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CERTAIN PROPERTIES OF REALIZABLE
MODULES OVER THE
STEE NROD ALGEBRA
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Abstract

Let Q;, P® he Milnor base elements of the mod p- Steenrod algebra, p>2. Pi=
Peo,0,2%0,*) with p® in the $~th position, s<t. The presént paper obfains a construction
of killing P9 homology group of 4 module M: (1) For bounded below 4 module M, there
exists an 4 module M and monomorphism f:M—> M such that H(M, P)=0and H(f, Q,),
H(f, P}, H (f, (P)?Yare isomorphisms for all >0, s<t+1. (2) For bounded below
spectrum X there exists a spectrum Y and a map fiY->X such that H(Y*, P} =0 and
H(f*, @), H(f*, P, H(f*, (PHPL) are isomorphisms for all >0, s<t+1, where Y*
is the Z,, cohomology of ¥ and f*:X*->Y* is the A module morphism of Z, cohomology
induced by £. o

Let A be mod p Steenrod algebra. An A module M is called realizable if there

~ exists a spectrum X guch that H*(X, Z,) =M. In the case p=2, [5] obtained

congtruction of killing the P§ homology groups of M in the cé,tegory of A modules.

This construction can also be carried out in the categdry of realizable 4 modules,

henoe if M is realizable then the constructed new module is also realizable, this
gives a necessary condition of realizable modules.

The present paper considers the case p>>2 and obtaing partial results corres-
ponding to the results in [5]: For P, there ig a construction in the category of A
modules and of realizable A4 modules such that P} homology groups of the
constructed new module vanishes, but other P§ or @, hbmology groups of it remains
isomorphic with homology groups of the original module.

‘ The proofs of all results listed in the present paper had been given in details.
Unless there is an outline of proof of one theorem:in [5], the author had not seen
any lilerature which states the proof of results in [5] whenever the author
established the original manuseript. After the original manuseript had been
established, in the end of 1984, the author saw the book[8] (published in 1983)
which states the proofs of results in [5] ([8]doesn’t concern the case p>2 in this
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problem). But unless a little revision in the proof of Theorem 1.4, this revised
manuseript remains all contents of the original manuseript.

§1 The Méiin Results

In the present paper, A denotes the mod P Steenrod algebra, p>2 Lot Q;, Pt
(4=0) be Milnor base elements of 4, P;= = P©10,9%0,") yith 2° in the ¢-th position,
then (P§)?=0, Qf=0 for i=>0, é<t, hence there are homology groups H (M, @;) =
ker Qi/im @, and H (M, (P;)?) =ker (P§)!/im (P;)?* ¥ (see [7]). These are functorial
invariants, if f:M—>N is an 4 morphism, then f induces homomorphism H (f, «):
H(M, &)~>H (N, &), where o= P} or Q..

Theorem 1.1. Let f: M—>N be A morphism of bounded below A modules such
that H (f, Q) s an isomorphism for all :=0, H (f, Pi) and H( f, (P{)*™*) are iso-
morph@'smé for all s<t, then M, N are stably isomorphic, 4. 6. tsomorphic wp to free
A modules factors. »

Theorem 1.2. Tet E be any subalgebra of the ewterior algebra H(Qo, Q1, Qo) **)
or Bbe Z,[P31/((P:)®) and N be E module, M= ARpN, then H(M, «) =0 for ad K,
where a=P§ or Q. o

Theorem 1.3. Let M be bounded below A module, then for a=@Q, or P%:

. (1) There ewists an A module M and monomorphfz}sm frM—>M such that H (M, «)
=0and H(f, Q), H(f, P}), H(f,(P})*™) are all isomorphisms for all Q or Pj
other than o,

(2) If there ewist A modules Ny, Ny and monomorphisms fit M—>Ny, fatM—>N,

“satisfied the conditions of (1), then N1, Ny are stably isomorphic.

We write M (a) for M obtained in the above theorem and a=Q, or P?. For
spectrum X, let X* denote the Z, cohomology H*(X, Z,) of X, hence X" igan 4
module. For map f:¥—>X, f* : X*->Y" is an 4 module morphism induced by f. .

