ks(0) F B
D(x0)= A—l—lﬁ(O)—&-B@ |

are eonJugate 0 each other, and ao—-——-{arg D(~0)—arg D(+0)} 0 that o is notb

an integer. Thus, s=0 is an ordmary node for the real equatmn (8.1).

§ 4. Singular Integral Equatlon of Wlener—Hopf Type

In this section we consider the method of solutlon for the equation

w¢<t)+wj ‘f;@z dv+ \/1205 j B(e- 'v)gp('u)d'v==g(t),

b+0, 0<t<+<>° S _ (4.1)
where a, b are constants, &, g=g., € 0> and p=g, is required to be in {0}.

Let b, g€<0>* (3 <w<1).

On extending (4.1) to —oo<t<0, the right-hand side of (4.1) is augmented
with an unknown funection ¢.(#). Taking the Fourier transforms of both of its sides,
by Lemma 1, we get ;
v [a—bsgn s+ K (8)]10*(s) =GQ(s)+B(s).

Restricted to the normal type case, i.e., K (s) satisfying (2.2), it can be written as
(8.8) with

D(s)*a—bsgns—i—K(s)’ F(s)=D(s)G(s). (4.2)
Denote '
Vo=t ifm-gh {log D(--o0)~log D(~co)} =51 log ZE2,

where log D(s) is taken to be continuous for s>0 and s<0 respectively such that
0<<o.,<1. Note that ., +0 since b+0.

Then take yo=ag+iBo, 0<a=0g—2<1, y=a+1iB as in §3 % being the index
of the problem. We also have y+0 since b+0.

- Therefore both s=0 and s=oo are nodes. Note that @~ (co)= @(00) 0 since we

require @*(c0) =0. '

Let s=o0 be an ordinary node at first. From [1], we know that, the general
solution of (8.8) is '

() =X Wi+ D}, v =y [T L FOE - (05)

when #3>—1, where Q,(2) =U,+0s2++--+0,#* is an arbitrary polynomial of degree
# and X (2) is still given by (8.10)®. Since then X ~(s) =x"(s)/s?, x*(s) € Ho(N.,),

@ However, a factor (g-4)/(¢+4) should be multiplied in the integrand of (3.11).
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hence we write Q,(z) in (4.8) instead of Q,_4(2z), which is sufficient for @(c0)=0,
Moreover, it should be noted that ¥'s(z) cannot be separated as, in general .
N1 (*  Fdt 1 J+°° F(8)dt ‘
(4 = —~P(—4)= -
() =T~V () =55 G2 ) TG Y
because the integrals in the right~hand member may be divergent. When »<<—2,

the conditions of solvability read

o F()dE Ly
.Lo X*(t<)(>t+q})’ =0, j=2,0n-m (4.5)
In this case |
04 (@)= PO+ X 0| a0+ 28}, (4.6)

Since F(o0)=0, we know that ¥y(s)=Ti(s)/|s|)¥, ¢ < and W}i(s) € H in the
neighborhood of s=0. Hence it is sure that @*(co) =0. We consider the following
two cases. -

1° Let aw>—%~. If p>a., ¥i(s) is bbunded and so X*(s)¥4(s) =O(1/ |s]|*) near

$=oo, And since F(s)=0(1(|s]|"), @*(s)=0(1/|s]"). If p<o., again by [1], we
know X*(s)W4(s)=0(1/|s|**) with >0 arbitrarily small. Take & such that a.,—

S>%—. Therefore, in any case, D*(s) =O(l/!.s‘l”), p=min{u, t,— s)>%t.

2° Let aw<%~. Since F(t) € H*(N..), so, by [1], § 6, we know that F(£)/X*(¢)

€ H¥%(N,). In this case, (4.4) becomes yalid, the integrals in which are convergent
now, and thereby X*(s)¥(s) € H(N,,), being of O(1/|s|*). In order to guarantee
D (s) € Ly(—o0, +00), We are obliged to take
| _ 1 r’* F()dt
*2m0 ) XF(8) (8+4)
in (4.6) when %>>0, that is to say, (4.6) may be written as (8.14) in this case.
‘When %<0, there is an additional condition of solvability

r” _F()dt
oo XT() (3+6)

which should be supplemented to (4.5) if x<< —1. Thus, the conditions of solvability
return back to (3.9).

