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OUTER-Z GROUPS OF FINITE ORDER

CHEN ZHONGMU (&) *

, Abstract

Suppose that I is a group-theoretic property. A group whose every proper sub-
group but itself is a 3 group is called an outer—3 group. ‘

The paper gives a seriés of results to groups which possess trivial Frattini subgroup
and only one solvable minimal normal subgroup. The outer groups ‘are such groups when
the classe of 3 groups is a saturated formation. '

By use of aforementioned results, the c(%) groups (group with classes less than %),
I'y~pn groups (groups whose k~th term of lower central series are p-nilpotenit) and

p~supersolvable groups are discussed.

§ 1. General Results

All groups which are disoussed in this paper are of finite order.

Definition 1.1. Groups with property = are called 3 groups. Growps whose every
proper subgroup isa group but itself 48 not awe called inner—3 groups. Groups whose
every proper factor group is @ X group but diself 48 not are called outer—3 Groups.
Groups whose every proper subgroup and every factorr group are 2 groups but itself is

- 0ot are called minimal non-2 groups.

Lemma 1.1. If property o is preserved for subgroups and all imner-3 groups
are not ¢ groups, then the property o is a sufficient condition of 2 groups. If o is
preserved for factor groups and all outer-2 groups are not o groups, then o is a suficient
condition of 2 groups.

Proof The lemma follows from the minimal oounterexample

From Lemma 1.1, outer-2Z and inner-3 groups are of importance for studying
S groups. This had been showed by the research of supersolvable groups in the
paper [1]. There are more papers regarding the inner-3 groups about some mosh
common properties ¥, while less research of the outer-2 groups appears. Klein™
and Baartmans®™ studied the outerabelian groups; Doerk™ and the p'a,pevrmv studied

~ the outersupersolvable groups.
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The following lemma shows that outer-2 groups are more important than
inner—2 groups for studying 2 groups.

Lemma 1.2. Suppose that property 2 is preserved for factor groups. Then
inmer-2 groups G with ®(G)=1 is an outer-3 group, i.e. G is a minimal non-3
group. Conversely, 4f 3 satisfies the condition:

(%) Suppose that G/D(G) is a 2 group implies that G is & X group, then minimal
non—2 group G is an inner—2 grroup with ®(G) =1.

Proof Suppose that there exisis N, 1<N<1G, such that G'/N is not a X group.
Let H be any subgroup of G such that G=HN. Then H is not a X group, since
H/HENN~HN/N=G/N. “We have H= @, since every proper subgroup of G is a ¥
group. From this, M<®P(G)=1, and it is a contradiction. Therefore G is an outer—3
group. The last conclusion of this lemma is clear. | »

We note that nilpotency,supersolvability, o-sylow tower and p-supersolvability
([15], Th. IV, 8.6.a) are all satisfying the condition ().

In this "pa:per we disouss the outer—2 groups for some common properties 3
(nilpotency, metanilpotency supersolvability eto.) and minimal non-3 groups by
using results of outer— groups.

The main result of this paper is the following prinecipal lemma. Its hypotheses
are few and its conclusions are rich. It shows that various conclusions of this paper
may be developed, because these conelusions are based upon the pr1nc1pa1 lemma and
the hypotheses of principal lemma i§ quite general.
~ Principal Lemma. Suppose that @ has a unique minimal normal subgroup N
which is an elementary abelian p—group of order p* and O(G)=1, where B(G) is the
Frattins subgroup of G Then

1) G=AN, ANN=1, and A is a mazimal subgroup of G.

2) Ca(N)=N. |

8) 4 has no non-trivial normal p-subgroups, that is, 0,(4) =1.

4) The Fitting subgroup F(Q) of G is equal to N and N is a maw'bmwl abelian
subgroup of any Sylow p-subgroup of G-

5) If Oy (A)+1 (this holds fwhen A s p-solvable), then H congugate to A whenever
H<Q with @=HN.

6) Every noninedtity dlement o f the centefr Z(A) of A acts N fived—point—free and
80 Z(A) is eyclic.

