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A FINITE CONFORMAL-ELIMINATION FREE 
ALGORITHM OVER ORIENTED 

MATROID PROGRAMMING* *
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Abstract

This paper presents a new finite pivoting method for oriented programming which 
works principally on the smallest subscript rule appealing to no process of conformal 
elimination. In  particular, when the oriented matroid programming under consideration 
is a linear programming, the process of conformal elimination is just the process of 
minimum ratio test.

An oriented matroid M  (1) is a matroid that, for every circuit of it, a partition 
(O', O") of 0 ( 0 ' \ J 0 " = 0 ,  О' ПО" =  0 )  has been defined, and all these partitions 
satisfy the following Elimination Axiom. (O', О") is called the oriented partition of 
O, and O', O" are called the oriented parts of O.

Elimination Axiom: Let Ot and 0 2 be any two given circuits of M. Denote 
(0[, 01) or (01, 0[) by (Of, Or) and denote (0'2, OS) or (OS, OS) by (Of, О*). 
Then, for

(Of П О » U (O rflO f), 
e' €  (Ot U 0 2) \ ( (Of П О »  U (Or П O f» ,

there exists a circuit 0 8 of M which has the property
1) в(£Оз, в' £  08,
2) one can denote one of O3 and O3 by Of and the other by O3 such that Of C

ofuof, o3-coruo2-
Graphio Matroids induced by digraphs and Matrix-representable Matroids are 

all examples of oriented matroids.
Any oriented matroid M  has a property called Conformal Eliminability, that 

is: Let Ot and Oa be any two given circuits of M, Denote (0[, 0'{) or (0'{, О » by 
(Of, Or) and denote (0 2, 0 »  or (0 2, 0 »  by (Of, O j). Then, for

e'G (Ot U 02) \ ( ( 0 f  П 0 2~) U (Or П Of)),
there exist an element e£  (Of П О » U (Or HOf) and a circuit 0 3 of M such that

1 ) еф 08, e 'GO3,
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2) One can denote one of 0 3 and 0 3 by 0 3 and the other by 0 3 such that
(otfnoO ECtf, (0 3- n of) c a r ,  o 2+ n (o 2\0 O c o 2+, o 3“ n (OsAoO e o i -

Let Ж and Ж* be a pair of matroids dual to each other. If Ж is an oriented 
matroid, then Ж* oan be uniquely defined as an oriented matroid such that Ж* and 
Ж are orthogonal, that is: any circuit O' of Ж and any circuit В  of Ж* are orthogonal. 
Denote (O', O") or (0 " , O;) by (0 +, 0~), and denote (D', D") or (D ", D') by 

. Then (0 + U D+) П (0~ П B~) Ф 0 .  if and only if (0+ П D“) U (0~czD+) Ф 0 .
Oriented matroid duality is an abstract combinatorial setting of the linear 

programming duality. Let Ж and Ж* be a pair of oriented matroids dual to each 
other, E  be their ground set, b and b* be two different elements chosen from E . A 
circuit О of Ж is called a (non-negatiye) feasible circuit of Ж if

1) ь е о ,
2) 0 \ ( b*) is contained in one of the oriented parts of 0 .

A circuit D of M* is Called a (non-negative) feasible circuit of M* if
1)
2) B \(b ) is contained in one of the oriented parts of Д,

О and D are called complementary, if
(C \(5 * ) )n (D \(6 ) ) - 0 .

The oriented matroid duality theorem can be briefly presented as: If both Ж and Ж* 
have got a feasible circuit of their own, then there are two complementary feasible 
circuits of Ж and Ж*. The above mentioned duality theorem was first proved non- 
eonstruetively by Lawrence, and it can also be proved constructively by a number 
of finite algorithms for oriented matroid programming which were developed by, 
say, Bland (2), Fukuda (3) and Todd (4). A common feature of these algorithms is 
that their pivots appeal strongly to the conformal elimination process, that is, the 
process of realizing th e . conformal elimmability in the oriented matroid under 
consideration. (In case that the oriented matroid programming concerned is 
particularly a linear programming, the conformal elimination process turns out the 
process of minimum ratio test in linear programming).