Theorem 1.4. Let X be bounded below spectrum, then there ewists a spectrum ¥

and ¢ map f:1¥Y—>X such that H(Y*, P)=0 and H(f*, Q), H(f*, P}), H(Sf*,
(P)?™) are all isomorphisms for Q; or P§ other than P3.

Theorem 1.5. If M is a realizable bounded below A module, then M(P?) s also
realizable up to stable ssomorphism.

§ 2. Preliminaries

In this paragraph, we prove some results on P homology groups of 4 modules.
First, we consider the relation of P§ homology groups and Ext functor.
Theorem 2.1. Let BE=E(a), a=Q:i(6=0) or B=Zy[al/(@®), a= P} (s<t) and



{fle]}=0, then there is m& M, such that f[a] =am, let g:Be—>M be g[ 1=m,

this in detail, since it is useless in this paper.
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M be H module, then

‘ -fExt%,’é(Zp, M) = Hipgega (M, o),
where k=1 if a=Q; and bk=p—1 ¢f a=P§. Hence H injective modules are fres,
.. Proof Ifa=Pi, BE=Z,[P{]/((PD)?), let

B, 32,5 Bo—> Z,~>0 -
be B bar resolution of Z, (see [1]). Any cocycle f € Homy(Bs, M), then
Of [od |oa’] =alf{od] - fla*] =0

and f [0#*f] =aif[af], this means that f is uniquely determined by flal and
off[a] =0, Define a funetion - . : :

wiExty? (Z,, M) ——>Ht+dega(M ) S
such that p{f}={flal}. If {f}=0, then f=Jdg and f[a] =‘o‘g[a] ga[ =
agl 1 €aM,, i. e. { f [e]}=0, hence yw is well deﬁned p is -clearly epic. If

then f=238g and {f}=0, hence u is monic. If a=0;, H=H(Q,), the proof iy similar.
In fact, it can be proved that & free module is K injective. But we do not state

Secondly, we consider some calculations of the homology groups of A modules
such as A/A4Q;. .

Proposition 2.2. (1) Let a=0Q,(>0), then H (4/Aa, a;) =0 for a;+a, whore
oy =@y, or Pi. - | .

(2) Let a=P; (s<t), then H(A/Ad, 0y) =0 (I<j<p—1) for ay#a where
oy =Q; or P,

Proof (1) We give proof for al—-Pt and the proof for ;=@ is similar. 4/Aa

has a character like near simple module in[8], i.e. there is a short exact sequence

: 0—>A/Aa—>A——>A/Aa—>O
where f (a*) =aa, g(a) =a* and deg f=deg a=m, deg g=0. Hence it mduces a long

" exact sequence ([7] Prop. 8.2.)

—->H¢_m(A/A¢x )23 H(4, a) D H,(A/ Ao, a)
"_" Hi+ma—m(A/A“; af™) = Hyym (4, af™) >,
where my=deg a;. From [7], H (4, a;) =H (4, af™!) =0, then
H(4/Aa, ay) 2 H;, m:-m(A/A“: “11)-1)
and the followmg long exact sequence

s> -H 6-m<-A/ Ao 0@4)"" H i(A “f—i)“’ H {(4/ Aa o)

"’ H T+ (p~Tyma~m (-A/ Aa: 061> - -H $4(0—Lym (A 0ty)—> *
induces 1somorph1sm .
H(4/ Ad: .O‘i’_l) & Hyp-tym-n(4/ Aaty o),
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hence there is an isomorphism
Hipmem (A/ Aa, o) = H i+<p-1)ma—m(A/ Ae, o),
it is eagily seen that m—my+ (p—1)my,—m, then H (A4/Aa, a;) =0,

(2) The short exact sequence 0—>4/Aa?~f 458 A/Ad"—>0, where f (a")=ad,

g(a) =a", deg f=deg &’ =jm, deg g=0, induces a long exact sequence
oo -—>H;_,m(A/Aa” i ai)—> H;(A ai)-> H;(A/Aoa “1)

| -—>H sem—in(A/ A0, ol 1)~ H;.,.m,(A a{“i)-> e
‘and obtain an isomorphism
H(A4/Aa?™?, af™1) ~H;+;,,._m,(A/Aa‘, oai)
also from 0—>A/Aa’-—->A——>A/ Ao#i->0, we have
H A/ Ac®™, o87) = Hyy o tym—o-iim (A/ Ad?, 0‘1)

since jm—m, % (p 1)my— (p—j)m, it follows that H(A/Ad!, ay) =0.

