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COMMUTING n—TUPLES OF CLOSED OPERATORS
WHICH POSSESS SPECTRAL CAPACITY

HU SHANWEN (3}] £ 3;) ®

~Abstract

This paper introduces the notions of commufing n~tuples of closed operetors which
possess SVIEEP, SDP and spectral capacity respectively. A formula of ané,lytic functional
calculus for several commuting unbounded operators is found. With the help of the
formula, it is proved that T has spectral capacity implies T' has SDP and 7' has SDP
implies T' has SVEP. It is also proved that if T' possesses spectral capacity & and f, is
analytic on a neighbourhood of (L) for j=1, 2,++, k, then f(I)=(f1(T), ++, fo(T)) is
decomposable, and the spectral capacity ¢* of f(T') is uniquely determind by &*(F)=
e-1(F) No(T)).

§ 1. Analytic Functional Calculus

In[1], X is a Banach space and Ty, ---, T, are closed operators on X, For any
¢, 1<<é<Xn, there exigts &;€p(Ty) NC. Lot o= (&—T)™ If a=(ay, **+, @) is a
commuting n-tuple of bounded operators, then 7' = (T',--+T,) is called a commuting
n—tuple of close operators. Taylor spectrum, denoted by o(T), is the subset of

€ {(51 __l_,&_._l_, IR §,.—-—1-—) 2= 2y, *oo, ) € cr(w)} where €*=Cx€x - x
By % Zn _

€ and E=CU {co}. If (@) ={84, =, bpr={1, ++¢, 0}, =4, **, %) is an n—tuple of
indeterminates, then iy, denote #, A -+ A#,. Lot D= N {-Dz'hm'l’,,‘ for any {f1, **, ju}
N (¢) =&}, where Dy,.., is the domain of Ty.,, and Dj,={Sawimn|ow € Dy,
| (3) | =p}, 0<p<<n. J, is a mapping from D, into D, 2w<;)t(;)—>2 2 Twwti Nt o
We shall use these notations in this paper.

Let U be an open set in €, We define

1. 44U, X) “{fleA(U D)) and for any {7y, -, FN (4) =Q, pli%f(@
€ AU, Dy) andHTh f'«‘jp fEAU, X)};

A*[w, A(U X)]—{Ef(nt(nlf(oEAm(U X)}, 0<<p<n.
Can U, X)={f|f 60”(17 D(t)) and for any {is, -, i} N () = and
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L, = (), H %,,ﬂ 2, f(2) €0 (U, D) and H T, H zs,,ﬂ #5,f (2) E o=, X)}y

A”[TUCZ% 0”(17 X1 ={Zfww l.)"mmGO«xn(U X): o
| | @+ ]| =9}, 0<p<2n.

For any =3 futw € A?[z, A(U, X)], J, is a mapping from /1”[7, AU, X)]
into A#* [z, AU, x)]1: J ,,l{:(z) = %}g (&~Ty) fo (@ A, ,@a is a mapping
from 42[zUdz, O~ (U, X)] into A2[zUdz, 6~(U, X)]: |

(D) (2 frowtwr Ndz) (2)
=2 qZ(za T f @ tgAepy Adzg+Z 2

For oonvenleee, it E=(&y, -, &) EC, lob C"——{z-— (21, =+, 2a) |2ECP, uHEy

. 1 1 1 :
1<i<n} nd =g ={(g 1 s o) 2€T}.

Theorem 1.1. Let T= (T4, ---, T,) be. a commuting n~tuple closed operators,
Eq€EPT)NC, a=(&—T)™, 1<i<n and a=(ai, -, a,). Then the following
diagram is commutative: S

0->4°[z, AU, X)1> Ai[v, A(U, X)]~>- 4w, AU, X)1-0

Uo Uy Un .
' 0__>A0[o-’ AA(V, X)]ﬁhd.l[a', ﬁ(V) X)]Q"'QA” [G) _2.(17, X)]_)’Or
m 1U and u, s an isomorphism from A*[z, AU, X)] onto A? [o, Aw,
X)1: for any fuwtwm€A?[7, A T, X013, w(fotw) M) = (TF £ ) fo (5 ~ —1—) 8(iye
o\ M | A
Hence, if let

where V =

H[A(U, X), J]1=ker J,/Im J,_y,
H[A(U, X), J1=H AV, X), o].
~ Proof For any gusm€ A?[o, AW, X)], we can define another mapping v,
v (Gwsw) (2) —Je(w)< Ay ) g@)< 51 )t(;) It ig clear that vyou,=1 and uyov,=1,
1
Ry o
— 1
(oouy) ( fartw) (W) =a(M)( T1 <I€( )( Ti}»j J ) f a)(f - ——)Sa)

