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A FINITE CONFORMAL—'—ELIMINA‘TION FREE
ALGORITHM OVER ORIENTED
MATROID PRO’G‘RAMMIN‘G’,e

Wane ZEEMIN (E4F R)**

Abstract

This paper presents a new finite pivoting method for oriented programming which
works principally on the smallest subseript rule appealing to mo process of conformal
elimination. In particular, when the oriented matroid programming under consideration
is a linear programming, the process of conformal elimination is just the process of
minimum ratio test.

"An oriented matroid M (1) is a matroid that, for every cirouit of it, a partition
(0, 0") of 0(0'Y0"=0, O'NO"=) has been defined, and all these partitions
satisfy the following Elimination Axiom. (0, 0") is called the oriented partition of
0, and 0’, 0" are called the oriented parts of O.

Elimination Axiom: Let Oy and O, be any two given circuits of M. Denote
(03, 01) or (01, O1) by (Of, 01) and denote (0%, O3) or (03, 0h) by (0%, 05).

Then, for
e€ (0fN0Z) U (0T NOY),

¢’ € (01U0)\((0f N05) U (0T NO3)),
there exists a circuit O3 of M which has the properiy

1) et O, ¢'€E0;,

2) one can denote one of O} and O} by OfF and the other by Oy such that OfC
O0f U0, 0501 Y05, - '

Graphic Matroids induced by digraphs and Matrix—representable Matroids are
all examples of oriented maitroids.

Any oriented matroid M has a property called Conformal Eliminability, that
is: Let Oy and O, be any two given ecircuits of M, Denote (0, O7) or (01, 0%) by
(0f, O1) and denote (0%, 03) or (0%, O%) by (0%, 03). Then, for

¢ e (01U02)\((0+002) U (Ot 005“)),
there exist an element ec(0fnoz)ucin O*) and a circuit O of M such that
1) ed 0, ¢ €0,
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2) One can denote one of 0% and Of by OfF and the other by O3 such that
(0f N0 E0Y, (05N0,)E05, 04N (0:\01) S04, 05N (0.\C1)E05. _

Let M and M* be a pair of matroids dual to each other. If M is an oriented
matroid, then M* can be uniquely defined as an oriented matroid such that M* and
M are orthogonal, that is: any cireuit O of M #nd any cirouit D of M* are orthogonal.
Denote (0’, 0") or (0", C;) by (0*, 0-), and denote (D', D) or (D", D") by
(D*, D). Then (0*YD*) N(O-ND~) . if and only if (0*ND~) U (O-<D*)+ .

Oriented matroid duality is an abstract combinatorial setting of:the linear
programming duality. Let M and M* be a pair of oriented matroids dual to each
other, E be their ground set, b and b* be two different elements chosen from E, 4
cirouit O of M is called a (non—negatlve) fea51ble ocirouit of M if

1) bEeo, : :

2) O\(d") is contamed in one of the oriented parts of O.
A oirouit D of M* is called a (non~negat1ve) feasible circuit of M* 1f

1) ¥*€D,

2) D\(d) is contained in one of the onented parts of D.
O and D are called complementary, if

- (O\@N) N(D\(3)) =0

The oriented matroid duality theorem can be briefly presented as: If both M and M*
have got a feasible circuit of their own, then there are two complementary feasible
cirouits of M and M*. The above mentioned duality theorem was first proved non—
constructively by Lawrence, and it can also be proved constructively by a number
of finite algorithms for oriented matroid programming which were developed by,
say, Bland (2), Fukuda (8) and Todd (4). A common feature of these algorithms is
that their pivols appeal strongly to the conformal elimination process, that is, the
process of realizing the conformal eliminability in:the oriented matroid under
consideration. (In case that the oriented matroid programming oconcerned is .
particularly a linear programming, the conformal elimination process turns out the
proocess of minimum ratio test in linear programming).

This paper aims at providing an oriented matroid duality theorem which is
more detailed in content than the one mentioned above, and the algorithm given in -
this paper for proving constructively this theorem is of primal-dual type. Iis
pivoting works purely on smallest subseript rule which involves no process of
conformal elimination type. :

Definition. Let M and M* be a pair of oriented matroids dual to eaeh other, E
their ground set, b, b* € E(b+b*), E\ (b, b*) =P;UPsUPsU Py, PﬁéPj (6#37).