Propos:tlon 3. Let a=Q: or Pt (4=>0, s<t), then &f oaaéQ;, (1<fr<k)
H (A/ AQ¢.+AQ¢.+ -+ Ast: «) =0,

Proof From Proposition 2.2,, this holds for #=1. Suppose that this holds for
%k—1. Observe the following short exaot sequence

0—> A/AQy++++AQy D> A/ AQy+- ot AQy . D> A/ AQu++4Q, -0,
~where f(a™) = (a@,)", g(a*) =4™. Clearly g is epio and'gf=0. If g(a") =0, then
a=a1Qi,+ -+ @,
Sf(a") = (@@Qs,)"=a", hence im f=ker g. Now prove that f is monie. If f(a™) =0,
then - ' o
@ Q= a1 Qs+ + -1 Qe
Since 4 is B(Q, ++,Q,) free, then ,
| a=Ay+2y;e;,

where AEZ,, ¢;C E (Q, -, Q) and deg ¢;%0, y, y; is E(Q, -, Q,) free bage
elements of 4. It follows from aQ,-;--Q;,‘=0 that AyQi,-+-Q:, =0 and then A=0, a=
2 y6;€ AQi,+---+ AQ,, i.0. a"=0. Thus the above sequence is short exact and deg
f=deg @y, #deg &. From inductive hypothesis, H (4/AQ;+ -+ 4Q,_, &) =0, then
following by the similar argument in Proposition 2.2., the proposition is proved.

Proposition 3.4. H(4/4Q,- Q;,‘, o) =0if a®Q, (I<r<k) and o= Q; or P;,

Proof Holds for k=1. By induction on %. Consider

0-—>A4/AQi+---+4Q,, A A/ AQur Q> A4/ AQ\ @y, 0,
where f(a*) = (aQs,---Q;...) "™, 9(a**) =a**. Olearly g is epic and gf=0. If g(a™) =0
then ¢=a'Q;-+Qi., and f(a™)=a", im f=ker g. Now prove that f is monie, If
~ f(a*) =0, then o
Qi Qi =" Qi+ Qs
then (a+a'Q:) Qi -*Qi..,=0. Similar to the argument in 2.8, we have
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. . : L ata Q@, EAQ oo+ AQy,.
and a*=0, f is monie, the above sequenece is short exact. Following by inductive
hypothesis and Propesition 2.3, the proposition is proved.. ‘L - s
Proposnlon 2.5. Lete (1<j<la) are elements of the form Qi,Qg, Qy,, two of
which are distinct, then :
_ © H(A/Aey+ -+ Aey, a)—O
where o= Ps or Q; which does not appear in ¢; (1<j<k).
Proof By induction on 4. From the following short exact sequence .
0—>4/AQp -+ AQ,~>A/ Aoy ++- +Aek_1—->A/Aei+ o+ Ag—>0, .
the conclusion follows directly, where Q,, «*+, Qy, are all @ appear in ey, €s, ***, €
f(di*)'_—'(d@z.;)** and.g(a”-)=.w**'f. ) o .

P

§ 3 Proofs of the Main Theorems

Pfroo f of Theoa"em 1.1. First let f: M——)N bean 4 epimorphism and kerf="F,
then there isan A module short exact sequence ,

O—)F—->M —> N—>0
which induces a long exaet sequence (see[7])

> H,(M, (Pg)ﬂ)wm(m (PH*)

2 ' H(F, PD)
-> H‘-l-(?—i)m(F, P;) g H‘+(p—1)m(M, Pg)_i——) oo,

It follows from H(f, P{) and H(f, (P{)*™) are isomorphisms that H (¥, P;)=0
for all s<¢. Similarly H(F, @;) =0 for all 4>>0. Then F is free A module (see [7]).
But free A module is injective (see [4]), then the sequence splits, and M= NDF.

