COMMUTING *n*-TUPLES OF CLOSED OPERATORS WHICH POSSESS SPECTRAL CAPACITY

HU SHANWEN (胡善文)**

Abstract

This paper introduces the notions of commuting n-tuples of closed operators which possess SVEP, SDP and spectral capacity respectively. A formula of analytic functional calculus for several commuting unbounded operators is found. With the help of the formula, it is proved that T has spectral capacity implies T has SDP and T has SDP implies T has SVEP. It is also proved that if T possesses spectral capacity $\mathscr E$ and $f_{\mathfrak F}$ is analytic on a neighbourhood of $\sigma(T)$ for $j=1,2,\cdots,k$, then $f(T)=(f_1(T),\cdots,f_k(T))$ is decomposable, and the spectral capacity $\mathscr E^*$ of f(T) is uniquely determind by $\mathscr E^*(F)=\mathscr E(f^{-1}(F)\cap\sigma(T))$.

§ 1. Analytic Functional Calculus

In [1], X is a Banach space and T_1, \dots, T_n are closed operators on X. For any i, $1 \le i \le n$, there exists $\xi_i \in \rho(T_i) \cap \mathbb{C}$. Let $a_i = (\xi_i - T_i)^{-1}$. If $a = (a_1, \dots, a_n)$ is a commuting n-tuple of bounded operators, then $T = (T_1, \dots T_n)$ is called a commuting n-tuple of close operators. Taylor spectrum, denoted by $\sigma(T)$, is the subset of $\mathbb{C}^n \left\{ \left(\xi_1 - \frac{1}{z_1}, \xi_2 - \frac{1}{z_2}, \dots, \xi_n - \frac{1}{z_n} \right) \middle| z = (z_1, \dots, z_n) \in \sigma(a) \right\}$ where $\mathbb{C}^n = \mathbb{C} \times \mathbb{C} \times \dots \times \mathbb{C} \times \mathbb$

Let U be an open set in $\hat{\mathbb{C}}^n$. We define

1. $\hat{A}_{(i)}(U, X) = \{f | f \in A(U, D_{(i)}) \text{ and for any } \{j_1, \dots, j_k\} \cap (i) = \emptyset, \prod_{p=1}^k z_{j_p} f(z) \in A(U, D_{(i)}) \text{ and } \prod_{p=1}^k T_{j_p} \prod_{p=1}^k z_{j_p} f(z) \in A(U, X) \};$

$$\Lambda^{p}[\tau, \hat{A}(U, X)] = \{ \sum f_{(i)}t_{(i)} | f_{(i)} \in \hat{A}_{(i)}(U, X) \}, \ 0 \le p \le n.$$

2. $C^{\infty}_{(i)(j)}(U, X) = \{f | f \in C^{\infty}(U, D_{(i)}) \text{ and for any } \{i_1, \dots, i_k\} \cap (i) = \emptyset \text{ and } \{i_1, \dots, i_k\} \cap (i) = \emptyset \}$

Manuscript received June 25, 1984.

^{*} East China Normal University, Shanghai, China.

 $\{j_1, \, \cdots, \, j_h\} \subset (j), \, \prod_{p=1}^k z_{i_p} \prod_{q=1}^h \bar{z}_{i_q}^2 f(z) \in C^{\infty}(U, \, D_{(i)}) \, \text{ and } \prod_{p=1}^k T_{i_p} \prod_{p=1}^k z_{i_p} \prod_{q=1}^h \bar{z}_{j_q}^2 f(z) \in C^{\infty}(U, \, X)\};$ $A^p[\tau \cup d\bar{z}, \, \hat{C}^{\infty}(U, \, X)] = \{\sum_{f(i)(j)} |f_{(i)(j)} \in C^{\infty}_{(i)(j)}(U, \, X), \\ |(i)| + |(j)| = p\}, \, 0 \leqslant p \leqslant 2n.$

For any $\psi = \sum f_{(i)}t_{(i)} \in \Lambda^p[\tau, \hat{A}(U, X)], J_p$ is a mapping from $\Lambda^p[\tau, \hat{A}(U, X)]$ into $\Lambda^{p+1}[\tau, \hat{A}(U, X)]: J_p\psi(z) = \sum_{(i)} \sum_j (z_j - T_j) f_{(i)}(z)t_j \wedge t_{(i)}. J_p \oplus \bar{\partial}$ is a mapping from $\Lambda^p[\tau \cup d\bar{z}, \hat{O}^{\infty}(U, X)]$ into $\Lambda^p[\tau \cup d\bar{z}, \hat{O}^{\infty}(U, X)]$:

 $(J_p \oplus \overline{\partial}) \left(\sum f_{(i)(j)} t_{(i)} \wedge d\overline{z}_{(j)} \right) (z)$

$$= \sum_{q} (z_q - T_q) f_{(i)(j)}(z) t_q \wedge t_{(i)} \wedge d\overline{z}_{(j)} + \sum_{q} \frac{\partial}{\partial \overline{z}_q} f_{(i)(j)}(z) d\overline{z}_q \wedge t_{(i)} \wedge d\overline{z}_{(j)}.$$

For convenience, if $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n$, let $\mathbb{C}^n_{\xi} = \{z = (z_1, \dots, z_n) \mid z \in \mathbb{C}^n, z_i \neq \xi_i, 1 \le i \le n\}$ and $\frac{1}{\xi - U} = \{\left(\frac{1}{\xi_1 - z_1}, \dots, \frac{1}{\xi_n - z_n}\right) \mid z \in U\}$.

Theorem 1.1. Let $T = (T_1, \dots, T_n)$ be a commuting n-tuple closed operators, $\xi_i \in \rho(T_i) \cap \mathbb{C}$, $a_i = (\xi_i - T_i)^{-1}$, $1 \le i \le n$ and $a = (a_1, \dots, a_n)$. Then the following diagram is commutative:

$$0 \to A^0[\tau, \widehat{A}(U, X)] \xrightarrow{J} A^1[\tau, \widehat{A}(U, X)] \to \cdots \to A^n[\tau, \widehat{A}(U, X)] \to 0$$

$$\downarrow u_0 \qquad \qquad \downarrow u_1 \qquad \qquad \downarrow u_n$$

 $0 \to \Lambda^0[\sigma, \hat{A}(V, X)] \xrightarrow{\alpha} \Lambda^1[\sigma, \hat{A}(V, X)] \to \cdots \to \Lambda^n[\sigma, \hat{A}(V, X)] \to 0,$

where $V = \frac{1}{\xi - U}$ and u_p is an isomorphism from $\Lambda^p[\tau, \hat{A}(U, X)]$ onto $\Lambda^p[\sigma, \hat{A}(V, X)]$: for any $f_{(i)}t_{(i)} \in \Lambda^p[\tau, \hat{A}(U, X)]$, $u_p(f_{(i)}t_{(i)})(\lambda) = \prod_{j \in (i)} \left(\frac{T_j - \xi_j}{\lambda_j}\right) f_{(i)}\left(\xi - \frac{1}{\lambda}\right) s_{(i)}$. Hence, if let

 $H^p[\hat{A}(U, X), J] = \ker J_p/\operatorname{Im} J_{p-1},$

then

$$H^p[\widehat{A}(U, X), J] \cong H^p[\widehat{A}(V, X), \alpha].$$

Proof For any $g_{(i)}s_{(i)} \in A^p[\sigma, \hat{A}(V, X)]$, we can define another mapping ν_p : $\nu_p(g_{(i)}s_{(i)})(z) = \prod_{j \in (i)} \left(\frac{-a_j}{\xi_j - z_j}\right) g_{(i)}\left(\frac{1}{\xi - z}\right) t_{(i)}.$ It is clear that $v_p \circ u_p = 1$ and $u_p \circ v_p = 1$.

For any
$$z \in U$$
, $\lambda \in \frac{1}{\xi - z}$,

$$\begin{split} \left(\alpha_{p} \circ u_{p}\right)\left(f_{(\mathbf{i})}t_{(\mathbf{i})}\right)(\lambda) &= \alpha_{p}(\lambda) \left(\prod_{j \in (\mathbf{i})} \left(\frac{T_{j} - \xi_{j}}{\lambda_{j}}\right) f_{(\mathbf{i})}\left(\xi - \frac{1}{\lambda}\right) \mathbf{s}_{(\mathbf{i})} \right. \\ &= \sum_{k \in (\mathbf{i})} \left(\lambda_{k} - a_{k}\right) \left(\prod_{j \in (\mathbf{i})} \left(\frac{T_{j} - \xi_{j}}{\lambda_{j}}\right) f_{(\mathbf{i})}\left(\xi - \frac{1}{\lambda}\right) \mathbf{s}_{k} \wedge \mathbf{s}_{(\mathbf{i})}\right) \\ &= \sum_{k \in (\mathbf{i})} \left(\xi_{k} - \frac{1}{\lambda_{k}} - T_{k}\right) \left(\prod_{j \in (\mathbf{i}) \cup (k)} \left(\frac{T_{j} - \xi_{j}}{\lambda_{j}}\right) f_{(\mathbf{i})}\left(\xi - \frac{1}{\lambda}\right) \mathbf{s}_{k} \wedge \mathbf{s}_{(\mathbf{i})}\right) \\ &= u_{p+1} \left(\sum_{k \in (\mathbf{i})} \left(z_{k} - T_{k}\right) f_{(\mathbf{i})}(z) t_{k} \wedge t_{(\mathbf{i})}\right) = \left(u_{p+1} \circ J_{p}\right) \left(f_{(\mathbf{i})}t_{(\mathbf{i})}\right)(\lambda). \end{split}$$

Thus we complete the proof.