- 3 - (EE) oL o)

ke ®

=262 1) J (5 5) Jole-p)wAso)
=1 ( %} (%—T%) foo @) B A bw) = (Upsaod ) (Fertr) (M)

Thus we complete the proof.
Theorem 1.2. Legi T and a be as in Theorem 1.1, Then the following diagram

then

For any 2€U, AE
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28 commutative: .
0—>A°[7 U dz, @“(U X)]—->_/11 [wu dz, O=(U, X)]—- —>A*[zUdz, 0=(U, X)]->0
Wo wi Wn,
0->A°[c U dh, 0°°<V, X)]>A o Udr, OV, X)]—>--—>A4"[s Ud], O’°°(V, X)]->0,

fwhere V = and w, @8 an isomorphism from .{1” [zUdz, O=(U, X)] onto

1
€=U ‘
A*[o Udh, 0=V, X)]: for any fam)t«)/\d?émEA”EwUdE, o~(U, X)1,

we( feowtoddzp) (A) = (—1)'®' T ( Tk?;; & > sty 32 f a)@)(f‘—)S(s)Ad?vm

kEe®
Henee, if let '
H?[0~(U, X), J@8] =ker (J,B8)/Im(J,.,Dd),
then ' '
H?[O(U, X), J@8 = H*[O(U, X), a@8], 0<p<2n.

P /I'OOf If FynSch) /\dX(;) GA” [cU d?\«, @“(V, X ) 1, then the mapping 7y

rp(goenso Adhep) (&) = (—1)'@! H( — ) Il g(m')( §}- , )tm/\dgm

KE® §;,—zk Ke®
satisfies the condition wyery=1I and rypow,=1I.
For any 2€U, AE —-—1‘:;—
(a®d) owy( et Adzy) (M)
= > (?»q——wq) (=)' 11 < M he(j) ?»2 S <s)u><§ )]sq/\s(;)/\dh(;)

[ O] [ kE®

[( 1)1 H( » — & ) A5 f(i)(i)]d Asw Ny

ke

B ten) e

+ (—1)'(’)'“ I (—’1-7”—?;—5-7‘5-) I1 —L—-'fuxndhq/\sa)/\d?»(n

€O : KEW® reHuin A2 9zq
= (Wps10d p) (Feonrto NGzn) (M) + (wp4.1°8) (Fooivtnr Adzsy) (M)
= wpy10 (J5BB) (foxartr ANdzep) (W)
Suppose U is an open set in €. We shall denote by
O(U, X)= U {(W) | EA2[w, AW, X)] for some ne1ghbourhood of z}

Tk—fk)
ké(num( g Ael ) el f(t)(f)]sq/\s(,)/\dh(,,

the sheaf of all germs of analytio forms of degree p, and denote by
By (U, X)= UU {(p)s|pE A?[zUdz, O=(W, X)] for some neighbourhood of #}

the sheaf of all germs of somooth forms of degree ». For any 2€U, we have
operator J,(or J ,,@a) from 0?(z) (or B?(z)) into 0°**(z) (or B***(z)) and
define
H*[A({z}, X), J]=kerJ,/ImJ,.,,,
H*[0~({z}, X), J@8] =ker J,B/ImJ,_,®A.
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0bv1ous1y, B (U X ) isa ﬁne sheaf.
By Theorems 1. 1 and 1. 2 we have the followmg corollary

Corollary 1.8. For any €€ and— L

H*’[A({z}, x), J] ~H”[A({?\,},X), o, 0<p<fm
H[0~({z}, X), JDF] = H?[0~({A}, X), a@a] o<p<2n
Corollary 1.4. For any :€p(T),
H[A{z}, X), J1=0, O<p<n
H[C~({2}, X), J®F] =0, 0< p<2.
Proof If 2= (2, -, 2,) €p(T), we can choose &E_p(T;) but §i#z, 1<i<n,

Thenx=;§-—1—ec»np(a) Thus we have H?[A({z}, X), J1=H?[A({A}, X), ] =

H[A({A}, X), a]=0 by [2] Lemma 2.2, Slmllarly, He [6'”({,2}, X), J®?]
H*[0"({A}, X), a®d] =0.

Proposition 1.5. For any open set Ucp(T), the sequenae
0->A°[zUdz, C~(U, X)]>A vcdz, é“(U X)) A7 Ude, 0“(17 X)]-0
8 emact.

Proof For any Y€ A*[zUdz, @‘”(U X)1, (), is a_section of the sheaf B2,
Bince B?(U, X) is a fine sheaf and for 2€U, H"[@“({z}, x), J@a] =0, by[7]
Propositions 6, 8. 2 and 6. 3.6, the sequence is exact.