If f: M—N isn’t epic, find the free resolution of N ,'-Forg)N—.—SO, then f@g: -
MPF>N is epio, let ker( f@g) = F4, then there is a short exact sequence 0—>F,

>M@F, 224 N—>0 and H (f®g, @) H(fDg, P}, H(fDyg, (P})*2) are also

isomorphisms, then it follows from the above argument that M@ F,= NDF,.

Proof of Theorem 1.2. Let K be any subalgebra of B (Qo, @1, Qs, --) and a=
P;. Any element of 4 ®zN, we may assume it be a®@n for simplicity. If a(a®n) =0
then either ag=0 or aas=2 a}e; and e;n=0 (¢; EVE_, a); is B free bage elements of 4),
In the former, it is easily seen that {a@n}=0 € H (A®zeN, &) and in the latter,
sinoce ¢; is of the form @;,Q;, @y, the two of ¢; are distinct and a=P;, then from
2.5. we have

a=a?"1b+ 2 be;,

where b, b,€ 4. Since a@n=0?"2(b@n) then {a@n}=0 € H(AR:N, a). In the
case o=@, & H, the proof is similar.
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If BE=Z,[P;]1/((P§)?, a=P§+ P;, any a®n € ARQsN such thata(a@mn) =0, then
either ag=0 or as=a'(P:) and (P$)n=0. Then from Proposition 2.2 we have
o= oc"‘ib—%-c(Ps)’ thus {w@rm}=0 €H (A@EN o). In the case a=Q;, the proof is
similar, T o .

Proof of Theorem 1.8. (1) If we can prove the following lemma, then by
using this lemma repeatedly and uSmg limit, Theorem 1.3. (1) will be proved. Now
we prove the following .

Lemma 3.1. Let a=Q; (or PY), if H(M, Qo) =0 fo«r s<w (or H;(M PY) =
H, (M, (P})?™) =0 for 6<w), then there evists an A module M and monomorphism
h:M—>M such that H(h, Q), H(h, P3), H (h,(P;)?Y) are ssomorphisms for all @Q,
P; other than o and H (M, o) =0 for i¢<w(or H(M, P3)=H, (M, (P)?*)=0 for
<w).

Proof If a=PY, E=Z,[P{]/((P})?). Regard M as E module, then there
exists an K injeotive extention of M , i.e. there existy an K injective module N and
E monomorphism f: M~—>N. From 2.1, we know that N is & free. Let L=cok f, in

the free resolution F-» N->I->0 of L, there is g such that the following dlagram
commutes

Let gt A®EF——>M be gla®e) = wg(e), then ¢ is an A morphmm, in the free
resolution of AX)gL

ARsF 2% A@uN 125 A®sL—0,

we haveE (ker(1®d)) =0, hence g determines an extention
0—->M 5y -—>A® s L—>0,

From Theorem 1.2 '
for all @; and P other than . Hence we have also H (AQzL, (P3)?1) =0(see [7]).
It follows from the induced long exact sequence that H(h, Q), H(h, P;), H(h,
(P3)?*) are isomorphisms. Now we prove that H(M, &) =H (M, a*~*) =0 for 4<<w.

Suppose that B8: L—>A®zL is defined by B(l) 1X®)V1, then B is B monomorphism,
and there is B morphism 7:N—>M such that the followmg diagram commutes