Theorem 1.2. Let T and a be as in Theorem 1.1. Then the following diagram

is commutative:

$$0 \rightarrow \Lambda^{0}[\tau \cup d\overline{z}, \, \hat{C}^{\infty}(U, \, X)] \rightarrow \Lambda^{1}[\tau \cup d\overline{z}, \, \hat{C}^{\infty}(U, \, X)] \rightarrow \cdots \rightarrow \Lambda^{2n}[\tau \cup d\overline{z}, \, \hat{C}^{\infty}(U, \, X)] \rightarrow 0$$

$$\downarrow^{\omega_{0}} \qquad \qquad \downarrow^{\omega_{1}} \qquad \qquad \downarrow^{\omega_{n}} \qquad \downarrow^$$

$$w_{p}(f_{(i)(j)}t_{(i)}Ad\bar{z}_{(j)})(\lambda) = (-1)^{|(j)|} \prod_{k \in (i)} \left(\frac{T_{k} - \xi_{k}}{\lambda_{k}}\right) \prod_{k \in (j)} \frac{1}{\bar{\lambda}_{k}^{2}} f_{(i)(j)}\left(\xi - \frac{1}{\lambda}\right) s_{(i)}Ad\bar{\lambda}_{(j)}.$$

Hence, if let

$$H^{\mathfrak{p}}[\widehat{\mathcal{O}}^{\infty}(U, X), J \oplus \overline{\partial}] = \ker(J_{\mathfrak{p}} \oplus \overline{\partial}) / \operatorname{Im}(J_{\mathfrak{p}-1} \oplus \overline{\partial}),$$

then

$$H^{\mathfrak{p}}[\hat{O}(U, X), J \oplus \bar{\partial}] \cong H^{\mathfrak{p}}[\hat{O}(U, X), \alpha \oplus \bar{\partial}], 0 \leqslant p \leqslant 2n.$$

Proof If $g_{(i)(j)}s_{(i)} \wedge d\bar{\lambda}_{(j)} \in A^{\mathfrak{p}}[\sigma \cup d\bar{\lambda}, \hat{O}^{\infty}(V, X)]$, then the mapping $r_{\mathfrak{p}}$:

$$r_{p}(g_{(i)(j)}s_{(i)} \wedge d\bar{\lambda}_{(j)})(z) = (-1)^{|(j)|} \prod_{k \in (i)} \left(\frac{-a_{k}}{\xi_{k} - z_{k}}\right) \prod_{k \in (j)} g_{(i)(j)} \left(\frac{1}{\xi - z}\right) t_{(i)} \wedge d\bar{z}_{(j)}$$

satisfies the condition $w_p \circ r_p = I$ and $r_p \circ w_p = I$.

For any
$$z \in U$$
, $\lambda \in \frac{1}{\xi - z}$

$$(\alpha \oplus \bar{\partial}) \circ w_{p}(f_{(i)(j)}t_{(i)} \wedge d\bar{z}_{(j)})(\lambda)$$

$$\begin{split} &= \sum_{q \in (i)} \left(\lambda_{q} - a_{q} \right) \left[\left(-1 \right)^{|(j)|} \prod_{k \in (i)} \left(\frac{T_{k} - \xi_{k}}{\lambda_{k}} \prod_{h \in (j)} \frac{1}{\overline{\lambda_{h}^{2}}} f_{(i)(j)} \left(\xi - \frac{1}{\lambda} \right) \right] s_{q} \wedge s_{(i)} \wedge d\overline{\lambda}_{(j)} \\ &+ \sum_{q \in (j)} \frac{\partial}{\partial \overline{\lambda}_{p}} \left[\left(-1 \right)^{|(j)|} \prod_{k \in (i)} \left(\frac{T_{k} - \xi_{k}}{\lambda_{k}} \right) \prod_{h \in (j)} \frac{1}{\overline{\lambda_{h}^{2}}} f_{(i)(j)} \right] d\overline{\lambda}_{q} \wedge s_{(i)} \wedge d\overline{\lambda}_{(j)} \\ &= \sum_{q \in (i)} \left(\xi_{q} - \frac{1}{\lambda_{q}} - T_{q} \right) \left[\left(-1 \right)^{|(j)|} \prod_{k \in (i) \cup (q)} \left(\frac{T_{k} - \xi_{k}}{\lambda_{k}} \right) \prod_{h \in (j)} \frac{1}{\overline{\lambda_{h}^{2}}} f_{(i)(j)} \right] s_{q} \wedge s_{(i)} \wedge d\overline{\lambda}_{(j)} \\ &+ \sum_{q \in (j)} \left(-1 \right)^{|(j)| + 1} \prod_{k \in (i)} \left(\frac{T_{k} - \xi_{k}}{\lambda_{k}} \right)_{h \in (j) \cup (q)} \frac{1}{\overline{\lambda_{h}^{2}}} \frac{\partial}{\partial \overline{z}_{q}} f_{(i)(j)} d\overline{\lambda}_{q} \wedge s_{(i)} \wedge d\overline{\lambda}_{(j)} \end{split}$$

$$= (w_{p+1} \circ J_p) \left(f_{(i)(j)} t_{(i)} \wedge d\bar{z}_{(j)} \right) (\lambda) + (w_{p+1} \circ \bar{\partial}) \left(f_{(i)(j)} t_{(i)} \wedge d\bar{z}_{(j)} \right) (\lambda)$$

$$= w_{p+1} \circ (J_p \oplus \overline{\partial}) (f_{(i)(j)} t_{(i)} \wedge d\overline{z}_{(j)}) (\lambda).$$

Suppose U is an open set in $\hat{\mathbb{C}}^n$. We shall denote by

$$\hat{O}^p(U, X) = \bigcup_{z \in U} \{(\psi)_z | \psi \in \Lambda^p[\tau, \hat{A}(W, X)] \text{ for some neighbourhood of } z\}$$

the sheaf of all germs of analytic forms of degree p, and denote by

$$\hat{B}^p(U, X) = \bigcup_{z \in U} \{(\varphi)_z | \varphi \in \Lambda^p[\tau \cup d\overline{z}, \, \hat{C}^\infty(W, X)] \text{ for some neighbourhood of } z\}$$

the sheaf of all germs of somooth forms of degree p. For any $z \in U$, we have operator $J_p(\text{or }J_p \oplus \overline{\partial})$ from $O^p(z)$ (or $B^p(z)$) into $O^{p+1}(z)$ (or $B^{p+1}(z)$) and define

$$H^p[\hat{A}(\{z\}, X), J] = \ker J_p/\mathrm{Im}J_{p+1}, \ H^p[\hat{C}^\infty(\{z\}, X), J \oplus \overline{\partial}] = \ker J_p \oplus \overline{\partial}/\mathrm{Im}J_{p+1} \oplus \overline{\partial}.$$

Obviously, $\hat{B}^p(U, X)$ is a fine sheaf.

By Theorems 1. 1 and 1. 2 we have the following corollary.

Corollary 1.3. For any $z \in \hat{\mathbb{C}}^n$ and $\lambda = \frac{1}{\xi - z}$,

 $H^{\mathfrak{p}}[\hat{A}(\{z\}, X), J] \cong H^{\mathfrak{p}}[\hat{A}(\{\lambda\}, X), \alpha], 0 \leqslant p \leqslant n;$ $H^{\mathfrak{p}}[\hat{C}^{\infty}(\{z\}, X), J \oplus \bar{\partial}] \cong H^{\mathfrak{p}}[\hat{C}^{\infty}(\{\lambda\}, X), \alpha \oplus \bar{\partial}], 0 \leqslant p \leqslant 2n.$

Corollary 1.4. For any $z \in \rho(T)$,

$$H^{p}[\hat{A}(\{z\}, X), J] = 0, 0 \le p \le n;$$

 $H^{p}[\hat{O}^{\infty}(\{z\}, X), J \oplus \bar{\partial}] = 0, 0 \le p \le 2n.$

Proof If $z = (z_1, \dots, z_n) \in \rho(T)$, we can choose $\xi_i \in \rho(T_i)$ but $\xi_i \neq z_i$, $1 \leq i \leq n$. Then $\lambda = \frac{1}{\xi - z} \in \mathbb{C}^n \cap \rho(\alpha)$. Thus we have $H^p[\widehat{A}(\{z\}, X), J] \cong H^p[\widehat{A}(\{\lambda\}, X), \alpha] = H^p[A(\{\lambda\}, X), \alpha] = 0$ by [2] Lemma 2.2. Similarly, $H^p[\widehat{O}^{\infty}(\{z\}, X), J \oplus \overline{\partial}] \cong H^p[O^{\infty}(\{\lambda\}, X), \alpha \oplus \overline{\partial}] = 0$.