Corollary 1.8. If f is analytic function on an ne@gkbowhood U of a(T), then
for any o€ X there ewists Y& A" [vUdz, éw(V X)1, V=UNp(T), such that
tf (o=Ff @ at A+ Nta= (JDO)Y.

Proof By definition, #f®@)s€A"[zUdz, O~(V, X)] and (J®BF) (tf(2)a) =0,
then the Corollary is an immediate consequence of Proposition 1. 5.

‘We shall define the single valued extention property. Before stating the
definition, we shall have variant of Dilbeanlt-Grothendieck Lemma, like [4] Lemma,
2.1.

For convenience, let

AvUdz, 0°(T, X)1=1{Z fawto Adzw] | @) | +1() | =p, | )] =g}

Lemma 1.7. I f G is an open polydisc in C", then for any k, 0<<kh<<n, the

sequence

0->A*[z, A(@, X)]-> A:[+Udz, @“(GX)]gAZ'“[deE, 8~(&, X)]

| ~>eneS> 4[5 U d50°(@, X)]0
8 emact. ’
Proof First we show it is exact if k=0, Our proof ig similar to that of [7]

Theorems 5.8.1 and 5.8. 2 but slightly complicated. We omit the details,

Now, suppose k=1, If yr € A5+ [z U dz, O“(Gv X )] and = %} 02> Faoxnd2m/\tay, |
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then 51,(;=O is equivalent to 3(; Faxn¥2y) =0 for any (¢). Similarly, we can
)

construct 2 g({)(j)d-g(j). satisfying g(i)(i) E o= (G, D(,j) and Tj,' "Tikg(.i)(a‘) E o= (G, X) fOl'
any {ji, -, fuy N (¢) = and @ (2 Joind2e) =2 faondze. Lot o =2 Fondz and

p= 2 ew/\bw. Then p€ Ai**[v U dz, 0~(@, X )] and 9p =73, dpy =1.

I @=0@G4 %+ %G, is an open polydise in C" where Gi—{zl |z—b; [<rr, or G;=
{z] || >fr;},vwe denote by G* the polydise in C", G*=G1X-- X @}, where Gi=G; if

GicC and G = —Gl—- otherwise.

Lemma 1.8. If G is an open polydise in ér, then the sequence in Lemma 1.7 ds
also exact.
Proof Without loss of generality, we may assume G:={z| l [>r}, 6>k and
Gi={z| |2—b;] <n}, 9<<k. Define isomorphisms :
i vUdz, 0°(Q, X)]——)A"“’ [zUdh, O=(6%, X)],
s wxndzn/\bw(4)= qe(‘}(;[ k)-xq— Fondham ANw,
where

. | 1 1 |
| f (7“) =f(h1) L P m; % A >’ 0<p<nm,
and 3,: A*[z, A(@, X )]~>4*[v, A(G*, X )1, 8afwtwy=Ffivtw, It is easy to verify
that the follow diagram is commutative.

0->A*[=, 4(Q, X)]—>/1"[7Udz o~(@, X)]—> - —>Ak+"[»uudz 0-(@, X)1-0
Jo lao . 5 |
0—>AP[z, A(QY, X)] -5 ALz Udh, O=(G, X)—>-- > Ab+ [z d7, O=(G*, X)]—0.
Then, it follows from Lemma 1.7 that the sequence is exact.
Definition 1.9. If for any 2 €C», H*[A({z}, X), J1=0, 0<p<n—1, then T
48 said to have single valued entension property (abbrev. SVEP). .
Theorem 1.10. Suppose T= (T4, -+, T\) 45 a commuting n—tuple of closed
operators. Then the following coditions are equivalent:
(1) H?[A({e}, X), J1=0 for all 2€E" and each p=0, ---, n—-l;
(2) H*[C~({2}, X), J®8] =0 for all 2€ € and each p=0, -1
(8) H*[0~(U, X), J®3] =0 for each open set U in € and p= o 1, e, m—1;
4) H”[A(D X), J1=0 for each open polydisc D in € and p= 0 1, .
n—1. : |
Proof With the help of Lemmas 1.7 and 1.8, we can prove this Theorem using
the same methods as in [2]. We omit the details,
Proposition 1.11. If7T= (T, -, T, isa commuting n—tuple of closed operators,
EEP(TYNC, a=(&~T)™, 1<i<n, and a=(ay, *-, an), then T has SVEP iff a
has SVEP in the sense of [2] Definition 1.1.
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Proof For any A€C"\C", if we regard a=/(ay, -, a,) as a closed operafor
system, then A€ p(a). Henoce H?[A({\}, X), a] =0 for each p=0, 1, -, n—1.
Then the proposition follows from Proposition 1.3.