0->M —)M —>A4AQ@zL 0

N——>L—~50

In fact, M is the extention determined by g, thus M is a qﬁotienﬁ group
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M@A®aN /P, where P is submodule generated by elements ( g (1®e) , 1®d (e)) and
k(m) = (m, 0) +P, k[(m, a@n) +P] = ¢ ®sn. Hence, if we lot y(n) = (a, 1®n) +
P, the above diagram commutes. Thus, it induces the following commutative
diagram of exact sequence

coo>Hy (o-1)m (A® L, aﬂ‘l)-g‘»H‘(M y &) —>H(H,a) eﬂi%@)xh-a)—ailjﬁm M, a2y
H(B ar )\ 8/ = H(B, o) LV
| Hytg-m (L, a2~1) Hi(Z, a)
where m=deg «. Since H (N, &) =H (N, o®1)=0, then 8, 8, are isomorphisms and
31, 85 are epio, H{B, o**), H (B, &) are monio. See the following diagram , = - .,

o> H e (A@ Ty 0y H, (M, 00-1) > (I, 1) > H(A®,T, 60— S Hislgoin(l, )
H(B,a)\| Y= H(B, ar=)\ /e

Hi-m(L, @) H(L, ar-1)
If we can prove 81, 83, s, O; are isomorphisms for i< w, then H ,(M oa) =
H (M, a#~*) =0 for s<<w and it suffices 0 prove that ~ ’

' H(B, &)+ Hy(L, &)~>H,(AQasL, a),

CH(B, ) : Hy(L, a2 —>H{(AQsL, a#~%)
- are epic for ¢<xw. We prove the latter first. .

For any elements of A®zL, let it be a®l Suppose that deg (a®!) =i<w and
a1 (a®?) =0, divided into two cases: ’

(1) deg a>pm, m=dega. - :

Then either o g=0 or o* ! a—a'ef (1<j<p—1) and oI=0. In the former it
is easily shown that {a®I}=0 € H;(A®:L, a#1). In the latter; since deg a=>pm
then deg ISw—pm<w—jm. It follows from H (M, o) =0 (5<w)that H (L, o) ==
0 (¢<w—m). From [7] Proposition 8.1, we have H, (L a’) 0 (4<w—jm), then
l oc” i and a®l=woa” ’®Z' But :
’ R ' a? lgof i =a'ola?? =0,
hence a a”“’—-ac for some cEA Thus {w@l} 0 €H; (A®EL o 1) and H (,8 a”"‘)
is epic for i<w.

(i) deg a<pm. :

© Now a=of (1<j<p—1), since a canrot equal 10 Qo in this case (For =P} and

a?~1 Qo Qoa’)' Then ¢ € E and a®l=1®al, H(B, a?1)is epic for i<w. Similarly,

we can prove H (8, a) is ep1c for rz,<fw, and the proof is complete if a=P). If a= Qo,
the proof is similar, * : :

Proof of Theorem 1.8.(2) Firstly, we prove-that the construction of 1.8 (1) is
natural. Let f:Ms—>M; be A morphism, and there are M, M, constructed in 1.3 (1)
and monomorphisms fys My—>My, hgtMg—>M,. According to the consiruction in
1.8(1), we have a commutative diagram
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0———>M1—--——)N1-——>L1'—>0

91\/ d1

”0-—-—> ——[———>N2———>L3-—->O'
‘\ W
92\F /d2

Then Wo have commuta,tlve d1agra,m .

: 184
¥, & a0 2B e,

fl - 11 1®h
Mlgi—AéEm }9@)41@31\12 PR
and M, is the quotient group M,®A®yN/P; as stated in the proof of 1.3. (1), then

there exigts an 4,morphism_ fiM,—>Mysuch that the following diagram commutes

| 4, 7}

. i Mg-—*Mg
i.e. the constructlon in 1 3 @) is naﬁural I f;.M—»N; is a monomorphism
satisfying the condition of 1.8.(1) then for M in 1.3.(1) there is an A morphism

F1: M >N, such that the following diagram c_ommutesf (4=1, 2)

and H(M, a)=H(Ny, @) =0, H(h, Qf), H(hi: Qi) H(k Ps), H(hc. (Pt)))
H (h, (P3)*™"), H(h, (P})?" )are isomorphisms for all. @, or P} other than «. But
H(f, Q,), H( fi, P3), - H(f4, (Ps)” ') are isomorphisms. It follows from Theorem
1. 1 that M, N s stably isomorphio and 80 N, N s and NV, M : N