7) If 1+ HJQ, then

i) H=BN, BNN=1, B=ANH.

i) either I'y(H)=1,H =N or I'v(H)=Tw(B)N.If I',(H) is p-nilpotent, then
B is a nilpotent group of class less than lo wnd pﬂ B|, where Z’,,(H ) Gs the k—th term of
the lower central series of H(I'i(H)= : ~
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8) The following four propositions are equivalent:
i) G’ és p-niélpotent.
ii) G s nilpotent.
. iii) A s abelian.

iv) A és eyelic. .

In case 8), the ewponent of p (mod|A|) s a. L

9) If A is p-solvable and non—abelian, then (|A], &)#1.

Proof 1) From @(@)=1, there exists a maximal subgroup 4 of G which does

not contain N. Hence G=AN. Let ANN=D. D<A, N> ==G By minimality of
N and AN, D=1.

2) Let D=0g(N) N A. Then DA, D<]<A N>=@. By uniqueness of N, D=1,
Hence Og(N) =N,

8) If A hasa non-trivial normal p—subgroup B, then N p(B) > B, where P=BN.
‘Therefore Ng(B) contains non-identity elements of N. Hence N¢(B)>4, Ng (B) =
@, B<G, contrary to uniqueness of N, :

4) Clearly F(@)>N.If F(G)>N, then F(G)must be a p-group by unigueness
of N. It is trivial that F(Q) N A is a non-trivial normal p—subgroup of 4, contrary
%0 3).

5) In analogy to proof of 1), H <@, HN =G implies H | N=1. Therefore

S H=H/HNN&HN/N=G/N=AN/N~A. .
Oy (H)+1, since 0y(A4) #1. Hence op,(G‘/N)QO,,,(A)N/N=OP,(H)N/N, Oy (A)N
=0y4(H)N. By Schur-Zassenhaus’ theorem, there exists an element g such that
Oy (H)=0y(A)?. Thus Oy (H)<I<A9. H>. If H+Af, then O,,'(H)<IG‘ contrary
$0 uniqueness of N. :

6) If 1#dC Z(A), then {dY<]A. If there exists an element 1£aE N, such that
ad=da, then No({d))=<4, a) =@, contrary t0 uniqueness of N. Hence the non-
identity elements of Z(4) act N fixed—point-free. By[5]. 7.24, Z(4) is oyolic.

7 i) HNN<KG, since H<G. By minimality of N, HNN=1or N. From 1
H<@ and uniquencess of N, HNN=N. Thus |G|=|AN|=|AH|=|A|-|H|/
{ANH|, |H|=|4ANH]|. |N]|, since |AN|=|A|+|N|. Qlearly H>(HNA)N,
whence H=(HNA)N. Put B=ANH, we derive that H=BN, BN N=1.

ii) From H/I'y(B)N=(B)N/I'y(B)N~B/I'\(B), I''(H)<Iw(B)N(B/I'«(B)
is a nilpotent group of eclass less than k). I',(H ) <G, since I'y(H) is a characteristio
subgroup of H. If I'y,(H) =1, then H is a nilpotent normal subgroup. Hence H<
F(@)=N andso H=N. If I'/(H)#1, then I’,,(H)>N by i). Thus I'W(H)/N =

I'y( H/N)exI'y(B).

If I(H) is p-nilpoient, then the normal p-complement K of I'y(H) is a

characteristic subgroup of I'y(H), K <G. Therefore K =1 and I'y(H) is a p-group.
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Thus I'y(H)<F(G)=N.If I'y(H) #1, then I'y(H)>N. Thus I'y(H)=N and so
I'y(B)=1. If I',(H) =1, then I'y(B)=1 also. Hence B is a nilpotent group of class
less than £.

If p| | B|, then the Sylow p—subgroups of B are distinct to 1. They are characte—
ristio in B and 80 normal in A4, since B=H N A<JA. This is contrary o 3).

8) @ is p—nilpotent, that is I'y(G) being p-nilpotent. By 7) ii), 4 is abelian.
From 6), 4 is oyclio. By [6], 9.4.8, the exponent of p (mod |4]) is a.

9) Derived from [15] VI. 8.1.

Lemma 1.8. Suppose that property 2 satisfies the condition

(A) ¥ G/Ny, G/Ny are Z groups, then G/N4\ Ny is also a 2 group.