This paper aims at providing an oriented matroid duality theorem which is 
more detailed in content than the one mentioned above, and the algorithm given in 
this paper for proving constructively this theorem is of primal-dual type. Its 
pivoting works purely on smallest subscript rule which involves no process of 
conformal elimination type.

Definition. Let M and M* be a pair of oriented matroids dual to eaoh other, E  
their ground set, b, Ъ*£Е(ЪфЪ*), E \(b , b*) =  PiU PzUP&\JP&,

A cireuite of M is called a feasible ciruit o f Ж, i f

(i) ъео,
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(2) a n P a - 0 ,
(3) О П P i and Ъ are in the same orientedpaxt of О,
(4) G f]P 2 and b are in the different oriented parts o f 0 .
An circmt D of M* is called a feasible circuit of M*, i f
(1) b*£D ,
(2) D n P < t= 0 ,

(3) D (\P i and b* are in the same oriented parts of D,
(4) D f\P 2 and 6* are in the different oriented parts of D.

. A circmt G o f M is called an infinitely -augmenting circuit of M, i f
: ( ! )  br\8 , b *$ 8 ,

(2) 8  f)P st=i 0 ,
(3) 8 П P i and b* are in the same oriented part of G,
(4) G ЛРа and b* axe in the different oriented parts o f G.
A circuit S  o f M* is called an infinitely -augmenting eiremt of i f
(1)  &*€#,&€ A
(2) S f ) P t = 0 ,
(3) В  П P i and b* are in the same oriented part of B,
(4) В  П Pa and b* are in the different oriented parts o fB .
Because the circuit family of M  and the circuit family of M* are orthogonal, it 

is impossible that there can exist, at the same time, a feasible circuit of M and 
an infinitely-augmenting cirouit of M* (Ж ).

Theorem, the algorithm given below results in making one (and only one) of the 
following four cases hold.

(!)  A feasible circuit of О of M and a feasible circuit D of M are found 
simultaneously', G and D are complementary, that is

С Л Р Л Р 1- 0 , а л Р Л Р а = 0 .
(II) An infinitely -augmenting circmt 8  of M and a feasible circmt G of M are 

found successively.
(III) An infintely -augmenting circmt В of M* and a feasible circuit D of M* 

are found successively.
(IV) An infinitely -augmenting circuit G of M and m infinitely-augmenting 

circuit В of Ж* are found respectively.
(When P 2—Р з—P ic=!0 ,  the above theorem becomes virtuely the original version 
of the duality theorem over oriented matroids).

Algorithm

Let B \(b , a*) =  (e1} e2, •••, e„), and В, B* denote a pair of complemented bases
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(that is B *= E \B )  of M and M \  For eb$ B , e& B *  let 0 ,(B ) and denote
respectively tne fundamental circuit of M  decided by e{ and В  and the fundamental 
circuit of M* decided by e,- and B*.

Step 1
1.1 If (6*) and (6) are respectively circuits of M and Ж*, set G: =  (b *),S : =  (6) 

and stop (hence, case IV holds).
1 .2  If (&*) is a circuit of M and (b) is not a circuit of M*, let b be contained 

in a base B* of M*, set G: =  (b*) and go to step 2.
1 .3 If (b) is a circuit of M* and (6*) is not a circuit of M, let b* be contained 

in a base В  of M, set 5 : =  (6) and go to step 2.
1 .4  If (b*) and (&*) are not respectively circuits of M and Ж*, let b* and b be 

contained resepotively in a base В  of Ж and a base B* of M*, and go to step 2.
Step 2
2.1 If Зв,€В П Вз such that Зе«€А (В *) П (P illP aU P 4), or, З ^ ^ В *П Р 4suoh 

that 3 е,-£0г(В) П ( P iПPa ЛРз), then set B: =  (B \ (<?*)) U (еД (or, equivalently, 
B*: =  (B*\ (et) ) U (^i) ) and go to 2 .1.

2.2 If (6*) is a circuit of M  and (&) is not a circuit of M®, now let 0  denote 
the fundamental oircuit of M  decided by b and B. If 0  f) РьФ 0 ,  then take e j£O f| P 8, 
set J5: =D j(B *) and stop (hence, case IV holds); if 0  ПРз==0 ,  then go to step 3.