Proposition 1.5. For any open set $U \subset \rho(T)$, the sequence $0 \rightarrow \Lambda^0[\tau \cup d\overline{z}, \, \hat{C}^{\infty}(U, \, X)] \rightarrow \Lambda^1[\tau \subset d\overline{z}, \, \hat{C}^{\infty}(U, \, X)] \rightarrow \cdots \rightarrow \Lambda^{2n}[\tau \cup d\overline{z}, \, \hat{C}^{\infty}(U, \, X)] \rightarrow 0$ is exact.

Proof For any $\psi \in \Lambda^p[\tau \cup d\overline{z}, \hat{C}^{\infty}(U, X)]$, $(\psi)_s$ is a section of the sheaf \hat{B}^p . Since $\hat{B}^p(U, X)$ is a fine sheaf and for $z \in U$, $H^p[\hat{C}^{\infty}(\{z\}, X), J \oplus \overline{\partial}] = 0$, by [7] Propositions 6. 3. 2 and 6. 3. 6, the sequence is exact.

Corollary 1.6. If f is analytic function on an neighbourhood U of $\sigma(T)$, then for any $x \in X$ there exists $\psi \in A^{n-1}[\tau \cup d\overline{z}, \ \hat{C}^{\infty}(V, X)], \ V = U \cap \rho(T)$, such that $tf(z)x = f(z)xt_1 \wedge \cdots \wedge t_n = (J \oplus \overline{\partial})\psi$.

Proof By definition, $tf(z)x \in \Lambda^n[\tau \cup d\overline{z}, \ \hat{C}^{\infty}(V, X)]$ and $(J \oplus \overline{\partial})(tf(z)x) = 0$, then the Corollary is an immediate consequence of Proposition 1. 5.

We shall define the single valued extention property. Before stating the definition, we shall have variant of Dilbeanlt-Grothendieck Lemma, like [4] Lemma 2.1.

For convenience, let

$$\Lambda_q^p[\tau \cup d\bar{z}, \, \hat{C}^{\infty}(U, \, X)] = \{ \sum f_{(i)(j)} t_{(i)} \wedge d\bar{z}_{(j)} | \, | \, (i) \, | + | \, (j) \, | = p, \, | \, (i) \, | = q \}.$$

Lemma 1.7. If G is an open polydisc in \mathbb{C}^n , then for any k, $0 \le k \le n$, the sequence

$$0 \to A^{k}[\tau, \hat{A}(G, X)] \xrightarrow{i} A_{k}^{k}[\tau \cup d\bar{z}, \hat{C}^{\infty}(GX)] \xrightarrow{\bar{\partial}} A_{k}^{k+1}[\tau \cup d\bar{z}, \hat{C}^{\infty}(G, X)]$$
$$\to \cdots \xrightarrow{\bar{\partial}} A_{k}^{k+n}[\tau \cup d\bar{z}\hat{C}^{\infty}(G, X)] \to 0$$

is exact.

Proof First we show it is exact if k=0. Our proof is similar to that of [7] Theorems 5.8.1 and 5.8.2 but slightly complicated. We omit the details.

Now, suppose
$$k \ge 1$$
. If $\psi \in A_k^{k+p+1}[\tau \cup d\overline{z}, \widehat{C}^{\infty}(G, X)]$ and $\psi = \sum_{(i)} \sum_{(j)} f_{(i)(j)} d\overline{z}_{(j)} \wedge t_{(i)}$,

then $\bar{\partial}\psi=0$ is equivalent to $\bar{\partial}(\sum_{(i)}f_{(i)(j)}d\bar{z}_{(j)})=0$ for any (i). Similarly, we can construct $\sum g_{(i)(j)}d\bar{z}_{(j)}$ satisfying $g_{(i)(j)} \in C^{\infty}(G, D_{(i)})$ and $T_{j_1} \cdots T_{j_k} g_{(i)(j)} \in C^{\infty}(G, X)$ for any $\{j_1, \dots, j_k\} \cap (i) = \emptyset$ and $\bar{\partial}(\sum_{(i)} g_{(i)(j)} d\bar{z}_{(j)}) = \sum_{(i)} f_{(i)(j)} d\bar{z}_{(j)}$. Let $\varphi_{(i)} = \sum_{(i)} g_{(i)(j)} d\bar{z}_{(j)}$ and $\varphi = \sum_{(i)} \varphi_{(i)} \wedge t_{(i)}$. Then $\varphi \in A_k^{k+p} [\tau \cup d\overline{z}, \, \widehat{C}^{\infty}(G, \, X)]$ and $\overline{\partial} \varphi = \sum \overline{\partial} \varphi_{(i)} = \psi$.

If $G = G_1 \times \cdots \times G_n$ is an open polydise in $\widehat{\mathbb{C}}^n$, where $G_i = \{z \mid |z - b_i| < r_i\}$ or $G_i = \{z \mid |z - b_i| < r_i\}$ $\{z \mid |z| > r_i\}$, we denote by G^1 the polydisc in \mathbb{C}^n , $G^1 = G_1^1 \times \cdots \times G_n^1$, where $G_i^1 = G_i$ if $G_i \subset \mathbb{C}$ and $G_i^1 = \frac{1}{G_i}$ otherwise.

Lemma 1.8. If G is an open polydisc in $\hat{\mathbb{C}}^n$, then the sequence in Lemma 1. 7 is also exact.

Proof Without loss of generality, we may assume $G_i = \{z \mid |z| > r_i\}, i > k$ and $G_i = \{z \mid |z - b_i| < r_i\}, i \le k$. Define isomorphisms

$$\delta_{\mathfrak{p}} \colon A_{k}^{k+p} [\tau \cup d\overline{z}, \, \hat{O}^{\infty}(G, \, X)] \to A_{k}^{k+p} [\tau \cup d\overline{\lambda}, \, \hat{O}^{\infty}(G^{1}, \, X)],$$

$$\delta_{\mathfrak{p}} f_{(i)(j)} d\overline{z}_{(j)} \wedge t_{(i)}(A) = \prod_{q \in (i) \setminus (1, \dots, k)} \frac{1}{\overline{\lambda_{q}^{2}}} f_{(i)(j)}^{*} d\overline{\lambda}_{(j)} \wedge t_{(i)},$$

where

$$f^*(\lambda) = f(\lambda_1, \dots, \lambda_k, \frac{1}{\lambda_{k+1}}, \dots, \frac{1}{\lambda_n}), \ 0 \leqslant p \leqslant n,$$

and δ_* : $\Lambda^k[\tau, \hat{A}(G, X)] \rightarrow \Lambda^k[\tau, \hat{A}(G^1, X)]$, $\delta_*f_{(i)}t_{(i)} = f_{(i)}^*t_{(i)}$. It is easy to verify that the follow diagram is commutative.

$$\mathbf{0} \to A^k[\tau, \, \widehat{A}(G^1, \, X)] \overset{i}{\to} A^k_k[\tau \cup d\overline{\lambda}, \, \widehat{C}^{\infty}(G^1, \, X) \to \cdots \overset{\overline{\partial}}{\to} A^{k+n}_k[\tau \cup d\overline{z}, \, \widehat{C}^{\infty}(G^1, \, X)] \to 0.$$

Then, it follows from Lemma 1.7 that the sequence is exact.

Definition 1.9. If for any $z \in \hat{\mathbb{C}}^n$, $H^p[\hat{A}(\{z\}, X), J] = 0$, $0 \le p \le n-1$, then Tis said to have single valued extension property (abbrev. SVEP).

Theorem 1.10. Suppose $T = (T_1, \dots, T_n)$ is a commuting n-tuple of closed operators. Then the following coditions are equivalent:

- (1) $H^p[\hat{A}(\{z\}, X), J] = 0$ for all $z \in \hat{\mathbb{C}}^n$ and each $p = 0, \dots, n-1$;
- (2) $H^p[\hat{\mathcal{C}}^\infty(\{z\}, X), J \oplus \bar{\partial}] = 0$ for all $z \in \hat{\mathbb{C}}^n$ and each $p = 0, \dots, n-1$;
- (3) $H^p[\widehat{\mathcal{O}}^{\infty}(U, X), J \oplus \overline{\partial}] = 0$ for each open set U in $\widehat{\mathbb{C}}^n$ and $p = 0, 1, \dots, n-1$;
- (4) $H^p[\hat{A}(D, X), J] = 0$ for each open polydisc D in $\hat{\mathbb{C}}^n$ and $p = 0, 1, \dots$ n-1.

Proof With the help of Lemmas 1.7 and 1.8, we can prove this Theorem using the same methods as in [2]. We omit the details.

Proposition 1.11. If $T = (T_1, \dots, T_n)$ is a commuting n-tuple of closed operators, $\xi_i \in \rho(T_i) \cap \mathbb{C}$, $a_i = (\xi_i - T_i)^{-1}$, $1 \le i \le n$, and $a = (a_1, \dots, a_n)$, then T has SVEP iff ahas SVEP in the sense of [2] Definition 1.1.

Proof For any $\lambda \in \hat{\mathbb{C}}^n \setminus \mathbb{C}^n$, if we regard $a = (a_1, \dots, a_n)$ as a closed operator system, then $\lambda \in \rho(a)$. Hence $H^p[\hat{A}(\{\lambda\}, X), \alpha] = 0$ for each $p = 0, 1, \dots, n-1$. Then the proposition follows from Proposition 1.3.