. Before proving Theorem 1 4 we prove the following two lemmas ﬁrst L

Lemma 8.2. Lot =27 [P/ ((PD) ”), M be B module such that M'=0 (fa<fr)
and H(M, P?) =0 (i<n), then there ewists an ewtention N o f M such that N is B free
module and N'=M* for i<n— 4(p—-D*% - : . -

Proof Smce H,(M, P°) 0 (w<n), then there is an E free module F sueh
that Fi=M' for ¢<n—(p—1)-deg Pi=n—2(p—1)% Let M=AM'+AM "+ +...+
AM*(k=n—2(p—1)?), then M is free submodule of M -and (.M [M)*= _Q('z/<70),. Let
N be smallest # injective extention (i.e. -injective envelope) of M /l17l Then i
fo]lows from Theorem 2.1 that N is free B module and. Ni=0 (G<k—(p-1) degP?
=n—4(p—1)%), Since N is the smallest one. Now, since M is free and. hence
injective: the following short exact sequence .

. _ 0->M—>M—->M /M—->0
sphts thus M=M®M/M. Then N=M®N is an extention of M such that N‘= M‘

- for i<<n—4(p—1)=4
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Lemma 8.8. ILet a=P, X be bounded below spectrum such that H(X*, &)=
H(X* o#™2) =0 (4<<w), then there exists a spectrum ¥ and map f:Y->X such that
H(f* Q), H(f*, Py), H(f* (P:)?™*) are ssomorphisms for all Q; or P; other than. e
and H,(Y*, o) =H X", o~ D =0 for i<w+1,f, :m@)>m(X) is isomorphism for
i<w—4(p—1)>2,

Proof Let H=2Z,[PY] /((P‘{) ), regard X* as¥H module, then there exists an
extention N of X* in Lemma 8.2. such that N free and X*'=N'(i<w—4(p-1)%).

P ' - a -
Let y: X*>N be injection and L=cok 7. In the free resolution Fy—> F 5 L0 of
L, there are B morphism 1, 1, such that the following diagram commutes
S SN N0
e
'771T d nOT /

1—> Hy .
Let 7t A®pF—>X" be n(a®e) =a+n(e), then 7 is 4 morphlsm and n(ker (1®cl)) —O
Since AXpF, ARQpF are free A modules from [4], there are maps 9: X—>K VF,,
h: KV 5~>KVp, such that KV, =AQ®zF1, KV5,=A®sF, ¢"=n, i*=1®d, where
Ve, Vr, are Z, vector spaces Z,®@uFi1, Z,®u,Fo and KV, KV, are Eilenberg-
Maclane spectra. Let ¥ be pullback |

T

KV, <— KV, <

then f and A have the same cofibre Z. In the following commutatlve diagram of
exach sequenceg
| r* r*

X*——)Y*——éZ*——>X*—>Y"

Ca T Lol N A

VF —> KV}~ 7% > KV, ———>KV}°
Since ¢*(ker A*) =0, then we have a short exact sequence
0->X* s V*37%-50

and also easily obtain the following exact sequences

0->cok k* -f;z* £, kér h*—>0
(%) ' | 0—>imA*—>KV% ~>cokh*——>0
O—kerh*~>KV 5 ~imh*->0
Since cok h*=A®;L, from Theorem 1.2.we have H (cok A%, Q) =H (cok B®, P%) =
H (cok %*, (P3)?~%) =0 for all Q,, P} other than a. It follows from the second and'
 third sequences in («)thab
H (ker &*, Q) = H (ker h*; P§)=H (ker b*, (P})*1) =0,
thus we have | C
H(Z", Q)= H(Z",Pt)=H (4", (P)»%) =0
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and H(f* Q), H(f*, P;); H(f*, (P;)?1) are isomorphisms. - _

Now we prove H(Y", &) =H,(Y" o) =0 for j<w+1. Let B:L—>Z* b
B()=R(1R®1), then B is B morphism and there is H morphlsm £ such that the
following diagram commutes up to sign :