2.3 If (b) is a circuit о !Ж * and (&*) is not a circuit of Ж, now let D denote 
the fundamental circuit of Ж* decided by 5* and B*. If B  fl P ^  0 ,  then take e{ £  D П 
P 4 and set 0 : = 0 {(B ), stop (hence, case IV holds); if D f[P i = 0 ) then go to Step 4.

2.4 If (6*) and (b) are not respectively circuits of M and Ж*, now let 0  denote 
the fundamental circuit of M  decided by b and B, and D denote the fundamental 
circuit of M" decided by b* and B*.

2 .4 .1  К 0 П Р з= £ 0 , B f |P 4# 0 ,  then let e* £  0  П Рз, G D f| P 4, s e t0 := 0 *(B ) , 
S := B ,(B * ) ,  and stop (hence, case IV holds).

2 .4 .2  И 0 П Р з = 0 В ,  В ± Ф 0 , then let е*£ВП  P 4, set 0 : = 0 Д В ), and go to step 3.
2 .4 .3  К 0 П Р з¥ = 0 , В П Р 4=а0 , then let <?/£0ПРз, set B:=*D j(B*), and go 

to step 4.
2 .4 .4  If 0  П P 3= 0 ,  D П P 4, then go to step 6.
Step 3 Let 0 + denote the oriented part of 0  whieh contains 5, and 0 “ the other 

oriented part of 0 . Now, let К  — (г | e4 £  (P i П 0 " )  U (Pa П 0 +) ). If ВГ =* 0 , then stop 
(hence, case II holds).

Otherwise, let & =  M in (iU £ if) , and let D£ denote the oriented part of Dfc(B*) 
which contains b, and the other oriented part of B fc(B *), Now let B' =  (a | £ 
(PiHPfc) U (PaflBfc)). If У = 0 ,  then set S : = B fc(B*), and stop (hence, case IV 
holds); Otherwise, let L = Min (i | a £  B ') , Set B*: =  (B*\ (еД) (J (efc) (in this case, eH and
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e£ are said respectively to have moved out of В  “actively” and В * “Passively” ), and 
go to step 3.

Step 4 Let D+ denote the oriented part of D which contains 5*, and B~ the 
other oriented part of D. Now, let K — (i  | et £  (P i П A ") U (Pa П P +)) . If IT =  0 , then 
Stop (hence, case III holds).

Otherwise, let &=Min(i|'j£jK'') and let Ok denote the oriented part of Ok(B) 
Which contains &*, and Оk the other oriented part of Ok(B'). Now let L' =  (i | e4 £ 
(PiHOfc) U (P aflO J)). If L ' = 0 ,  then set C := O k(B), and stop (hence, case IV 
holds); Otherwise, let L  =  set B: =  (B \(eL)') U (e^) (in this case, efc and
eL are said respectively to have moved out of B* “actively” and В  “passively” , and 
go to step 4.

Step 6 Let O* denote the oriented part of О which contains 6, and 0~  the other 
oriented part of O. Let D+ denote the oriented part of D which contains 5*, and D~ 
the other oriented part of D. Now let IT =  (* | e4 £  (P i П 0~) (J (Pa Л A )  U (P i f) A )  U 
(Pa Л A ) ) .  If k —0 ,  then stop (hence, case I holds); Otherwise, let #== Min (&|&£JT)i

5.1 If efc£(7, let A  denote the oriented part of Dk(B*) which contains 6, and 
Dfc the other oriented part of A ( P * ) . Now let U  =  ( i \e4£  (P iП A l) U (Pa П AO)- If 
Ж" =5 0 ,  then set A = A ( P * ) ,  and go to Step 4; Otherwise, let Р=М т(£|& £1У ), set 
B*\ =  (P*(eb))(e fc) (in this case, ek and eL are said respectively to have move out of В  
“actively”  and B* “passively” ), and go to step 5.

6.2 If ek £  A  let Ot denote the oriented part of 0 fc(2?) which contains &*, and 
Ok the other oriented part of Ok(B ). Now, let L '= ( * |e j £  (Pifl AO U (P 2 Л AO ). I f 
L ’= 0 } then set & :=O k(B) and go to step 3; Otherwise let L = M in (i|£ £27), set B: 
=  (P \ (ел) ) U (efc) (in this case, ek and eL are said respectively to have moved out of 
B* “actively” and В  “passively” ), and go to step 5.