Definition 1.12. Suppose $T = (T_1, \dots, T_n)$ have SVEP, the local spectrum $\sigma(T, x)$ relative to $x \in X$ is the complement of $\rho(T, x) = \bigcup \{U \subset \hat{\mathbb{C}}^n \text{ open} | \text{ there is } \psi \in \Lambda^{n-1}[\tau \bigcup d\overline{z}, \hat{C}^{\infty}(U, X)] \text{ such that } tx = (J \oplus \overline{\partial})\psi\}.$

Proposition 1.13. Let T and a be as in Proposition 1.11, for any $x \in X$,

$$\sigma(T, x) = \xi - \frac{1}{\sigma(a, x)}$$

and $\pi_i(\sigma(T, x)) = \sigma(T_i, x)$, $1 \le i \le n$, where π_i is the projection of $\widehat{\mathbb{C}}^n$ onto its i-th coordinate.

Proof Immediately from the definition and Theorem 1.2 and [2] Corollary 2.2.

In [1], Eschmeier defines the analytic functional calculus for n-tuples of closed operators. If f is an analytic functional on a neibourhood of $\sigma(T)$, then f_{ξ} is an analytic function on a neighbourhood of $\sigma(a)$, where $f_{\xi}(\lambda) = f\left(\xi - \frac{1}{\lambda}\right)$. f(T) is defined to be $f_{\xi}(a)$. We try to define the analytic functional calculus directly.

Let $\hat{\mathbb{C}}_{f_i} = \hat{\mathbb{C}} \setminus \{\xi_i\}$, $\hat{\mathbb{C}}_i^n = \hat{\mathbb{C}}_{\xi_i} \times \cdots \times \hat{\mathbb{C}}_{f_n}$. Then $\hat{\mathbb{C}}_{\xi}$ is a local compact topology space. We notice that if we substitute compact set in \mathbb{C}^n by compact set in $\hat{\mathbb{C}}_i^n$, then [5] Lemma 3.3 are true for the case of closed operator systems. Therefore, if f is analytic on a neighbourhood U of $\sigma(T)$, then the equality $tf(z)x - \chi = (J \oplus \bar{\partial})\psi$ has a solution $\chi \in A^n[\tau \cup d\bar{z}, \hat{O}_{\xi}^{\infty}(U, X)]$, where $A^n[\tau \cup d\bar{z}, \hat{O}_{\xi}^{\infty}(U, X)]$ is the family of forms with compact support in $\hat{\mathbb{C}}_i^n$. Let π be a chain homomorphism keeping the part of χ which contains $d\bar{z}_1, \dots, d\bar{z}_n, T_{\xi}(z) = \prod_{i=1}^n \left(\frac{\xi_i - T_i}{\xi_i - z_i}\right)$ and $R_{Z-T}f(z)x = (-1)^n\pi\chi$. We can show $f(T)x = \left(\frac{1}{2\pi \dot{v}}\right)^n \int_U T_{\xi}(z)R_{Z-T}f(z)xdz_1 \wedge \dots \wedge dz_n$ is generalized Lebesgue intergrable and $f \to f(T)$ is an algebric homomorphism satisfying the spectral mapping theorem. Because of [1] Theorems 2.2 and 2.4, it is sufficient to prove $f_{\xi}(a) = f(T)$.

Theorem 1.14. Let $T = (T_1, \dots, T_n)$ be a commuting n-tuple of closed operators, $\xi_i \in \rho(T) \cap \mathbb{C}$, $a_i = (\xi_i - T_i)^{-1}$, $1 \le i \le n$, and $a = (a_1, \dots, a_n)$. Suppose f is analytic on a neighbourhood U of $\sigma(T)$. Then $f_{\xi}(a) = f(T)$.

Proof By applying Theorem 1.2, the equality $tf(z)x-\chi=(J\oplus \overline{\partial})\psi$ becomes $sf_{\xi}(\lambda)x-w_n\chi=(\alpha\oplus \overline{\partial})w_{n-1}\psi$. It is clear that supp. $w_{n\lambda}$ is compact in \mathbb{C}^n because supp. χ is compact in $\hat{\mathbb{C}}^n_{\xi}$. Moreover, since $U_{\xi}=\frac{1}{\xi-U}\subset\mathbb{C}^n$, we have $w_{n-1}\psi\in A^{n-1}[\sigma\cup d\overline{\lambda}, O^{\infty}(U_{\xi}, X)]$. By definition, $R_{\lambda-a}f_{\xi}(\lambda)x=(-1)^n\pi w_n\chi=(-1)^nw_n\pi\chi$. Let

 $\chi = \chi_1 + h d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_n. \text{ Then } w_4 \pi \chi = \prod_{i=1}^n \left(\frac{\xi_i - T_i}{\lambda_i} \right) \prod_{i=1}^n \frac{1}{\bar{\lambda}_i^2} h \left(\xi - \frac{1}{\lambda} \right) d\bar{\lambda}_1 \wedge \cdots \wedge d\bar{\lambda}_n.$ Therefore

$$\begin{split} &f_{\xi}(a)x \\ &= \left(\frac{1}{2\pi i}\right)^{n} \int_{U_{\xi}} (-1)^{n} \prod_{i=1}^{n} \left(\frac{\xi_{i} - T_{i}}{\lambda_{i}}\right) \prod_{i=1}^{n} \frac{1}{\bar{\lambda}_{i}} h\left(\xi - \frac{1}{\lambda}\right) d\bar{\lambda}_{1} \wedge \cdots \wedge d\bar{\lambda}_{n} \wedge d\lambda_{1} \wedge \cdots \wedge d\lambda_{n} \\ &= \left(\frac{1}{2\pi i}\right)^{n} \int_{U} (-1)^{n} \prod_{i=1}^{n} (\xi_{i} - T_{i}) (\xi_{i} - z_{i}) \prod_{i=1}^{n} (\bar{\xi}_{i} - \bar{z}_{i}) h(z) \\ &\times \prod_{i=1}^{n} \frac{1}{|\xi_{i} - z_{i}|^{2}} d\bar{z}_{1} \wedge \cdots \wedge d\bar{z}_{n} \wedge dz_{1} \wedge \cdots \wedge dz_{n} \\ &= \left(\frac{1}{2\pi i}\right)^{n} \int_{U} (-1)^{n} \prod_{i=1}^{u} \left(\frac{\xi_{i} - T_{i}}{\xi_{i} - z_{i}}\right) h(z) d\bar{z}_{1} \wedge \cdots \wedge d\bar{z}_{n} \wedge dz_{1} \wedge \cdots \wedge dz_{n} \\ &= \left(\frac{1}{2\pi i}\right)^{n} \int_{U} T_{\xi}(z) R_{Z-T} f(z) x dz_{1} \wedge \cdots \wedge dz_{n} = f(T) x. \end{split}$$

Remark. If n=1 and $\sigma(T) \subset U$, let $\sigma(T) \subset U_1 \subset U_2 \subset U$ and Γ be a close Jordan curve in $U \setminus \overline{U}_2$ enclosing $\sigma(T)$. Assume θ is a C^{∞} -scalar function, equal to 0 in U, and to 1 outside of U_2 . Let $\psi(z) = (z-T)^{-1}f(z)x$. Then

$$\begin{split} f(T)x &= \frac{1}{2\pi i} \int_{U} (-1) \frac{\xi - T}{\xi - z} \, \bar{\partial}(\theta \psi(z)) dz = \frac{1}{2\pi i} \int_{\Gamma} (-1) \, \frac{\xi - T}{\xi - z} \, \theta \psi(z) dz \\ &= \frac{1}{2\pi i} \int_{\Gamma} \frac{\xi - T}{\xi - z} (z - T)^{-1} f(z) x dz \\ &= \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - \xi} \, dz + \frac{1}{2\pi i} \int_{\Gamma} (z - T)^{-1} f(z) x dz \\ &= f(\infty) x + \frac{1}{2\pi i} \int_{\Gamma} (z - T)^{-1} f(z) dz. \end{split}$$

If $U = U_1 \times \cdots \times U_n$, $\infty \in \sigma(T_i) \subset U_i$, we can show inductively that $f(T)x = f(\infty, \dots, \infty)x + \sum_{i=1}^n \frac{1}{2\pi i} \int_{\Gamma_i} f(\infty, \dots, z_i, \dots, \infty) (z_i - T_i)^{-1} x dz_i$ $+ \sum_{i,j} \left(\frac{1}{2\pi i}\right)^n \int_{\Gamma_i} \int_{\Gamma_i} f(\infty, \dots, z_i, \dots, z_j, \dots, \infty) (z_i - T_i)^{-1} (z_j - T_j)^{-1} x dz_i dz_j$ $+ \dots + \left(\frac{1}{2n_i}\right)^n \int_{\Gamma_1} \dots \int_{\Gamma_n} f(z_1, \dots, z_n) \prod_{i=1}^n (z_i - T_i)^{-1} x dz_1 \dots dz_n.$

Let $\operatorname{Inv}(T) = \{Y \mid Y \text{ is a closed subspace of } X \text{ and for any } i, \ T_i(Y \cap D_{T_i}) \subset Y, \\ \rho(T_i \mid y) \neq \emptyset\}; \ R(T) = \{Y \mid Y \in \operatorname{Inv}(T) \text{ and for any } i, \ \rho(T_i) \cap \rho(T_i \mid Y) \neq \emptyset\}.$

Corollary 1.15. Suppose $Y \in R(T)$ and U is a neighbourhood of $\sigma(T)U\sigma(T|Y)$. If f is an analytic function on U, then $Y \in \text{Inv } (f(T))$ and f(T|Y) = f(T)|Y.