Definition 1.123. Suppose T'= (T4, -+, T,) have SVEP, the local spectrum
o(T, ») relative to x€ X 4s the complement of p(T, x)= U{UcC" open| there is
Yy €A1z Udz, O~(U, X)] such that tv= (JDI)Y}. |

Proposition 1.13. ZLet T and a be as in Proposition 1.11, for any € X,

1

o(T, o)=¢ "m
ard wi(o(T, ) =c (T, x), 1<<i<<n, where m; is the projection of € onto its i-th
coordinate.

Proof Immediately from the definition and Theorem 1.2 and [2] Corollary
2.2, o | |

In [1], Eschmeier defines the analytic functional caloulus for n—tuples of closed

operators. If f is an analytic functional on a neibourhood of ¢ (T), then f, is an
analytic function on a neighbourhood of o (a), where'f;(A) =f (§ —-%) F) is

defined to be f¢(a). We try to define the analytic functional calculus directly.

Let @;,=@\{§;}, @;#@&x ---x@;n. Then @f is a local compact topology space.
We notice that if we substitute compact set in C* by compact set in.C¢, then [5]
Lemma 8.8 are true for the case of closed operator systems. Therefore, if f is
analytic on a neighbourhood U of ¢ (T'), then the equality ¢f (z)o— x = (J @)y has a
solution 3 € A[zU dz, O¢(U, X)], where A*[+Udz, Cf(U, X)] is the family of
forms with compact support in €, Let @ be a chain homomorphism keeping the

part of x which contains dzy, *-+, d 2n, T¢(2) =f{<§§l%> and Ry f(2)o=(—1)wy.
= [t
We can show f (T)m=<—2—71;77> JU T{2)Ry_nf(R)wd 2\ -»» Ad2, is generalized Lebesgue

intergrable and f—f(T) is an algebric homomorphism satisfying the spectral
mapping theorem. Because of [1] Theorems 2.2 and 2. 4, it is suﬁicient 0 prove
Fe(a)=£(T). | |

Theorem 1.14. Let T= (T, -, T\) be a commuting n—tuple of closed operators,
&EP(T) NC, a=(&—T) 2, 1<i<n, and a=(ay, -, a.). Suppose f is analytic on a
neighbourhood U of o (T). Then f:(a) =f(T).

Proof By applying Theorem 1.2, the equality tf(z)e—yx=(J @)y becomes
sfe(M) o —wux = (06@5)%-1 t,b It is clear that supp.w.x is compact in C* because

supp.x is compact in C! Moreover, since U= fo cC", we have w,.; $E

A**[e Udr, 0°(U,, X)]. By definition, B, 5f¢(A)o=(—1)" ww,y = (—1)"w.my. Let
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g =11+ RdFs A+ 7. Thoen wimy — n(_f—;im T (g—-.)dxl/\---/\dx,,.
, _ i i ,

T =1 i=1
Therefore
f (a)w _ : - -
R C R (C £ hiT‘)g—hThﬁg——)dxiA AdF, /\dxi/\--;/\‘dx.,_

<2 @) j (=1 H<§‘ Ti) <§i zs)ﬂ (&i—2)h(2)
. Wdzi/\.”/\dzn/\dZI/\“.Adzn
2%.,[} [ ( )n _1 )h(z)dzi/\ ----- /\dzﬂ/\dzi/\ /‘\d‘a',.

=( ) j T, (2) Rz f(z)wdzi/\ * Ndzo=F(T)a.

Remark. If n=1and c(T) U, let o (T) cU; cUscU and I’ be a cloge
Jordan curve in U\U, enclosing o'(7). Assume @ is a O*-sealar function, equal to
0 in' U, and to 1 outside of Ua. Let 1(z) = (z—T)~*f (¢)w. Then

F@o= g{ (~DET 8@ = 5] (1) S 5 Loy @as

*%—L T Ty el
" i [p‘:<z§ '1-_“ (e—T)7'f (2)ade

—f(°°>w+——J (z— T)"if(z)dz
¢ }U='U1 X oo XU, & G(Tc) U, we can show induectively that
f(T)w=f(oo, .e, oo)a;—l-z 271:’1;J f(oo’ ey By o0, oo) (Z¢~T5)‘1wdz,

+2‘< 2717@) Jr,[ J(00, «ony 2y =ee, gy o0, 00) (s —T5) (2 —T) " wd, dz;

e,

Let Inv(T") = {Y |Y is a closed subspace of X and for any 4, (Y NDyp,) Y,
o(Ti|y) +T}; B(T) ={Y'|Y €Inv(T) and for any i, p(T0) Np(T:|¥) # T}

Corollary 1.15. Suppose Y €R(T) énd U is a neighbourhood of
a(T) Uo(T|Y). If fis an amlytw funct@on on U, then ¥ € Inv (_f(’_l"\) and, f(T]Y)
= F(D) Y.