A cireuite of M s called o feasible ciruit of M, if

1) beo, : :
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(2) CNPz= Q;
(8) ON Py and b are in the same orientedpart of O,
(4) CNPy and b are in the different oriented parts of C.
An ciroust D of M* is called a feastble cireuit of M*, éf
I ¥*eD,
(2) D n P 4= Q »
(3) D N Py and b* are in the same oriented parts of D,
(4) DN P, and b* are in the different oviented parts of D.
A cirewit O of M is called an mﬁmtely —wugmentmg cireuit of M, if
@) and, v*el, ‘
(2) O N P, R Q ’
(8) € NPy and b* are in the same oriented part o f O
(4) O NP, and b* are in the different oriented parts of 0.
A cirouit D of M* is called an infinitely —augmenting cirouit of M*, if
() €D, beD, |
(2 DnP.~,
(8) DN Py and b* are in the same oriented part of 5
(4) DN P, and b" are in the different oriented paris of D.
Because the cirouit family of M and the circuit family of M* are orthogonal, it
- is impossible that there can exist, at the same time, a feasible cirouit of M(M*) and
an infinitely-augmenting cireuit of M* (M). ' '
Theorem. the algorithm given below results in making one (and only one) of the
following four cases hold.
(I) 4 feasible circwit of O of M and a feasfz,ble circuit D of M are found
simultaneously; O and D are complementary, that is :
ONDNP=, ONDNPy=(.
(II) An infinitely ~augmenting cirouit G of M and a feasible eircuit O of M are
SJound successively. _
(A1) An infintely ~augmenting circust D of M* and a feasible circuit D of M*
are found successively.
(IV) An infinitely ~augmenting circuss C of M and an in ﬁmﬁely—tmgmentmg
circust D of M* are found respectively.
(When Py=Py=P,=(J, the above theorem becomes virtuely the original version
of the duality theorem over oriented matroids).

Algorithm

Let B\ (b, a") =(e4, €q, *=, €,), and B, B* denote a pair of complemented bases
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(that is B*=E\B) of M and M*. For e,¢B, e;¢B* lot O,(B) and Dy(B*) denote
respectively tne fundamental cirouit of M decided by ¢; and B and the fundamental
cirouit of M* decided by ¢; and B*,

Step 1 _

1.1 If (b*) and (b) are respectively oircuits of M and M*, set C:=(4*),D: = (b)
and stop (hence, case IV holds).

1.2 If (b*) is a cirouit of M and (b) is not a circuit of M*, let b be contained
in a base B* of M*, set C:= (b*) and go to step 2.

1.3 If (b) is a circuit of M* and (b*) is not a cirouit of M let b* be contained
in a base B of M, set D:=(b) and go to step 2.

1.4 If (b*) and (b*) are not respectively circuits of M and M*, 1ot " and b be
contained resepomvely in a base B of M and a base B* of M*, and- go to step 2.

Step 2

2.1 If Je;€ BN P; such that Je, G D;(BHYN(PsU Pg §] P4), or, E—le; € B*N P,such
that Je;€0,(B)N(P1NP2NPs), then set B:=(B\(e;))U (e;) (or equivalently,

= (B*\ (&) ) U (e5)) and go to 2.1.

2.2 'If (b*) is a circuit of M and (b)-is not a circuit of M*, now let O denote
the fundamental circuit of M decided by b and B. If O Ps# J, then take ¢; €O Ps,
sot D:=D,;(B*) and stop (henoce, case IV holds); if O N Ps=(J, then go to step 3.

2.8 If (b) is a cirouit of M* and (b*) is not a circuit of M, now let D denote
the fundamental cirouit of M* decided by b* and B*. If D P,+ J, then take e, DN
P, and set §:=0,(B), stop (hence, case IV holds); if D) P,=(, then go to step 4.

2.4 If (b*) and (b) are not respectively circuits of M and M*, now let O denote
the fundamental circuit of M decided by b and B, and D denote the fundamental
circuit of M* decided by b* and B*. ~

2.4.1 IfONPs+Q, DNPy#*J, then lef ¢;€0 n Ps, e;EDn P,, seot o ==O;(B),
D:=D,;(B*), and stop (hence, case IV holds). '

2.4.2 IfONPz=J D, Py J,thenlete, € D Py, setO: O,(B), andgotostepS

2.4.8 IfONP;+ T, DNPy=(, then let ¢;€ONPs, set D:=D,(B*), and go
to step 4.

2.4.4 IfONP3=(J, DﬂP4, then go 1o step 5

Step 8 Let O* denote the oriented part of O which contains b, and 0~ the other
oriented part of 0. Now, let K=(i|le;€ (P1N0O")U (Pg NoOH). If K= Q, then stop
(hence, case II holds). :

Otherwise, let #=Min (| €.K), and let D} denote the oriented part of Dy(B*)
which contains b, and Dy the other oriented part of Dy(B*). Now let L'=(i|e€
(PsNDHU(PaND)). If I =¢F, then seb D:=D,(B"), and stop (hence, case IV
holds); Otherwise, let L=Min (4|4 € L), set B*: = (B*\(ez)) U (é) (in this case, ¢, and
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ey, are said r(;spectively to have moved out of B “actively” and B* “Passively”), and
go to step 8. » |

Step 4 Let D* denote the oriented part of D which contains 5*, and D~ the
other oriented part of D. Now let K= (’I/‘@;E (PiND)U (PaND*)).1f K= (J, then
stop (hence case III holds). ' o

Otherwise, let = Mm(fbifz,EK ) and let O3 denote the oriented part of Oy(B)
which contains 3*, and Oj the other oriented part of Oy(B). Now let L'==(i|e,€
(PiNOND U (PaNOY)). I I/ =, then set O0:=0,(B), and stop (hence, case IV
holds); Otherwise, let L=Min (4| € L), set B:=(B\(ex)) U(es) (in this cage, ¢, and
ez, are said respectively to have moved out of B* “actively” and B “passively”, and
go to step 4. o