Proof For any $\xi_i \in \rho(T_i) \cap \rho(T_i|Y)$ and each $y \in Y$, $f(T|Y)y = \left(\frac{1}{2\pi i}\right)^n \int_U T_{\xi}(z) R_{z-T|y} f(z) y dz_1 \wedge \dots \wedge dz_n$ $= \left(\frac{1}{2\pi i}\right)^n \int_U T_{\xi}(z) R_{z-T} f(z) y dz_1 \wedge \dots \wedge dz_n = f(T) y.$

Hence $f(T)y \in Y$ and f(T)y = f(T|Y)y.

If T has SVEP, we can also define analytic functional calculus on the local spectrum. If f is analytic on a neighbourhood U of $\sigma(T,x)$, then there exists $\chi \in \Lambda^n[\tau \cup d\bar{z}, \ \hat{C}_f^\infty(U,X)]$ such that $tf(z) \ x-\chi=(J\oplus\bar{\partial})\psi$ holds on U. We define $f_T(x)=\left(\frac{1}{2\pi i}\right)^n\int T_f(z)(-1)^n\pi\chi\,dz_1\wedge\cdots\wedge dz_n$. The results of [2] can be extended to the case of closed operator n-tuples. In particular, if f is analytic on U, then $f(T)x=f_T(x)$ for any $x\in X$. Because of the similarity of the proof, we omit it in this paper. We have the following proposition.

Proposition 1.16. Suppose $T = (T_1, \dots, T_n)$ has SVEP and $\sigma(T, x)$ is compact for some $x \in X$. Then $x \in \bigcap_{i=1}^n D_{T_i}$ and $f(T)x = \left(\frac{1}{2\pi i}\right)^n \int_{T_i} R_{s-T} f(z) x dz_1 \wedge \dots \wedge dz_n$ for any analytic function f on the neighbourhood of $\sigma(T)$.

Proof Since $g(z) = \prod_{i=1}^{n} (\xi_{i} - z_{i})$ is analytic on a relative compact neighbourhood U of $\sigma(T)$, then tuere is χ with compact support in U such that $tf(z)x - \chi = (J \oplus \bar{\partial})\psi$. Hence $tg(z)f(z)x - g(z)\chi = (J \oplus \bar{\partial})g(z)\psi$. The result is

$$\left(\frac{1}{2\pi i}\right)^{n} \int R_{z-T} f(z) x dz_{1} \wedge \cdots \wedge dz_{n} = \left(\frac{1}{2\pi i}\right)^{n} \int \pi \chi dz_{1} \wedge \cdots \wedge dz_{n}$$

$$= \prod_{i=1}^{n} \alpha_{i} \left[\left(\frac{1}{2\pi i}\right) \int T_{\xi}(z) \pi g(z) \chi dz_{1} \wedge \cdots \wedge dz_{n}\right] = \prod_{i=1}^{n} \alpha_{i} (fg)_{T}(x)$$

$$= \prod_{i=1}^{n} \alpha_{i} f_{T}(g_{T}(x)) = \prod_{i=1}^{n} \alpha_{i} f(T) \prod_{i=1}^{n} (\xi_{i} - T_{i}) x = f(T) x.$$

The reason why $g_T(x) = \prod_{i=1}^n (\xi_i - T_i)x$ is that $h(z) = \prod_{i=1}^n (\xi_i - z_i)^{-1}$ is analytic. Then $x = (hg)_T(x) = h_T(g_T(x)) = \prod_{i=1}^n a_i [g_T(x)]$. Hence $x \in \bigcap_{i=1}^n D_{T_i}$ and $\prod_{i=1}^n (\xi_i - T_i)x = g_T(x)$.

§ 2. Spectral Decompositions

Lemma 2.1. Suppose $T = (T_1, \dots, T_n)$ is a commuting n-tuple of closed operators and $X = X_1 + X_2$, $X_j \in (T)$, j = 1, 2. For any $\xi_i \in \rho(T_i) \cap \rho(T_i | X)$, $\xi = (\xi_1, \dots, \xi_n)$ and $U \subset \hat{\mathbb{C}}^n_{\xi}$, we have

- (1) each $\varphi \in \Lambda^p[\tau, \hat{A}(U, x)]$ can be written as $\varphi = \varphi_1 + \varphi_2$, where $\varphi_j \in \Lambda^p[\tau, \hat{A}(U, X_j)], j=1, 2;$
- (2) each $\psi \in \Lambda^p[\tau \cup d\overline{z}, \hat{C}^{\infty}(U, X)]$ can be written as $\psi = \psi_1 + \psi_2$, where $\psi_j \in \Lambda^p[\tau \cup d\overline{z}, \hat{C}^{\infty}(U, X_j)], j=1, 2$.

Proof (1) It is clear that $\rho(T_i) \cap \rho(T_i|X_1) \subset \rho(T_i|X_2)$. Therefore $\xi_i \in \rho(T_i|X_2)$. If $\varphi \in \Lambda^p[\tau, \hat{A}(U, X)]$, then

$$u_p \varphi \in \Lambda^p \left[\alpha, \ \hat{A} \left(\frac{1}{\xi - U}, \ X \right) \right] = \Lambda^p \left(\alpha, \ A \left(\frac{1}{\xi - U}, \ X \right) \right]$$

by Theorem 1.1. Since a is a bounded n-tuple and $X_j \in \text{Inv}(a)$ (Corollary 1.15), we have $u_p \varphi = \varphi_1^* + \varphi_2^*$, where $\varphi_j^* \in \Lambda^p \left[\alpha, \ A \left(\frac{1}{\xi - U} \ X_j, \right) \right], \ j = 1, \ 2$. Hence $\varphi = v_p \varphi_1^* + v_p \varphi_2^*$. Let $\varphi_j = v_p \varphi_j^* \in \Lambda^p [\tau, \hat{A}(U, X_j)]$, we are done.

(2) In the same way.

Lemma 2.2. Suppose $T = (T_1, \dots, T_n)$ is a commuting n-tuple of closed operators and $Y \in R(T)$. For any $\xi_i \in \rho(T_i) \cap \rho(T_i|Y)$, $\xi = (\xi_1, \dots, \xi_n)$ and $U \subset \hat{\mathbb{C}}_{\xi}^n$, we have

- (1) each $\tilde{f} \in \Lambda^p[\tau, \hat{A}(U, X/Y)]$ can be written as $\tilde{f} = f/Y$, where $f \in \Lambda^p[\tau, \hat{A}(U, X)]$;
- (2) each $\tilde{g} \in \Lambda^p[\tau \cup d\bar{z}, \hat{C}^{\infty}(U, X/Y) \text{ can be written as } \tilde{g} = g/Y, \text{ where } g \in \Lambda^p[\tau \cup d\bar{z}, \hat{C}^{\infty}(U, X)].$

Proof It follows from [8] Proposition 3.1 that T_i^Y is a closed operator and $\sigma(T_i^Y) \subset \sigma(T_i) \cup \sigma(T_i|Y)$. Hence $\xi_i \in \rho(T_i) \cap \rho(T_i|Y) \subset \rho(T_i^Y)$ and $(\xi_i - T_i)^{-1} = a_i^Y$. Therefore, using the same methods as in Lemma 2.1, we obtain (1), (2).

Lemma 2.3. If $T = (T_1, \dots, T_n)$ is a commuting n-tuple of closed operators, then

- (1) If $X = X_1 + X_2$, $X_j \in R(T)$, j = 1, 2, for any $(i) \subset \{1, \dots, n\}$ and each $x \in D_{(i)}$, $x = x_1 + x_2$, where $x_j \in X_j \cap D_{(i)}$, j = 1, 2.
- (2) If $Y \in R(T)$ and $\widetilde{D}_{(i)}$ denote $\bigcap \{D_{T_{j_1...}T_{j_k}} | \{j_1, \dots, j_k\} \cap (i) = \emptyset\}$, then a given $\widetilde{x} \in \widetilde{D}_{(i)}$ can be written as $\widetilde{x} = x/Y$, where $x \in D_{(i)}$.

Proof (1) Choose $\xi_i \in \rho(T_i) \cap \rho(T_i | X_1) \cap \rho(T_i | X_2)$. If $x \in D_{(i)}$, then $\prod (\xi_i - T_i) x = x_1^* + x_2^*, \ x_j^* \in X_j, \ j = 1, \ 2.$

Let $x_1 = \prod_{j \in (i)} a_j x_1^*$, $x_2 = \prod_{k \in (i)} a_j x_2^*$. Then $x_j \in X_j \cap D_{(i)}$ and $x = x_1 + x_2$.