Proof For any §@€p(T¢) np(T,IY) and eaoh yeY,

@57 ) [P Bt @za - N

“.j_r f(ziy ) zn)]i'—'_[l(zi_T;)—i wdzi---dz,.; :

L

| =(él®)f T;(Z)Rz_mf@)ydzi/\ /\dzn—f(T)y° |
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Henoe f(TNyEY and f(T)y f(TlY)y

If T has SVEP, we can also define analytio functional ealculus on the local
spectrum, If f ig analy’ole on a ne1ghb0urhood U of o(T, ), then there exists
1€ A" [wUdz, Or (U, X)1 such that tf(z) &—x=(J@)P holds'on U. We define

Jr(e) = ( ) IT{(z)( D wydeg N\ -+ /\dz,, The results of [2] can be extended to

the case of closed operator n—tuples. In parhoulaxj,- if f is analytic on U, then

JF(IMao=fp(a) for any «€ X. Because of the similarity of the proof, we omit it in

this paper. We have the following proposition. ‘
Proposition 1.16. Suppose T = (T, -, ,,) has SVEP and o (T, ©) is compact

for some #€ X, Then &€ q D, and f(T) = JR,,_T F(2)ad 2 A+ Ndza for any
analytic funot@on Jon the ne@ghbowrhood of O'(T)
Po"oo f  Since g(z) = II(§ ;—-z;) is analytm on a relatlve compact nelghbourhood U

of cr(T ), then tuere is x with compaot support in U such that ¢ f (2)o—x = (J D).
~ Henoe tg (2)f(z)z—g(#)x=(J @) g(2)y. The result is

(_}_)"J pr f (R)wd2g A -+ /\dz,,=<—l-,-)”fwxdz1/\ e Nz,

O\ 2w 2m0 /
~fe{(5 )T @mg@ndzn - Ada )= L a fodea)

=E wifz'(gz'(m)) =£ @ f(_T)ig(&—TOw: F(T)a.
The reason why gr(w) i[i(&* T is that h(z) =f]; (¢,—2) 1 is analytic. Then

o= (hg)z (@) =hp(gs(2)) =I;I1 ai[gr (#)]. Hence € Cl Dy, and g E—Toe=gr(@).

2. Spectral Decomposﬂslons

Lemma 2.1. Suppose T (T4, +-, ,,) s .a- commutfz,ng n—tuple of closed
operators and X = X1+ X, X E(T), j=1, 2. For any f,Gp(T;)ﬂp(T;lX), §—-
(&4, +-, &) and UCC;, we have _ o

(1) each p€ A?[w, AU, )] can be 'wmttenasqa g01+q>2, fwhere

@; € 4?7, A<U X1, §=1, 2
(2) each $EA?[xUdz, O~(U, X)] can be written as l/! Pyt 'whe're
Y €A% Udz, O=(U, X)1, j=1,2.

- Proof (1) It is clear that p(T) Np(Ti| X Ep(Ti| Xa). Therefore &€

p(Ti| Xy). If p€ A2(w, A(U X)] then

wp€ 4o, A X )]=2 (o A(?}ﬁ_; x)]
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by Theorera 1.1. ‘Sinee @ is a bounded n~tuple and X; € Inv(e)(Corollary 1.15),
we have Ugp = (p1+¢2, where p; €47 [ (§ lU >:l, j=1, 2, Henoe ¢=u,pi+

0p3. Lot gy =v,0; € A?[7, AU, X,)], we are done,
| (2)‘ In the same way.

Lemma 2.2. Suppose T= (T4, +, T\) is a commuting n-tuple of closed

operators and ¥’ ER(T) For any g,e p(T,;) Ne(Ti|Y), £= (&, -, &) and U, we
have

(1) each f € A?[=, A(U, X/Y)] can be written asf f/Y where

FEA?[w, A, X)H1;
(2) each g € A*[v\)dz, O=(U, X/Y) oan be written as g=g/¥, where
g€ A*[vUdz, O~(U, X)].

Proof It follows from[8] Proposition 8.1 that T7¥ is a closed operator and
o (T o (T) o (T4 Y). Hence &Ep(T:) Np(TW|Y)Cp(T?) and (&—1) =dl.
Therefore, using the same methods as in Lemma 2.1, we obtain (1), (2).

Lemma 2.8. If T=(T,, -, T,) is a commuting n—tuple of closed operators,
then .