Next, let s=oo be a special node: a,,=0, ¥,=3B,%0. In this case, (4.4) remains
valid and the discussion is the same as 2° above. |

Thus, @*(s) satisfies our requirement near s=oo: @*(s) € H and € Ly(— o0, +o0)

(aotually being of O(1/[s]*), »> —%—)

Now we consider the situation near s=0. The discussion is similar to that in § 3.
By the requirement @*(40)=&*(—0), we may get (8.19) again. But since we have
F(+0)=@G(0)D(+0) now, it may be rewritten as
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@G(0) [D(+0) —e*™D(~0)] =0,
By notmg that D(— O)/D(+O) =*7 and y =yo—#+0, so
 D(+0)—e"™D(—0) =D(+0) (1—e™) 0
and then again we get G'(0) =0,
The remaining discussions are the same as in § 8. But we should note that, in

2
be taken as

case a,e>—]l—, if #=>0, since ®*(s) is then given by (4.6), the constant term in @, must

-t F(8)dt |
Oo=5; J-m XY (i+3)%- (4.7)

instead of (8.20), and 1f #<< —1, there is an additional condition of solvability
o F(t)dt . . (4
Lo X+(t)(E+i)t =0, (4.8)
Finally we get $*(0) =0, &*(s) ch. '
Futhermore, it is seen that aetually Dt (s) E ((0)).
Thus, we obtain

Theorem 3. Under supposition, in case of normal type, the necessary oond@tfwn
Jor the equation (4.1) to be solvable in {0} (actually in (0)) is G'(0)=0. Assume that

this is fulfilled. In case $=0 is an ordingry node, if a”>—%—,

solution @p=V7'®* when x>—1, where D*(s) is given by (4.6), and (4.5) és the

then it has the general

condition of solvability when »<—2; if @, <5 ; , it is solvable as above when »=>0 with
Dt given by (8.14), and the condition of sola)_ab_@l@téj is (8.9) when < —1. In cdse s=0
s a special node, if aw>-%, &t 4s wga@n gfz'/uem; by (4.6) when =0 with the constant
torm of Q, taken as (4.8), and when u<< —1, besides (4.5), the condition of soZmab@iq}ty

(4.8) should be supplemented; if a“,<%-, then the constant torm of Qu—y on (3.14) should

. be taken as (8.20) when x>1, and when %<0, besides (3 9), the condition of solwb@lfbty

(8.21) should be supplemenied.

Remark 1. It is seen from the above discussions, when a,,>—%— ,v in fact the

obtamed ot ¢ «O» and henee pEL0>. _ N
Remark 2. When (4.1) is a real equation, as shown at the end of § 8, s=0

must be an ordinary node. It is also easily seen that the characteristic feature for

a_m>—%~ .‘

or<%. Denote a=A4 and b= DBj as before. By definition of 0o, it is oObvious

that
1 A+ Bj

o T8I R <1,

0<th, =



No. 1 Ly, J. K. SINGULAR INTEGRAL RQUATIONS WITH CONVOLUTION 107

Hence o,,> % means @ <<arg j+§q’ <2m, i.e., 4-+Bj lies in the quadrant II or IV;
1
G S5

5 means A-+Bj lies in the quadrant I or III (including the case 4=0),

$ 5 Dual Slngular Integral Equatlons

The above method is apphoable o solvmg the dual smgula,r integral - equatlons

{w1w<t)+ @f () gyt _J 701(75 7)o (v)dv = g(t), 0<b< o0,

— T—1

(5.1)

azco(t)—l—n_ j_w ‘:(ng + J“f k(—m)o(@)dr=g(s), —oo<i<0,

where a;, b; are constants, &;, g€ <0)> (j=1, 2). Find its solution ¢ € {0}, Assume b,
by are not equal 0 zero simultaneously.

Rewrite (5.1) as
a1+ biTw—l-kl*co =g—q._, }

a0+ b Tw-+kxw=g+p,,
where ¢, are unknown functions, to be required belonging to {0} too. Taking
Fourier transforms, we get
(a1—bisgns+K,)Q=G+ D™,
(as—basgns+.K4) Q=G+ ", }
Since we requrire £ is continuous at s=0, we must have 2(0) =0. Restricted 1o
the normal type case:

—(@—b;), 0<s<+oo, '
Kils) {—(a,-+bj), —oos<0, 1T (5.2)
we then have .

a;—bisgns+Ki(s) aa—basgns+Ki(s)®
Therefore, we should solve the Riemann boundary value problem (8.8) again,
in which

a(s) = L= Pt BL (o) =[D()-116(). (5.4)

In order that 2(s) is continuous at s=0, it is necessary that @*(s) are continuous
at s=0 and $*(0) = — G (0). Discussions may be made fully analogous to thosein § 4.
Sinee we also require @*(+0) =®*(—0),we get G-(0)=0 agdin. Henoce all the results
as stated in Theorem 8 remain true and w=V~*Q in which Q is given by (5.8). The
only difference lies in that 7., or (and) ¥ may be zero, for instance, 7., =0 if a;/a;=
b1/b4, in which cases the analysis will be even simpler. It is also obvious that the
solution w in {0} belongs also to (0).

Finally we remark that the methods of this paper may be used to solve the
equations mentioned above in the exceptional cases.
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