(2) Choose $\xi_i \in \rho(T_i|Y) \cap \rho(T_i)$. If $\widetilde{x} \in \widetilde{D}_{(i)}$, then $\prod_{j \in (i)} (\xi_j - T_j^y) \widetilde{x} = x^*/Y$ for some x^* . Let $x = \prod_{j \in (i)} a_j x^*$. Then $x \in D_{(i)}$ and $x/Y = \widetilde{x}$.

Definition 2.4. Let $T = (T_1, \dots, T_n)$ be a commuting n-tuple of closed operators. If there is a mapping \mathscr{E} from the family of closed subsets $\mathscr{F}(\widehat{\mathbb{C}}^n)$ of $\widehat{\mathbb{C}}^n$ into Inv (T) satisfying:

- (1) $\mathscr{E}(\phi) = \{0\}, \mathscr{E}(\widehat{\mathbb{C}}^n) = X;$
- (2) $\mathscr{E}\left(\bigcap_{n=1}^{\infty}F_{n}\right)=\bigcap_{n=1}^{\infty}\mathscr{E}(F_{n})$ for any sequence $\{F_{n}\}\subset\mathscr{F}(\widehat{\mathbb{C}}^{n});$
- (3) $X = \sum_{i=1}^{m} \mathscr{E}(\overline{G}_i)$ for any finite open cover $\{G_i\}_{i=1}^{m}$ of $\widehat{\mathbb{C}}^n$;
- (4) $\sigma(T|\mathcal{E}(F)) \subset F$ for each $F \in \mathcal{F}(\hat{\mathbb{C}}^n)$; then T is said to possess a spectral capacity.

Proposition 2.5. If $T = (T_1, \dots, T_n)$ possesses a spectral capacity \mathscr{E} , then for each $F \in \mathscr{F}(\hat{\mathbb{C}}^n)$, (1) $\sigma(T | \mathscr{E}(F)) \subset \sigma(T)$, (2) $\sigma(T_i | \mathscr{E}(F)) \subset \sigma(T_i)$, $1 \leq i \leq n$, (3) $\mathscr{E}(F) \in \mathscr{F}(F)$

R(T).

Proof For any $z \in \sigma(T)$, there are open sets D and D_1 such that $z \in D$, $D \cup D_1 = \hat{\mathbb{C}}^n$ and $\overline{D} \cap \sigma(T) = \emptyset$. The spectral capacity \mathscr{E} provides the decomposition of X: $X = \mathscr{E}(\overline{D}) + \mathscr{E}(\overline{D}_1)$. For any $x \in \mathscr{E}(\overline{D})$, there is $\psi \in A^{n-1}[\tau \cup d\overline{z}, \hat{C}^{\infty}(U, \mathscr{E}(\overline{D}))]$ such that $tx = (J \oplus \overline{\partial})\psi$, where $U = \hat{\mathbb{C}}^n \setminus \overline{D} \supset \sigma(T)$. By definition $R_{z-T} x = 0$, hence

$$x = \left(\frac{1}{2\pi i}\right)^n \int T_{\varepsilon}(z) R_{s-T} x dz_1 \wedge \cdots \wedge dz_n = 0.$$

Therefore $\mathscr{E}(\overline{D}) = \{0\}$ and $X = \mathscr{E}(\overline{D}_1)$. Then, $\sigma(T|\mathscr{E}(F)) = \sigma(T|\mathscr{E}(F) \cap \mathscr{E}(\overline{D}_1)) = \sigma(T|\mathscr{E}(F \cap \overline{D}_1)) \subset \overline{D}_1$. Thus $z \in \sigma(T|\mathscr{E}(F))$ and $\sigma(T|\mathscr{E}(F)) \subset \sigma(T)$. Furthermore $\sigma(T_i) = \pi_i \sigma(T) \supset \pi_i \sigma(T|\mathscr{E}(F)) = \sigma(T_i|\mathscr{E}(F))$.

Therefore $\rho(T_i) \cap \rho(T_i | \mathscr{E}(F)) = \rho(T_i) \neq \emptyset$ and (1), (2), (3) all hold.

Proposition 2.6. Suppose $T = (T_1, \dots, T_n)$ possesses spectral capacity \mathscr{E} . Then $supp. \mathscr{E} = \sigma(T)$.

Proof If $F \in \mathscr{F}(\hat{\mathbb{C}}^n)$ and $\mathscr{E}(F) = X$, then $\sigma(T) = \sigma(T \mid \mathscr{E}(F)) \subset F$. Hence $\sigma(T) \subset \text{supp. } \mathscr{E}$. On the other hand, by the proof of Proposition 2.5, we know that if $z \in \sigma(T)$, then there exists D such that $z \in D$ and $\mathscr{E}(\overline{D}) = \{0\}$. Hence $z \in \text{supp. } \mathscr{E}$.

Theorem 2.7. Let $T = (T_1, \dots, T_n)$ possess spectral capacity \mathscr{E} . Suppose f_j is analytic on a neighbourhood of $\sigma(T)$, $1 \le j \le m$. Then $f(T) = (f_1(T), \dots, f_n(T))$ is a decomposable n-tuple in the sense of [4] Definition 3.1. The spectral capacity \mathscr{E}^* of f(T) is uniquely determind by $\mathscr{E}^*(F) = \mathscr{E}(f^{-1}(F) \cap \sigma(T))$.

Proof For any $F \in \mathscr{F}(\mathbb{C}^m)$ let $\mathscr{E}^*(F) = \mathscr{E}(f^{-1}(F) \cap \sigma(T))$. We have

- $(1) \ \mathscr{E}^*(\phi) = \{0\}, \ \mathscr{E}^*(\mathbb{C}^m) = \mathscr{E}(f^{-1}(\mathbb{C}^m) \cap \sigma(T)) = \mathscr{E}(\sigma(T)) = X;$
- $(2) \mathscr{E}^*(\cap F_n) = \mathscr{E}(f^{-1}(\cap F_n) \cap \sigma(T)) = \cap \mathscr{E}(f^{-1}(F_n) \cap \sigma(T)) = \cap \mathscr{E}^*(F_n);$
- (3) If $\{G_j\}_{j=1}^k$ is an open cover of \mathbb{C}^m , then $\sigma(T) \subset \bigcup_{j=1}^k (f^{-1}(\overline{G}_j) \cap \sigma(T))$, and $\sum_{j=1}^k \mathscr{E}^*(\overline{G}_j) = \sum_{j=1}^k \mathscr{E}(f^{-1}(\overline{G}_j) \cap \sigma(T)) = X;$
- (4) By Corollary 1.15, $\mathscr{E}^*(F) \in \text{Inv } (f(T)) \text{ and } f(T|\mathscr{E}^*(F)) = f(T)|\mathscr{E}^*(F)$. Therefore

$$\begin{split} \sigma(f(T) \,|\, \mathscr{E}^*(F)) = & \sigma(f(T \,|\, \mathscr{E}^*(F))) = & f(\sigma(T \,|\, \mathscr{E}^*(F))) \\ = & f(\sigma(T \,|\, \mathscr{E}(f^{-1}(F) \cap \sigma(T)))) \subset & f(f^{-1}(F) \cap \sigma(F)) \subset F. \end{split}$$

Thus f(T) is decomposable and \mathscr{E}^* is the unique spectral capacity.

Corollary 2.8. If $T = (T_1, \dots, T_n)$ possesses spectral capacity, then T has SVEP and $\mathscr{E}(F) = \{x \mid \sigma(T, x) \subset F\}$ for each $F \in \mathscr{F}(\hat{\mathbb{C}}^n)$.

Proof In view of Corollary 2.7, $a = (a_1, \dots, a_n)$ is decomposable. Hence a has SVEP. It follows from 1.11 that T has SVEP. Furthermore,

Definition 2.9. Let $T = (T_1, \dots, T_n)$ be a commuting n-tuple of closed operators

and $Y \in \text{Inv}(T)$. If for any $Z \in \text{Inv}(T)$, $\sigma(T|Z) \subset \sigma(T|Y)$ implies $Z \subset Y$, then Y is called a spectral maximal space of T. The family of all spectral maximal space of T is denoted by SM(T).

Proposition 2.10. Let $T = (T_1, \dots, T_n)$ possess spectral capacity \mathscr{E} . Then $Y \in SM(T)$ iff $Y = \mathscr{E}(\sigma(T|Y))$.

Proof If $F \in \mathscr{F}(\hat{\mathbb{C}}^n)$, then $\mathscr{E}(F) = X_T(F) = \{x \mid \sigma(T, x) \subset F\}$. Suppose $Z \in \text{Inv } (T) \text{ satisfy } \sigma(T \mid Z) \subset \sigma(T \mid \mathscr{E}(F))$. Then for any $x \in Z$,

 $x \in X_{T|Z}(\sigma(T|Z)) \subset X_T(\sigma(T|Z)) = \mathscr{E}(\sigma(T|Z)) \subset \mathscr{E}(\sigma(T|\mathscr{E}(F))) \subset \mathscr{E}(F).$ Conversely, if $Y \in SM(T)$, then $\mathscr{E}(\sigma(T|Y)) \subset Y$ since $\sigma(T|\mathscr{E}(\sigma(T|Y))) \subset \sigma(T|Y)$. For any $y \in Y$, $y \in X_T(\sigma(T|Y)) = \mathscr{E}(\sigma(T|Y))$, thus $Y \subset \mathscr{E}(\sigma(T|Y))$ and $Y = \mathscr{E}(\sigma(T|Y))$ is obtained.