) If X=X1+X5 X;€R(T), j=1, 2, for any ()C{L, -+, n} and each
@ € Dy, ®=, s, where ;€ X;N Dy, j=1, 2. ‘

2 IfY GR(T) and Dy denote N {Drs,. 7, [ {71, =+ fut N () =}, then a given
z€ ﬁm can be written as x=w/Y , where & € Dg,. ' |

Proof (1) Choose &€ p(T) Np(Ti| X1) Np(Ti| X,). If &€ D(;), then

M- T)o=ai+as, o;€EX;, j=1, 2,

Let 2y = Hw,ﬁv}‘, @g= II a;w5. Then ;€ X ;N Dy and &=, +wa.

) Ohoose §4Ep(T;[Y) Ne(T). If méﬁm, then ﬂ (&—=T")z = /Y for some

o, Let o= I(ija; Then @€ Dy, and /Y =z.
HAO

Definition 2.4. Let T= (T4, -, T,) be a commuting n—tuple of closed operators.
If there is a mapping & from the famwly of closed subsets F (@') of € into Inv (T)
satisfying:

W) &@)={0}, 6@ - X; |
@ & (ﬁ F,,) = ﬁ E(F,) for any sequence {F,}CF (@”);

(3) X-= ;} & (G;) for any finite open cover {Q} 5, of én

4) o(@|&Wd)) CF Jfor each Fégf (@‘), then T is said o possess a spectral
capacity. :
Proposition 2.5. If T =(T4,---, T,) possesses a spectral capacity &, then for ecwh
FeF &), () o@|EF))ca(T), @) o(Ti|EF))Co(Ty), 1<i<n, (3) &F)E
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R(T).
Proof For any z€ o (T), there are open sets D and D, such that s& D, DU Dy
—-@" and DN o (1) =. The spectral capacity & provides the decomposition of X
=&(D) +&(Dy). For any € &(D), there is Y€ A" [+ dz,0~(U, &(D))] such
that to= (J@d), where U=C"D>o (T'). By definition R, r #=0, hence

m=(2§v ) jT;(z)R,_dezi/\ Ndea=0

Therefore (D) ={0} and X = &(D;). Then. ¢(T|&(F))=a(T|EF)NE (Di)) =
a(T|&(F N D)) cDy. Thus 2E0(T|& (F)) and o (T|E(F)) o (T). Furthermore -
o (1) =mo (T)Dmo (T|E(F)) =0 (Ti|E(F)). :

Therefore p(Ts) Np(T:|E(F)) =p(T:) + D and (1), (2), (3) all hold. -

Proposition 2.6. Suppose T= (T4, +--, T,) possesses spectral capacity &. Then
supp. &=a(T). ' :

Proof If FEF(€") and EF)=X, then o(T)=0(T|&F))F. Hence
o (T") < supp. &. On the other hand, by the proof of Proposition 2.5, we know that
if € o' (T), then there exists D such that «€ D and &(D) ={0}. Hence 2& supp. &.

Theorem 2.9. Let T'= (T4, -+, T,) possess speciral capacity &. Suppose f; is
analytio on @ neighbourhood of o (T), 1< j<m. Then f(T)=(f1(T), -, fo(T)) is a
decomposable n—tuple in the sense of [4] Definition 3.1. The spectral capacitp &* of
F(T) is uniquely determind by &*(F) =8(f*(F) No(T)). ’

Proof For any F & F(C™) lot &*(F)=&(f(F)Na(T)). We have

D) &*(p) ={0}, &*(EC)=&E(f*(C") No(T)) =&(o(T)) =X;;

@) S (NEF)=E(NF) N () =NES2F) No(T))=NE*(F.);

(8) If {Gj},,:.l is an open cover of C", then ¢(T)C< U (@) No(T)), and

31 &8@) = (@) No(T) = X;

(4) By Corollary 1.15, é’*(F) € Inv (f(T)) and f(T|&*(F)) =f(T)|E*(F).
Therefore

o(f(T) Iéa*(F)) o (f(T|6*(F))) = f(o(T|E*(F)))
=f (e (T EF(F) No (T SF (F(F) No(F)CF.

Thus f(T) is decomposable and &* is the unique spectral capacity,

Corollary 2.8. IfT= (T4, -+, T,) possesses spectral capacity, then T has SVEP
and & (F) ={a|o (T, s) S F} for each F € FCr).