Step 5 Let O denote the oriented part of C which contains b, and O~ the other
oriented part of 0. Let D* denote the oriented part of D which contains b*, and D~
the other oriented part of D. Now let K =(5|e;€ (P.N0~) U (PsNOH U (P:ND)U
(PaNDY)).If k=, then stop (hence, case I holds); Otherwise, let s=Min(s|4 € K),

5.1 If ¢,€0, let Dif denote the oriented part of D,(B*) which contains b, and
Dy the other oriented part of D;(B*). Now let I'=(é|e,€ (PsN D7) U (PaNDY)). If
K =, then set D:=D,(B*), and go to step 4; Otherwise, let L=Min(s|¢€L’), sot

={(B*(es))(er) (in this case, e, and ey, are said respectively to have move out of B
aotlvely” and B* “passively”), and go to step 5.

6.2 If ¢,€ D, let O denote the oriented part of O,(B) which contains b*, and
O% the other oriented part of Oy(B). Now, let L'=(i|e;€ (P1NOF)U (PaNO})). If
L'= 7, then set C:=0,(B) and go to step 8; Otherwise let L=Min(;|sE L"), set B:
=(B\(ez)) U (&) (in this case, ¢, and e, are said respectively to have moved out of
B* “actively” and B “passively”), and go to step 5.

Proof = First, it is easy to see, due to step 2.1, that

(1) When the algorithm operates inside step 3, it always happens that O P;=
& and, for e;€BN(PiNP,y), Di(B)NPs=;

(2) ‘When the algorithm operates inside step 4, it always happens that D) P,=
& and, for ;€ B*N (P41 Pa), 0:;(B) N Ps=;

(8) When the algorithm operates inside step b, it always happens that

1) ONPy=¢ and, for ¢;€ BN (P1UPy), Di(B") N Py=(,

2) DN Py=J and, for ¢,€ BN (P1UP,), Ci(B) N Ps=;
Therefore, if the algorithm finally stops, one of those cases I, IT, III, IV must hold.
So it is only the finiteness of the algorithm which is yet to be proved. It is obvious
that the algorithm cannot cyocle inside steps 1 and 2.

If the algorithm cycles inside step 8, then those elements of £ which take part
in pivoting must move not. only out of some base of M “actively” but also out of
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some base of M “passively”. Let ¢, be one among them which has the largest
subscript. Suppose ¢, moves out of By “actively” and B; “passively”. Now let Oy be
the fundamental circuit of M decided by b and Bj, and assume that when e, moves
out of B; “passively”, ¢, moves out of B, “actively”. Let Dy=Dy(B*). Then it is not
difficult to check up that O; and D, are not orthogonal. Thus a contradiction
happens. '

Applying the same approach as the one above, one can prove that the algorithm
does not cyole inside step 4.

Now, suppose the algorithm cycles inside step 5. Let ¢, be the element which
has the largest subscript among those elements of F which take part in pivoting
during cyecling. Then three cases below may arise.

(1) e, moves out of some base of M(M*) “actively”, and some base of M*(M)
“passively”;

(2) e, moves out of some base By of M “passively” and some base B; of M*
“passively”s

(8) ¢, moves out of some base B; of M “actively” and some base B, of M*
“actively”.

If case (1) happens, using the same approach taken when proving non-cycling
inside step 8, one can get a contradiction deduced.

If case (2) happens, assume that when ¢, moves out of By “passively”, ¢, moves
out of B] “actively”, and when e, moves out of B; “passively”, ¢; moves out of B,
“actively”. Then it is not difficult to verify that O;(By) and D;(B;) are not
orthogonal. Thus, a contradiction happens.

Finally, if case (8) arises, leb

O4 be the fundamental circuit of M decided by b and B,

O, be the fundamental cirouit of M decided by b and B,,

D be the fundamental circuit of M* decided by b* and Bj,

D, be the fundamental circuit of M* decided by b* and Bj.

By applying the elimination axiom of oriented matroids to O; and 0,, and let e=p,
& =e¢,, a circuit Oz of M can be obtained which contains ¢, but not 5. Because Oy and
D; are orthogonal, it can be derived that d* and e, must locate in the different
oriented parts of O, this would then lead to a contradiction that O3 and D, are not
orthogonal.

References

[1] Bland, B. &. and Vergnas, M. las, Onentablhty of Matroid, Journal of combinatorial theory, Ser. B, 24
(1978), 94—123,
2] Bland, R. G., A Combinatorial Abstraction of Linear Programming, Ibid, 28 (1977), 83—57.

[8] Fukuda, K., Oriented Matroid Programming, Ph D. Thesis, Univ, of Waterbee, (1981).

[4] Todd, M. .T Linear and Quadratic Programming in Oriented Matroids, Technical Report No. 565,
School of Opera.tmns Research and Industnal Engineering, Cornell Univ. Ithaca (1983).