Proposition 2.11. Let $T = (T_1, \dots, T_n)$ possess spectral capacity \mathscr{E} . Then for any $F \in \mathscr{F}(\hat{\mathbb{C}}^n)$, $\sigma(T^{\mathscr{E}(F)}) \subset \hat{\mathbb{C}}^n \setminus \mathring{F}$.

Proof For any $z \in \mathring{F}$, we have to show $z \in \rho(T^{\mathscr{E}(F)})$. Suppose $\widetilde{\psi} = \sum \widetilde{x}_{(i)} t_{(i)}$ and $J_{p}(z)\widetilde{\psi} = 0$. By Lemma 2. 3, we may assume $\widetilde{x}_{(i)} = x_{(i)} / \mathscr{E}(F)$. Hence

$$J_{\mathfrak{p}}(z)\widetilde{\psi} = \sum_{(i)} \sum_{i} (z_{i} - T_{i}) x_{(i)} / \mathscr{E}(F) t_{i} \wedge t_{(i)} = 0.$$

If G is an open set satisfying $Z \in G \subset \overline{G} \subset \mathring{F}$, then $\hat{\mathbb{C}}^n \setminus \overline{G}$ and \mathring{F} is an open cover of $\hat{\mathbb{C}}^n$. Thus $X = X_1 + X_2$, where $X_1 = \mathscr{E}(\hat{\mathbb{C}}^n \setminus G)$ and $X_2 = \mathscr{E}(F)$. Since $X_1, X_2 \in R(T)$, we have $x_{(i)} = z_{(i)} + y_{(i)}, z_i \in D_{(i)} \cap X_1$ and $y_{(i)} \in D_{(i)} \cap X_2$ (Lemma 2.3). Set $\psi_1 = \sum z_{(i)}t_{(i)}, \psi_2 = \sum y_{(i)}t_{(i)}$ and $\psi = \psi_1 + \psi_2$. Then $J_p(z)\psi_1/\mathscr{E}(F) = J_p(z)\psi/\mathscr{E}(F) = 0$. Consequently, $\prod_{j \in (i)} (z_j - T_j)z(i) \in \mathscr{E}(F) \cap \mathscr{E}(\hat{\mathbb{C}}^n \setminus F) = X_1 \cap X_2$ or $J_p(z)\psi_1/(X_1 \cap X_2) = 0$. Let $\widetilde{T}_j = (T_j \mid X_1)^{X_1 \cap X_2}, \ \widetilde{T} = (\widetilde{T}_1, \dots, \widetilde{T}_n)$. Then \widetilde{T} is a commuting n-tuple of closed operators. If S is a mapping from X/X_2 into $X_1/(X_1 \cap X_2): x/X_2 = (x_1 + x_2)/X_2 \rightarrow x_1/(X_1 \cap X_2)$, then $T_j^{X_2} = S^{-1} T_j S$. By [1] Theorem 2.1, $\sigma(T^{X_3}) = \sigma(\widetilde{T}) \subset \sigma(T \mid X_1) \cup \sigma(T \mid X_1 \cap X_2)$ $\subset \hat{\mathbb{C}}^n \setminus G$. Since $z \in G$, we have $z \in \sigma(T)$. Hence there exists $\widetilde{\varphi}$ such that $J_p(z)\widetilde{\varphi} = \sum z_{(i)}/(X_1 \cap X_2)t_{(i)} = \psi_1/(X_1 \cap X_2)$. Let $\widetilde{\varphi} = \varphi/(X_1 \cap X_2)$. Then $J_p(z)\varphi - \psi_1 \in \Lambda^p[\tau(z), X_1 \cap X_2]$ and $J_p(z)\varphi/\mathscr{E}(F) = \psi_1/\mathscr{E}(F) = \psi/\mathscr{E}(F) = \widetilde{\psi}$. Thus $z \in \rho(T^{\mathscr{E}(F)})$ is obtained. Since z is an arbitrary point of F, we have $\sigma(T^{\mathscr{E}(F)}) \subset \hat{\mathbb{C}}^n \setminus F$.

Proposition 2.12. Let $T = (T_1, \dots, T_n)$ possess spectral capacity \mathscr{E} . Suppose $F \in \mathscr{F}(\widehat{\mathbb{C}}^n)$ and $\{G_i\}_{j=1}^m$ is an open cover of F. Then $\mathscr{E}(F) \subset \sum_{i=1}^m \mathscr{E}(\overline{G}_i)$.

Proof Choose $\xi_i \in \rho(T_i)$. Set $\alpha_i = (\xi_i - T_i)^{-1}$ and $\alpha = (\alpha_1, \dots, \alpha_n)$. Then α is decomposable and $\mathcal{E}_a(F) = \mathcal{E}\left(\left(\xi - \frac{1}{F}\right) \cap \mathbb{C}^n\right)$ for each $F \in \mathcal{F}(\widehat{\mathbb{C}}^n)$. With the help of [3] § 2 Theorem, we have

$$\mathscr{E}(F) = \mathscr{E}_{\mathrm{d}}\Big(\Big(\xi - \frac{1}{F}\Big) \, \cap \, \mathbb{C}^n \, \Big) \subset \sum_{j=1}^m \mathscr{E}_{\mathrm{d}}\Big(\Big(\xi - \frac{1}{\overline{G}_i} \cap \, \mathbb{C}^n\Big)\Big) = \sum_{j=1}^m \mathscr{E}(\overline{G}_j) \, .$$

Proposition 2.13. Let $T = (T_1, \dots, T_n)$ possess spectral capacity \mathscr{E} . Then

- (1) T_i possesses spectral capacity \mathcal{E}_i : $F \rightarrow \mathcal{E}(\hat{\mathbb{C}} \times \cdots \times F \times \cdots \times \hat{\mathbb{C}})$ for any j;
- (2) $\mathscr{E}(F) = \bigcap \{ \sum_{j=1}^{m} [\mathscr{E}_{1}(\overline{D}_{1j}) \cap \mathscr{E}_{2}(\overline{D}_{2j}) \cap \cdots \cap \mathscr{E}_{n}(\overline{D}_{nj})] | F \subset \bigcup_{j=1}^{m} (D_{1j} \times \cdots \times D_{nj}), \} D_{1j} \times \cdots \times D_{nj} \text{ is a polydisc in } \widehat{\mathbb{C}}^{n} \text{ for any } F \in \mathscr{F}(\widehat{\mathbb{C}}^{n}).$

Proof (1) Obvious.

(2) In view of Proposition 2. 12, $\mathscr{E}(F)$ is contained in the right side of the equality. If x belongs to the right side, then $\sigma(T, x) = \bigcap_{j=1}^m D_{1j} \times \cdots \times D_{nj}$ for any $\bigcup_{j=1}^m D_{1j} \times \cdots \times D_{nj} \supset F$ = F. Therefore $x \in \mathscr{E}(F)$ and the equality is obtained.

Definition 2.14. Let $T = (T_1, \dots, T_n)$ be a commuting n-tuple of closed operators. Suppose for any open cover $\{G_j\}_{j=1}^m$ of $\widehat{\mathbb{C}}^n$, there are $X_j \in \operatorname{Inv}(T)$, $1 \leq j \leq m$, such that $\sigma(T|X_j) \subset G_j$ for each j and $X = \sum_{j=1}^m X_j$. Then T is called to have the spectral decomposition property (abbrev. SDP).

Theorem 2.15. Suppose $T = (T_1, \dots, T_n)$ has SDP. Then T has SVEP.

Proof We have to show $H^p[\widehat{A}(\{z\}, X), J] = 0$ for each $z \in \widehat{\mathbb{C}}^n$, $p = 0, \dots, n-1$. Suppose $z \in U_1 \times \dots \times U_n$, $\psi \in A^p[x, \widehat{A}(U, X)]$ and $J_y \psi = 0$. For any fixed $\xi_i \in \rho(T_i) \cap \mathbb{C}$, $1 \le i \le n$, if there is i such that $z_i = \xi_i$, then $z = (z_1, \dots, z_n) \in \rho(T)$ and $H^p[\widehat{A}(\{z\}, X), J] = 0$ by Proposition 1.4. If for any $i, z_i \ne \xi_i$, then there exist open sets D_i , D_i^1 in $\widehat{\mathbb{C}}$ such that $\xi_i \in D_i^1 \subset D_i \subset D_i \subset \rho(T_i) \setminus \overline{U}_j$. Set $G_i = \widehat{\mathbb{C}} \times \dots \times D_i \times \dots \times \widehat{\mathbb{C}}$, $G_i^1 = \widehat{\mathbb{C}} \times \dots \times D_i' \times \dots \times \widehat{\mathbb{C}}$, $G = \bigcup_{i=1}^n G_i$ and $G^1 = \bigcup_{i=1}^n G_i$. We choose another open set V_i such that $z_i \in V_i \subset \overline{V} \subset U_i$ and $V = V_1 \times \dots \times V_n$. Then $U \setminus \overline{G}^1$, $\widehat{\mathbb{C}}^n \setminus (V \cup \overline{G}^1)$ and $\{G_i^n\}_{i=1}^n$ is an open cover of $\widehat{\mathbb{C}}^n$. Hence there are X_i , X_i , Y_i $(1 \le j \le n) \in Inv(T)$ such that $\sigma(T \mid X_1) \subset U \setminus \overline{G}^1$, $\sigma(T \mid X_2) \subset \widehat{\mathbb{C}}^n \setminus (V \cup \overline{G}^1)$ and $\sigma(T \mid Y_i) \subset G_i$, $1 \le j \le n$. By the prejection property, we have $\sigma(T_i \mid Y_i) \subset D_i$. Since $D_i \cap \sigma(T_i) = \phi$, Y_i must be $\{0\}$. Obviously $\xi_i \in \pi_i(U \setminus \overline{G}^1)$. Then $\xi_i \in \rho(T_i \mid Y_1)$ since

$$\sigma(T_j|X_1) = \pi_j(\sigma(T|X_1)) \subset \pi_j(U\setminus \overline{G}^1)$$
.