Proof In view of Corollary 2.7, a= (a4, -+, @,) is decomposable, Hence ¢ hag
SVEP. It follows from 1.11 that 7' has SVEP. Furthermore,

1 _ 1 1. '
A )——{m{a(a, ») C—ETF-}—-{Q:]O‘(T, 5)CF}.
Definition 2.9, Let T'= (T4, -:, T\) be a commuting n—tuple of closed operators

&(F) =é"a<
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and Y € Inv(T). If for any ZE€Inv (1), (T Z) o (T|Y) émplies ZZY, then ¥
is called a spectral mavimal space of T. The family of all spectral mazimal space of T
48 denoted by SM(T). ,

Proposition 2.10. Let T = (T4, -+, T\) possess spectml capaéfz}ty &. Then Y &
SM(T) if Y = ca@(cr(TlY)) -

Proof 1If FeF @, then &(F)= XT(F) {mla(T @) CF} Suppose VAS
Inv (T) satisfy o (T'{Z) Ca(Tlé”(F)) Then for any ¢ € Z,

€ Xpz(o(T2))CXo(0o(T|2))=E(o(T| D)) =& (o (T|E(F)) E(F).
Conversely, if ¥ € SM (T), then &(a(T|Y)) Y since o (T | (o (T Y)))ca(T|T).
For any y€Y, yeXp(c(@|Y))= éa(cr(TlY)), thus YCé’(a(TIY)) and Y =
&(o(T|Y)) is obtained.

Proposition 2.11. Let T= (T, «++, T,) possess spectml capacféty &. Then for
any F € F(Er), o (T*®) c@\ﬁ'

Proof For any :€ P, we have to show 2€ p(T*®), Suppose = Ew(,)tm and -

J»(2)§=0. By Lemma 2. 8, we may assume s =,/ (F). Henoe
Jp<z)¢'=2 2 (=T ) @a/E(F)t; Ny =0.

If @G is an open ‘sotb satisfying Z €qQc@ck, then €"\G and ¥ is an open cover of
C” Thus X = X4 X, where Xi——é”(C”\G‘) and X,=&(F). Since X1, X,ER(T),
we have auy=2u+Yw, %€ DuN X, and gy € Dy N Xa (Lemma 2.8). Set s =2 2rtn,
Pa= X Yty and P =11 +a. Then J. 2 (D Ps/E (F) =dJ,(&)P/E(F) =0. OOnsequenﬂy,
H (u—T;)%(3) €S(F) ng(@ \F) = XinX2 or Jp(z)lbi/(Xme) 0. Let T,=

(T, | X, )X20%s (Ti, «,T, ). Then T’ ig a commuting n—tuple of closed operators. If
§ is a mapping : from X /X, into X4/ (X1N Xa): @/ Xa=(w1+2a)/ Xa—>w1/ (X1 Xa),
then TF =8 T,8. By[1] Theorem 2.1, ¢(T%) = (F)co (T| X U o(T|X1N X3)
€\ @. Since 2€G, we have 2E0(T). Hence there exists & such that J ()P =
2?«’(»/(X1ﬂXz)tm"lh/(Xlﬂ X Lot §=0/(X1N Xy). Then J,(z)p—s €A°[v(z),
X1NX,] and J,(2)p/E(F) = lpi/@@(F) W/ E(F) =i, Thus 2€p(T*P) is obtained.
Since 2 i an arbitrary point of ¥, we have o (T8 CC"\F ‘

Propos:ttlon 2 12. Let T= (Ti, wor, I')  possess - spectral capacity &. Suppose

F Gﬁ’ (€") and {G4}r, is an open cover of F. Then &(F)C E E(@G,).

Pfroof Choose' §,€ p(Ti) Set a;=(&— T Dt and g= = (@1, ***, @). Then g is

decomposable and &4(F) =& (<§ ———) ﬂC") for each F & .Z1 (@") With the help of
[8] §2 Theorem, we have '

£ =&{(¢-%) ne )y @@d((s~g7ncn))=:zl e@).

Proposition 2.13. Let T'= (T4, -+, T,) possess speciral capacity &. Then
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(1) T'; possesses spectral capacity & F—>& (@x XF X x@) for any 7;
@) SF)=n {2 [éai(Dh) ﬂ(fz(Dm) N NE(Dw)] IFCU (D15>< » X Dna); }Dux

e+ X Dy; 48 @ polydisc in < for any FEF (@“)
Proof (1) Obvious. - :
(2) In view of Prop091b1on 2, 12, & (F) is contamed in the rlght side of the

equality. If # belongs to the right side, then o (7, ) =N {,ﬂ Dy X o+ X Dyy| for any
. . =1 )
U Dy X o+ X Dy F } =F. Therefore € &'(F)and the equality is obtained.

=1 . , '
Definition 2.14. Let T= (T4, -+, T\)be a commuting n~tuple of closed operators.