If G is an outer—2 group and G possesses @ mon—irivial normal p-subgroup, then
G has a unique normal p-subgroup N. Thus G is p group described in the principab
lemma when (G) =1. _

Proof G has non—trivial normal p-subgroup. G must have minimal normal
p-subgroup N. If M were a minimal normal subgroup of G distinet to N, then by
minimality M NN=1. By condition (A), G/MAN=G is a 5 group, This is a
contradiction. Hence N is the unique minimal normal subgroup of G-

We note that if property 2 satisfies the condition (*), then outer-2 group
must have @(G) =1. By Lemma 1.8, we derive .

Theorem 1.1. If the class which consists o f all 2 groups is swtumted forma—
tion, then solvable outer—2 groups are groups described in the principal lamma for some
minimal normal subgroup.

Lemma 1. 4. If the property 2 émplies IH-solvable, then the minimal non—32'
group G is II-solvable, or a simple group.

Proof If G is not simple, then G has a proper normal subgroup N.N and G/N
are 2 groups and 80 G is II-solvable.

§ 2. c_fk) Groups

Definition 2.1. Nilpotent groups of class less than & are called c(k} groups. e(1)
group means the tdentily group. .

Theorem 2.1. Solvable outer-nilpotent group G is @ group descmbed in the
Principal Lemma. Furthermore

1) F(@)=N is the Sylow p-subgroup o f G.

2) A is nilpotent and the center of every Sylow subgroup of A is cyelie.

3) If A is generated by k elements, then G is generated by two elements when k=1
and G is generated by k elements when k>1. :

. .Proof 'The nilpotent group class is a saturated formation., By Lemma 1.1. @ is
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a group described in the Principal Lemma and A4 is nilpotent. 2) comes from
Principal Lemma 6). :

Now prove 3). If k=1, then A is oyclie, A=<g). Then G=<a, b> evidently,
where 1 b€ N. Suppose that 5>2, A=<ay, as, -+, azy. If there 38 a non-identity
element b € N. which commutes with a4, then since 4 is nilpotent, pt|ay|, {@1d, @, ++,
app =<(a10)?, (@10)'™!, ag, -, app=<ak, '™, ag, -, @y containg 4 prOper’ly; ‘Whence
Lasb, ag, =+, @y =G o ' g

Suppose that all non—-identity elements of N cannot commute with @;. Takel+#
bEN. Qonsider the group H =<a,, bdg, »+, azy. Clearly HN>AN, so N H=@G. If

-H <@, tnen' by Principal Lemma 5), H is conJugate to A. H must be n11potent Let:

the class of H he ¢. We must haVe

[

s P,
[b@a, Ay, A1,y *°°, uﬂ =1,

Using the formula [ab, ¢] = [a, ¢]°[b, ¢], we have

[ SER Sa.
Lo L[B, as]®, @i]'® - ], @yl % [ay, @y, «--, @3] =1
The last commutator is 1, since the class of A4 is ¢ too. Hence
[[---[[b, a:]™, @)™ %5..], @] =1,
"We note that the commutators in successive order of the left hand side are all in N
and the elements of N which commuts with @; are only 1. We have [b, ay] =1
ultimately. This is a contradiction.

Theorem 2. 8. A solvable outer—e(k) grroup G is either an outer—mlpotent gfroup 1

or o p—group. If G is a p-group, then 'y (@) is of order p and Z(G) is cyclic.

| Proof If G is not nilpotent, then G is an outer-nilpotent group. Now suppose
that G is nilpotent and G'=P;x---XP, to be the direct product of its Sylow
snbgroups. If r> 1, then the class of each P; is less than &, since P;ﬁG/II;[_lPJ. Hence

the class of @& is also less than %, which is contrary to that the class of G is not less |

than %. Thus G is a p-group. Suppose that M is any normal subgroup of G. Then
the class of G/ M is less than k. Hence M>1%(Q). Thus we have shown that any

non-trivial normal subgroup of G contains I'y(@) and so |I%(G)|=p. From this,

Z(@) has a unique subgroup of order p(that is I'x(G")). Therefore Z(G) is cyolic.

Set k=2, the conclusions to solvable outer-abelian groups are derived (see [2,:

37).

Theorem 2.3. A solvable outer-abelian group G is either a p—group with cyclic

center and |G'|=p, or a Frobenius group with cyclic complement A and elemeniary .

abelian kernel N and if | N | =p*, then the exponent of p (mod |A4]) is a..