In the same way, we have $\xi_j \in \rho(T_j|X_2)$. Thus $X = X_1 + X_2$, $X_j \in R(T)$. It is easy to prove $\xi_j \in \rho(T_j|X_1 \cap X_2)$. Then $X_1 \cap X_2 \in R(T|X_1)$. By the proof of Proposition 2.4, $\sigma(T^{X_2}) \subset \sigma(T|X_1)U\sigma(T|X_1 \cap X_2)$. It is not difficult to prove $\sigma(T_j|X_1 \cap X_2) \subset U_j$. The result is $\sigma(T^{X_2}) \subset \sigma(T|X_1) \cup \sigma(T|X_1 \cap X_2) \subset U$. Hence $\sigma(a_j^{X_2}) \subset \frac{1}{\xi_j - U_j}$. By Theorem 2.1 and Remark 2.1 of [4], we have

$$H^{p}[\hat{A}(U, X/X_{2}), J] \cong H^{p}[A(\frac{1}{\xi-U}, X/X_{2},)\alpha] = 0.$$

 X), J] = 0 is obtained.

Theorem 2.16. Suppose $T = (T_1, \dots, T_n)$ has SDP. Then for any $F \in \mathscr{F}(\widehat{\mathbb{C}}^n)$, $X_T(F) \in R(T)$ and for any compact set F in \mathbb{C}^n , $T_i | X_T(F) (j=1, 2, \dots, n)$ are bounded.

Proof Choose $\xi_i \in \rho(T_i)$, $1 \le i \le n$. For any $z \in F$, there exist polydises D, D^1 such that $z \in D^1 \subset \overline{D}^1 \subset D \subset \widehat{\mathbb{C}}^n \setminus F$ and $\rho(T_i) \setminus D_i \ne \phi$. In a way similar to the proof of Theorem 2. 15, we have $X_j \in R(T)$, j=1,2, such that $\xi_j \in \rho(T_i|X_j)$, $1 \le i \le n$, j=1,2, and $\sigma(T|X_1) \subset \widehat{\mathbb{C}}^n \setminus \{z\}$, $\sigma(T|X_2) \subset D^1$. For any $x \in X_T(F)$, $x = x + x_2$. Let $U = D \cap (\widehat{\mathbb{C}}^n \setminus \overline{D}^1)$. Since $x \in X_T(F)$ and $F \cap U = \emptyset$, there exists $\psi^* \in A^{n-1}$ $[\tau \cup d\overline{z}, \widehat{\mathcal{O}}^\infty(U,X)]$ such that $tx = (J \oplus \overline{\partial})\psi^*$. Because $U \cap \sigma(T|X_2) = \emptyset$, there is another form $\psi_2 \in A^{n-1}[\tau \cup d\overline{z}, \widehat{\mathcal{O}}^\infty(U,X)]$ such that $tx_2 = (J \oplus \overline{\partial})\psi^*$. Set $\psi_1^* = \psi - \psi_2$. Then $tx_1 = (J \oplus \overline{\partial})\psi_1^*$. Since $\sigma(T^{X_1}) \subset \sigma(T|X_1) \cup \sigma(T|X_1 \cap X_2) \subset D'$, there is $\widetilde{\varphi} \in A^{n-1}[\tau \cup d\overline{z}, \widehat{\mathcal{O}}^\infty(U,X/X_1)]$ such that $\psi_1^*/X_1 = (J \oplus \overline{\partial})\widetilde{\varphi}$. If $\widetilde{\varphi} = \varphi/X_1$, then $\psi_1 = \psi^* - (J \oplus \overline{\partial})\varphi \in A^{n-1}[\tau \cup d\overline{z}, \widehat{\mathcal{O}}^\infty(U,X)]$ and $(J \oplus \overline{\partial})\psi_1 = tx_1$. Multiplying suitable C^∞ -scalar functions θ_1 and θ_2 , we have $x_j = tx_j - (J \oplus \overline{\partial})\theta_j\psi_j \in A^n[\tau \cup d\overline{z}, \widehat{\mathcal{O}}^\infty_i(D,X_j)]$, j=1, 2. Thus $\left(\frac{1}{2\pi i}\right)^n \int_D T_{\xi}(z)(-1)^n \pi \chi dz_1 \wedge \cdots \wedge dz_n = \left(\frac{1}{2\pi i}\right)^n \int_D T_{\xi}(z)(-1)^n \pi \chi_1 dz_1 \wedge \cdots \wedge dz_n + \chi_2$, where $\chi = x_1 + x_2$. Since $x \in X_T(F)$ and $D \cap F = \emptyset$, we have

$$\left(\frac{1}{2\pi i}\right)^n \int_D T_{\xi}(z) (-1)^n \pi \chi \, dz_1 \wedge \cdots \wedge dz_n = 0.$$

Therefore $x_2 \in X_1$ and $x = x_1 + x_2 \in X_1$. Since x is arbitary in $X_T(F)$, we have $X_T(F) \subset X_1$. Let X_s denote X_1 . Then $X_T(F) \subset \bigcap_{s \in F} X_s$. It is obvious that $\bigcap X_s \in X_T(F)$. Therefore $X_T(F) = \bigcap X_s$ is a closed invariant space of T. Because for any $z \in F$, $\xi_i \in \rho(T_i | X_s)$, ξ_i must be contained in $\rho(T_i | X_T(F))$. Thus $X_T(F) \in R(T)$ is obtained.

If F is compact in \mathbb{C}^n , then $X_T(F) \subset \bigcap_{i=1}^n D_{T_i}$ by Proposition 1. 14. The restriction $T_i|X_T(F)$ is closed and defined on Banach space $X_T(F)$, it must be bounded by colsed graph theorem.

Theorem 2.17. Let $T = (T_1, \dots, T_n)$ have SDP. Suppose f_j is an analytic function on a neighbourhood of $\sigma(T)$, $1 \le j \le m$. Then $f(T) = (f_1(T), \dots, f_m(T))$ has SDP.

Proof Suppose $\{G_i\}_{j=1}^k$ is an open cover of \mathbb{C}^m . Then $\{f^{-1}(G_i)\}_{j=1}^k$ is an open cover of $\sigma(T)$. Using the same method as in the proof of Theorem 2.16, we can find $X_i \in R(T)$, $1 \le j \le k$, such that $X = \sum_{j=1}^k X_j$ and $\sigma(T \mid X_j) \subset f^{-1}(G_j)$. Consequently $X_i \in \text{Inv}(f(T))$ and $f(T) \mid X_j = f(T \mid X_j)$. Therefore

 $\sigma(f(T)|X_i) = \sigma(f(T|X_i)) = f(\sigma(T|X_i)) \subset f(f^{-1}(G_i)) = G_i, \ 1 \leq j \leq k.$ By definition f(T) has SDP.

In closing, I should like to express my appreciation to Professor Chang

Dianzhou for his useful suggestion and advice.

References

- [1] Eschmeien, J., Spektralzerlegungen und functionakaküle für vertäuschende tupel stetiger und abgeschlossener operatoren in Banachräumen, Schriftenreine des Math. Instituts der Universität Muster, 2. Serie, Helf 20, 1045, Juli (1981).
- [2] Eschmeien, J., Local properties of Taylor's analytic functional calculus, *Invent. Math.*, 68 (1982), 103—116.
- [3] Eschmeien, J., Equivalent of decomposability and 2-decomposability for several commuting operators, *Math. Ann.*, **262** (1983), 305-312.
- [4] Frunza, S, The Taylor spectrum and spectral decomposition, J. Functional Analysis, 19(1975), 390-421.
- [5] Taylor, L., The analytic functional calculus for several commuting operators, Acta. Math., 125 (1970), 1-38.
- [6] Taylor, L., A joint spectrum for several commuting operators, J. Functional Analysis, 6 (1970), 172—191.
- [7] Field, M., Several complex variable and complex manifolds II, Lodon Math. Soc. Lecture Note Series 65, 1981.
- [8] Wang Shenwang and Erdelyi, Theory of local spectrum of closed operators (unpublished).