Proof First, it is easy to see, due to Step 2.1, that
(1) "When the algorithm operates inside step 3, it always happens that О П Рз= 

0  and, for е, £ P  П (P i Л P a), A (5 *) Л P 4=  0 ;
(2) When the algorithm operates inside step 4, it always happens that D Л P 4=> 

0  and, for e4£  А Л  (P iU A ), A (P ) ЛР8= 0 ;
(3) When the algorithm operates inside step 5, it always happens that
1) О Л Рз“ 0  and, for в ^ В  Л (P iU P *), A ( A )  ЛР4= 0 ,
2) D Л P 4=  0  and, for в4£ Р Л  (P iU P a), А (Б ) ЛР8= 0 ;

Therefore, if the algorithm finally stops, one of those oases I, II, III, IV must hold. 
So it is only the finiteness of the algorithm which is yet to be proved. It is obvious 
that the algorithm cannot cycle inside steps 1 and 2.

If the algorithm cycles inside step 3, then those elements of E  which take part 
in pivoting must move not only out of some base of M  “actively” but also out of



some base of Ж “passively” . Let eg be one among them which has the largest 
subscript. Suppose eg moves out of Bx “actively” and Bl “passively” . Now let Ox be 
the fundamental circuit of Ж decided by b and Bx, and assume that when eg moves 
out of Bl “passively” , ek moves out of B2 “actively” . Let В 2= В Й(В*). Then it is not 
difficult to check up that Ox and B a are not orthogonal. Thus a contradiction 
happens.

Applying the same approach as the one above, one can prove that the algorithm 
does not cycle inside step 4.

Now, suppose the algorithm cycles inside step 5. Let eg be the element which 
has the largest subscript among those elements of E  which take part in pivoting 
during cycling. Then three cases below may arise.

(1) eg moves out of some base of M (Ж*) “actively” , and some base of Ж*(Ж) 
“ passively”;

(2) eg moves out of some base B x of Ж “passively” and some base B% of Ж* 
“passively” ;

(3) eg moves out of some base Bx of Ж “actively” and some base Ba of Ж* 
“actively” .

I f case (1) happens, using the same approach taken when proving non-cycling 
inside step 3, one can get a contradiction deduced.

If case (2) happens, assume that when eg moves out of Bx “passively” , e( moves 
Out of Bi “actively” , and when eg moves out of Bl “passively”, moves out of B3 
“actively” . Then it is not difficult to verify that 0j(B i) and B,-(B2) are not 
orthogonal. Thus, a contradiction happens.

Finally, if case (3) arises, let
0 i be the fundamental circuit of Ж decided by b and Blf 
0 a be the fundamental circuit of Ж decided by Ъ and Ba,
B i be the fundamental circuit of Ж* decided by 6* and B\,
B a be the fundamental circuit of Ж* decided by b* and B|.

By applying the elimination axiom of oriented matroids to Ox and 0 a, and let e=&, 
&' =  eg, a circuit 0 8 of Ж can be obtained which oontains eg but not b. Because 0 8 and 
B i are orthogonal, it can be derived that b* and eg must locate in the different 
oriented parts of 0 8, this would then lead to a contradiction that 08 and B a are not 
orthogonal.

References
[ 1 ] Bland, B . G. and Vergnas, M. las, Orientability of Matroid, Journal o f combinatorial theory, Ser. B, 24 

(1978), 94—123.
[ 2 ] Bland, B. G., A Combinatorial Abstraction of Linear Programming, Ibid, 23 (1977), 33—57.
[ 3 ] Fukuda, K ., Oriented Matroid Programming, Ph D. Thesis, Univ. of Waterbee, (1981).
[ 4 ] Todd, M. J . ,  Linear and Quadratic Programming in Oriented Matroids, Technical Report No. 565, 

School of Operations Research and Industrial Engineering, Cornell Univ. Ithaca (1983).

No. 1 Wang, Z. M. A FIN ITE CONFORMAL-ELIMINATION FEEE ALGORITHM 125