Proof The preceding case of this theorem is a special case of Theorem 2.2. Here .
G=AN. Lot g€G\A, we prove ANAs=1, Let ANA=D. Then D<({4, 4%). By.
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the maximality of A and the uniqueness of N, D=1 or 4. If D=A, then A=49.
Thus g€ Ng(A4)=A4. This is a contradiction. Hence D=1. ’ ’
The last conclusion comes from Principal Lemma, 8).
Theorem 2.4. Suppose that -G is solvable and every Sylow subgroup of G is

generated by k(>1) elements. Then G is nilpotent if and only if each k—genemtoa fwctor-

group of G is nilpotent. -
Proof Our theorem follows from Theorem 2.1, 8).
Theorem 2.6. Inner—c(k) group G is generated by k elements.
.Proof There exists elements.ay, «-, &, € G, such that [ay; -+, @] #1, since the
class of G is not less than k. Then the class of group <a, *-+, o is not less than k.
1t can not be a proper subgroup of &, whence G-=<ay, -, a. -

§ 8. I'~pn Groups and p—Metanilpotent Grbups |

From Lemma 1.2, the inner—3 groups with @O(@)=1 are the minimal non-3
groups when 3 is nilpotency, ‘supersolvability, p-nilpotency or p-supersolvability.
They were studied by predecessors (see[7, 8, 9, 10]) Now we are discussing broader
group classes.

. Definition 8.1. Group G is called I'y—pn group, if I‘M(G) is p-nilpotent. Le#
@)= ﬂ Iy(@). G is.called p-metanilpolent, if I'(G) is p-nilpotent. -

EV1dent1y, Properties “I'yv-pn” and p—metamlpotent” are preserved_ for
subgroups and factor groups and satisfy the condition (A).

p-supersolvable groups are I's—pn groups; I'y—pn groups are p—éolvable groups.

Theorem 8.1. G is a I'y-pn group if and only ’I;f G/P(@) is a Iy—pn group.
Proof The necessity is clear. We only need t0 prove the sufficiency.

From I (G/®(G)) = I'(@)D(Q)/B(G), we have B(@) < '@ D (@) G

I'y(G)DB(Q)/PB(G) is p-nilpotent by the hypotheses of the theorem. From[15]VI,
6.8, I'y(GHP(@) is p—nilpotent and so is Iy (G).

Theorem 3.2. Suppose that G is & p-solvable outer—I'y —pn group. Then G is @

group described in the principal lemma. Furthermore, A is o I'y-pn group and «>1.

If G is a p-solvable minimal non—I'y—pn group, k=2, then A is an inner—e(k) .
group; If p||A], then p||A|, A is an inner—o(k) group of order pg® and the Sylow

q-subgroup of A is normal.

Proof Suppose G is an outer—I'y—pn group. By Theorem 3.1, property “I'y-
pn” satisties condition (%), whence ®(G)=1. If 0y(G)+1, then G/0,(QR) is:
al'y-pn group. Thus I'y(G/0y(Q))=I%(G)0,(G)/0y(G) is p-nilpotent. Hence -

I'y(G)0y (@) is p-nilpotent and so is I3(G). This is contrary to that & is not o
I'y=pn group. Then 0,(@)+#1, since G is p-solvable.. G has non-trivial normal
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p-subgroups. By Lemma 1.8, G is a group described in the principal lemma. By
Principal Lemma 7), I'%(G) =I%(4)N. I‘k(A) is not a p—group, since I'x(@) is not
p-nilpotent. :

If =1, then N iscyclio group of order p. From OG(N )=N, we have

Ng(N)/Og(N)=G/N~Ac~q subgroup of Aut(N). Hence G/N is abelian,
I'y(@)<N(k>2). Whence I'y(&) is p-nilpotent, and it is a contradiction. Hence
a>1. o . o : . ‘ '
Suppose that @ is a minimal non-I"y—pn group. Let B be any proper subgroup
of A. Then H=BN<@, whence I'y(H) is p-nilpotent. Let K be the normal p-
complement of I',(H), then K<|H, whence KN=K XN. Henoe K =1 and so
I'y(H) is a p-group. Here :