0> X¥* s V¥ s 7%~ 0

NN
NN

— I s

In fact, since there are commutative diagrams of B modules exact sequence

0->X* —f-—> Y*->Z%50 0->X* —> N->L->0
Tm P T¢ TB' 1771 ' lﬂo "
By~ Fo—>Tr>0 . By -——> Fy->L->0

and N is isomorphio to X*®F,/P, P is a submodule generated by elements of the

form (m(e), d(e)), then if ¢ is defined by £((», y) +P)=¢(y)— f"(m) the
commutatlvﬂiy follows. Then they induce commutative dlagrams (m= deg @) ‘

Ef—(p—l)m (2%, ar-1) —'> Hy(X* a)»H,(Y* a) ——>H5(Z* 06) -'" Hﬁm X*a "'1)

HRaw)'\_ (- 4 CHEHN\ (=D /’64
Hi—(p'*l)m(L “p—l) o Hi(L: “)
Hy o (Z*,a0) -—-—>H;(X* ar-1) ~>H (Y% y a1 >H (Z*, aP‘i)-——>H¢+<,,-1)m(X ,a)
AR (=1) = H@E ar1) \_(~1) 7%
D7 N
Hy (L, ) H(L, a?-%)

Since H(N, a)=H (N, af~*) =0, then &,, 8y, 8, s are isomorphisms and 0 3y, &,
s, d7 are epie, H (B, &), H(B, a?1) are monic. Now we prove that 8;, 85, 95, d; are
monic for j<w+1, i.e. H(B, &), H (B, a**) are epic for i<w-1. But B is the

composition L A AR®pL LS Z* and it has been proved in 1.8.(1) that H(j,a),
H (j, o®™)is opic. Then it suffices to prove that H (B, a), H(B, a*™*) are epic for
§<w-1 and can be reduced to that H,(kerh®, o) = H;(ker »*, a?*) =0 for s <w-+2,

It follows from exach sequences (x) that

Hi(kerh®, a® Y= H, n(imhA*, «) = H; y,(cokh*, a?™*),
but for i<w4-2, we have i —pm<w+2—pm<w-— (p—1)m, then
Hi ym (c0kE*, a® ) 2 H,; (L, a® ) 2 H,_(X* a)=0.
Then H,(kerh*, a*™) =0 (i<w+2) and so H;(kerh*, a) =0 (4<w-+2).

Lastly, since X'=N'(j<w—4(p—1)*) then L'=0 and Fi=Fi=0 (i<w-—
4(p—1)*). Then m;(KV5,) =mwi(KV5,) =0 and 80 f,:m;(Y)—>m(X) is isomorphism
for t<w—4(p—1)2 '

Proof of Theorem 1.4, Let X*=0(4<r). From Lemma 3.3, there is a sequence
of specira and maps |

-—)X _,72.) Xn-—i——) —j:; Xi -]}) .X.o—-.X.
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such that (1) H (X, o) =H,(X,, a® ) =0 @GE<r+n).

(2 £ Qi Pi#ka, H(fr, Q), H(fr, PY), H(fr, (P)? 1) are isomorphisms,

(8) fuuswi(X,)>wi(Xa-1) is isomorphism for ¢<r+n—1—4(p—1)° Let ¥'=
lim X, there is a map hiY—>X » Such that commutes with f,, and it follows from
1(5; condition (8) that A,,:m,(¥Y)—>m(X,) is iSomorphism for 4<r+n—1—4(p—1)3
and bt Xi—>Y* is- isomorphism for i<r+n—1-—4(p—1)2 Then Y“——-l_iin)X:,
HY* &) =——11in; H(X;, 6)=0, hg:Y—>Xo=X is the required map.

Proof of Theorem 1.5, If M is realizable, then there is a speotrum X and an
isomorphism 0: X "= M. From Theorem 1.4., there exists a spectrum ¥ and map
f:Y—X such that H(f* @), H(f*, Pi), H(f", (P;)**) are isomorphisms for all
Qi, P; other than P} and H (Y, P})=0. Let h: M—>M (P?) be monomorphism in
1.8.(1), then hn: X*—>M(P}) is also monic. But H(M(PY), P}) =0, H(hn, Q),
H (hn, P}), H(hn, (P;)*™) are isomorphisms, it follows from 1.8(2) that Y™,
M (PY}) are stably isomorphic, then M is realizable.
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