H/I‘,G(H) =>BI'/(H)/Iw(H)~B/I'y(H)NB. pr*L |B|, then l‘k(H) NB=1 and
B is a ¢(k) group. If p| | B|, then p| | A|, Let O be a p~complement of A. O is a ¢(k)
group, since O< 4. By [11], IX. 2.e, A4 is solvable and so is G'. Henoce I'(G') <@,
when %3>>2. By hypothesis, I',(@) is a Ty—pn group. I'y(I%(G)) is p-nilpotent. By
Principal Lemma 7), I'W(@) =I'y(A)N, I'y(4) is a ¢(k) group and p} [ 14(A4) | .From
A/T'y(A) being a-¢(k) group, A is p—nilpotent. Thus 4 has a normal subgroup 4,
such that |A4: 4;| =p, 4;N<{G. By Principal Lemma 7) again, 4, 1s a c¢(k) group
and p}|A4;|. Therefore p| | 4| and so p||B|. If I'y(H) N B=P+1, then P is of order
p and P is a Sylow p-subgroup of B. Let By be the normal p-complement of B. Then
B=Px By. We have proved that B1 is a ¢(k) .group. Thus B is a ¢(k) group in any
case.

Now prove that A4 is not-a c(k) group. If A is a c(k) "group then by Principal
Lemma 7), I'y(@G)=I%(4)N=N.Whence G is ¢ I's—pn group, and it is a contradic-
tion. Thus we have shown that 4 is an inner—¢(k) group and p||.4|, when p||4].
By Principal Lemma 8), A4 is an inner—c¢(k) group of order pg? and the Sylow ¢—
subgroup of A4 is normal.

Corollary 3.1. p-solvable minimal non—Ly—pn groups are solvable.

Corollary 8.2. The orner of @ p-solvable énner—I'y—pn group contains at most
three distinct prime factors. '

Proof The distinet prime factors of the orders of G and G/@(G) are the same.
By Theorem 8.1 and Lemma 1.2, G/®(@) is a minimal non—-I'y—pn group. An
inner—e¢(%) group contains at most two distinet prime factors (Theorem 2.4). By
Theorem 3.8, the order of G/® (G) contains at most three distinet prime factors.

Theorem 3.8. p-solvable snner—Iypn, >2, group G=AN is generated by &
elements. When A is not nilpotent, G is generated by two elements.

Proof We may suppose that G' is a minimal non-I',—pn group, since G and
G/D(G) have the same number of generators.
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If A is nilpotent, then by Theorem 2.1, 8) and Theorem 2.5, G' is generated
by % elements. If A is not nilpotent, then A4.is an inner-nilpotent group-.

1) |A|=r"¢® [N|=9% p, g, r are distinct primes.

We have known that 4=<e¢,b) and <{¢> =R is a Sylow r-subgroup of 4; b is any
generator of the Sylow g-subgroup @ of A.If Ugz(0) contains an element a1 of N,
then {ca, b)=<e, @, b) contains Q properly and so {ea, b)=G. Theorem is proved.
Suppose Og(c) N N=1. Let H={¢, ba), where b is any generator of §, 1#aCN.
Qlearly HN =@G. Let H (NN =D, then D<|{H, N)=@. By the minimality of N, D
=N or 1. If D=N, then H>N and H=HN=G@. If D=1, then H is conjugate to
A=RQ. Henoce there exists.g €@, such that H={c?, (ba)?»=RQ. From (ba)*=
ba’'=d' €N and HN\N =1, a’=1. The order of ba is a power of ¢, whenoce (ba)?EQ.
Here ¢, ¢? € A, ¢ conjugate 10 ¢ in A. Hence there exists b; €@, such that ¢®=¢’.
Then gbi*€0g(e). From Og(N) NN =1, O¢(c)<<A. We have gbi*€ 4, whenoe g€
Aby;=A. Here (ba)?€ Q. Since Q< 4, ba € Q, this is contrary to a€Q.

2) A=p¢®, A=RQ, G=RQN, P=RN is a Sylow p-subgroup of G. If the
exponent of P is p, then P is a regular p—group. Nq(P) =P, since Og(N)=N. From
Wielandt Theorem [15, IV, 8.1], G' has a normal p-complement @, and it is a
contradiction. Therefore P must have an element ca of order p*, where ¢c€ER, a €N
and so 1+ (¢a)?=a’ €N. Lot H =<{ca, bD, b is a generator of Q. Evidently HN =G
1#HNN=D<H, Ny)=@, since o' € H, From the minimality of N, D=N. Then
G =HN=H. This proves the theoaem.

Corollary 8.8. p-solvable inner—I's—pn group is generated by two elements.

Corollary 3.4. p-solvable inner—p—metanilpotent group is generated by two elemets.

Theorem 8.4. If I',(H) of every k(k=>2) generator subgroup H of ap-solvable
group @ is pnilpotent, then I'y(@) is p—nilpotent. If the derived subgroup of every two
generator subgroup of a group G is nilpotent, then G’ is nilpotent.

Proof The first result is an immediate consequence of Corollary 8.3. In order
to prove the second result, we need only to prove that @ is solvable. By induction,
we have the derived snbgroup of every proper subgroup .H is nilpotent and so H is
solvable. If G is not solvable, then G is inner-solvable and G/®(&) is a minimal
simple group. All minimal simple groups are generated by two elements. Hence &
is generated by two elements and so G’ is nilpotent by the hypotheses It is a
contradiction. Therefore G is solvable, which proves the theorem,

Analogy to the proof of Theorem 3.4, we can prove

- Theorem 3.5. If every two genemtor subgroup of & p-solvable group G is p-
metanilpolent, then so is G.. '

[18, Th. 1.47] shows that every simple group can be generated by two elements.
Using this result and Lemma 1.4, the hypotheses “p-solvable” of Corollaay 8.8, 8.4
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and Theorem 3.4, 3.5 may be omitted.

Theorem 3.8. G is a I'y—pn group if and only if @ is p—solvable and I'y( No(P)/
Og(P)) is a p-group for every p—subgroup P<IS,, where S, is @ Sylow p-subgroup of
G. : '

Proof We have : A
Tk( JgG(P) >= Iy(Na(P)O(P) ., I'(Ne(P))
a(P) Oc(P) O¢(P) N L'u(Na(P))
If @ is a I'y—pn group, then 80 is Ng(P). Whence I's(Ng(P)) is p-nilpotent. Let K
be its normal 'p—complement. K<|Ng(P), since K is characteristio in I'y(Ng(P)).
Henoe PK =Px K and so K<Og(P). K<0s(P) NI4(Ne(P). Thus IWy(Ne(P))/
Og(P) NTW(Na(P) is a p-group and so is I'y(Ne(P)/Og(P)). The necessity is
proved. | |
To prove the sufficiency. The minimal normal subgroup N of G is a p'-group,
or a p-group, since G is p-solvable. Let G@=G/N. It is easy to show that Ng(P)=
N&(P)N/N for any p-subgroup P, where P=PN/N, when N is a p’-group, P=P/
"N when N is a p-group. Olearly, Oz(P)=>04(P)N/N.Thus.
Ne(P) Na(P) ~Na(P)N/N N@(P)
. 0a(P) "~ Ca(PYNe(PINN) Oa(PIN/N ~ Og(P) "
Suppose 2<1S,. Then P<IS,, when N is a p-group; PN<IS,N, when N is a p’-group.

By Frattini argument S,N=Ngx(P)- +N. Hence N 5,5V (P) contains a conjugate of
S,. Thus P is normal in certain Sylow p-subgroup. We may suppose P<S,.
By hypothesis, I'y(Ne(P)/O¢(P)) is a p-group, and so is its homomorphic image
TW(Ng(P)/05(P)).By induction, @/N is @ I'y-pn group. Thus we have shown that
the factor groups of @ for any minimal normal subgroups are L-pn groups. Every
proper factor group of G is a I'y—pn group, since property “I'ypn” is preserved for
factor groupsv. If G is not @ I'y—-pn group, then G is an outer-I'y—pn group. By
Theorem 3.2, G=AN, ANN=1; N is a normal subgroup; I';(4) is not a p-group.
Since N¢(N) =@, Og(N)=N, then Ng(N)/Og(N)=2A. But I',(A) is Dot a p—group,
and it is contrary to the hypothesis.
The theorems mentioned above may be stated for p—metanilpotent groups.

§ 4. p-Supersolvable Groups

Theorem 4.1. p-solvable ovter-supersolvable group G is a group desoribed in the
prinlipal lemma. Furthermore A is p—supersolvable and a>1. When G’ s p—nilpotent,
A can not decomposed into A= A4, such that A; N is p-supersolvable, 4=1, 2. -

- Proof Similar to the proof of Theorem 3.2, we may prove that ¢ is a group
described in the Principal Lemma. A is p-supersolvable and a>1. Then @' is p-
nilpotent, .4 is eyclic by Principal Lemma 8). If 4N is p-supersolvable, then A4;N
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has a normal subgroup P of order p. By Principal Lemma.8), the non—identity
elements of A act N fixed—point—free and so does 4, ¢=1, 2. Henoe Osx(P)=N,
4=1, 2. Whence N, y(P)/Cun(P)=AN/N=A;>~ a subgroup of Aut(P) and so
[4;] |p—1, =1, 2. |A|=T|44], |4al|], since 4 is oyclic. Thus [A||p—1 and the
exponent of p (mod [A4]) is 1. This is contrary to «>1.

Theorem 4.2. p-solvable imner—p-supersolvable groups are generated by two
elements.

Proof We may suppose that G is minimal non-supersolvable, G=AN. If G’
is p-nilpotent, then by Theoaem 4.1 and Principal Lemma 8), 4 is cyclio, while &
is generated by two elements. If @’ is not p-nilpotent, then G is an inner—I's-pn
group by [15, VI.'9.1]. From Corollary 3.8, G is generated by two elements.

Theorem 4.3. If every two generator subgroup o f a p-solvable group G s p—
supersolvable, then so is G-

Proof The theorem is corollary of Theorem 4.2.

Theorem 4.4/ 151, Suppose that G =G4Ga, where G, is & normal p—supersolvable
subgroup of @, i=1, 2. Then @ is p—supefrsolwble of and only §f the commutator group
[G4, Go] is p—uilpotens. :
~ Proof The necessity of this theorem is clear. To prove the sufficiency. Here G
= [G4Ghs, GGs] =G [G4, Ga] G4([11]1VT, 1.1). @ is a product of mormal p-nilpotent
groups and so G is p-nilpotent. The con_di_iaions of this theorem are preserved for
factor groups. If G is nof p-supersolvable, then G is an outer—p—superSolvable
group. By Theorem 4.1 and Prineipal Lemma 8), G=AN, A is oyolic. By Principal
Lemma 7), G=(G N A)N G:iNA=4, i=1, 2. Evidently A=A4,4,, contrary to
Theorem 4.1. Hence G is p-supersolvable.

Theorem 4.5"%.  Suppose that G is psolvable, or p is the smallest pmme Sactor
of IGI If each mawrmnal subgroup of every Sylow p—subgq"oup is normal in @, then @G
48 p-supersolvable.

Proof Let P be the maximal subgroup of a Sylow p—subgrpups S, of G. '_I‘hen
»| |G/P|. G/P possesses oyclic p-subgroup. When p is the smallest prime factor of
|G|, G/P has a normal p—coniplement and so @ is p-solvable. Thus G is p-solvable
in any case. Evidently the conditions of this theorem are preserved for factor groups.
If G is not p-supersolvable, then G is a p-solvable outer-p-supersolvable group.
By Theorem 4.1, G=AN, 0,(G)=N. Hence N=P. Therefore P is the unique
maximal subgroup of 8, and so @(S,) =P. Moreover |8,:P|=p, §,/D(S,) is oyclio
and o is.S,. Thus N is eyclic, | N | =p, contrary to «>1. Hence G is p—supersolvable.

Theorem 4.6. Suppose that G is a p—solvable group. If the numbeérs of indices
divided by pim the index series of all mawimal ohams of subgfrovps 0 f G are coincident,

then @ is p—supersolvable.
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Proof By induction, every proper subgroup of G is p—supersolvable. If G is
not p-supersolvable, the G is inner—p-supersolvable. G'/@(G)=AN is minimal
non-p-supersolvable, |N|=p? a>1. 4 is a maximal subgroup of G/?(@). Then
the inverse image of A4 is a maximal subgroup of @. Its index in G is p*, a>1. But
G is solvable. The compos,iﬁon series of G is a maximal chain of subgroups. Henoce
@ have two maximal chains. The numbers of indices divided by p of them are
distinet. It is eontrary to hypotheses.
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