Suppose for any open cover {G}iLy of &, there are X;€Inv(T), 1< j<m, such that
o(T|X;) ©Gy for each j and X =ﬁ X ;. Then T s called to have the spectral decompo~
=] R . _‘

siton property (abbrev. SDP). v

Theorem 2.15. Suppose T'= (T, -+, T,) has SDP. Then T has SVEP.

Proof We have to show H#[A({z}, X) J1=0 for each z€C, p=0, «, n—1,
Suppose 2E€U X+ XU,, $€A?[z, AU, X)] and Jap=0. For any fixed &€
p(Ts) NC, 1<i<m, if there is ¢ suoh that z;=¢;, then z= (2, *, 2.) Ep(T) and
H[A({z}, X ), J1=0 by Proposition 1.4, If for any 4, %%&;, then there exist open

sols Dy, D} in € such that giEch:DicD CD;Cp(Tg) \U;. Set G;= e XDyx e X
C Gy ——Cx X DX %C, G = U G; and @& = U @,. We choose another open set
¢=1 .

V; such that z,,EV;CVCU‘ and V= V1>< +X V. Then U\GY, C"\(VUG“) and
{@}}-y is an open ‘cover of €. Hence there are X4, X, ¥, aA<j<n) € Inv(T)
such that o(T| X,) CU\Gr‘1 a(Tng)c:C”\ (VUGY and cr(T] Y@, 1<j<n.
By the prejection property, we have o (T;| Y ;) =D;. Since D; na(T;) qS, Y ; must
be {0}. Obviously & Ew;(U\G*). Then &€ p(T,|Y;) sinee -

_ o (T4 X o) =i (0 (T X)) Sy (U\G*). . : '
In the same way, we have &€ p(T;| X3). Thus X =X+ X4, X;ER(T). It is easy.
to prove &€ p(T;| X1 A X,). Then X3 N X2€ R(T|X4). By the proof of Proposition
2.4, o(I*)co(T| XU (T|X1NXy). It is ‘not difficult to prove o (T;| XN Xs)
cU;. The result is o (T*) o (T | X4) Ua(TIXiﬂXQ)CU Hence cr(w )C 1

&i—
By Theorem 2.1 and Remark 2.1 of [4] , We have

P A(U, X/Xy), T2 B4 (2 =g X/Xa)a]=0. |
Since J i/ X 3=0, there exists g€ Az, A(U,; X/X,)] such that Jp1@=10/Xq. Lot
9/ Xs=9. Then Pr=ip—Jp1p € A?[7, A(U, X)]. Sinoe o(T'|Xa) NV =¢, we have
pE AP g, _{i(V, X,)] such that ¢*=J, ;0. Thus y=J,_1(p+¢) and H?[4 ({z},
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X), J] =0 is obtained.

Theorem 2.16. Suppose T~ (T4, -, Ta) has SDP. Then for any FeFz (€,
X (F)ER(T) and for any compaot set Foin C, T Xz(F)(j=1,2, -, n) are
bounded.

Proof Ohoose &€ p(Ts), 1<é<n. 'For any zEF, there exist polydisos D, D'
such that & D*cD'c D€\ F and p(7%)\Di%¢. In a way similar to the proof of
Theorem 2. 15, we have X;E R(T'), j=1,2, such that &€ p(Ti| X)), 1<i<<n, j=1,
2, and o(T| X4) C@”\{z}, o(T|X,)c D For any € Xp(F), o=a-+2s. Let U=
DN (@"\1—)1). Since € X5(F) and FNU =, there exists y*EA"* [\ Jdz, &=(U,
X)] such that tw=(J@I)P*. Because UNo (1| Xs) =, there is another form
Yo € A2z Udz, O=(U, X)] such that fmy=(J @)Y, Set Yi=y—ya. Then fa;=
(J®B) i}, Since o (TH)co(T| X)) Uo(T|X1NXs) D', there is g€ A [z dz,
€=(U, X/X,)] such that }/X;=(J@3)@. If p=p/X;, then ="~ (JDI)p€
A1z Ydz, C=(U, X)] and (J@B)=ie,. Multiplying suitable O“—scalar

functions 6; and 85, We have a;=iw;— (J@B)0hE A [ Udz, Or(D, X1, j=1, 2.

1y —1)n (LY 1"
Thgs(%.) [ 7@ (~rampdes p o N = (5 ) | 7@ (= 1wrades Ao Nt
%2, Where x =+, Since a;EXT(F)and DN F =, we have

2m JTf@( 1)y des A+ A dzw=0.

Therefore w,€ Xy and o=+, X 4. Since @ iy arbitary in X +(F), we have
Xp(F)c X, Let X, denote X;. Then X (F) < rlX It is obvious that N X,€E
. 2E€

X 7(F). Therefore Xz(F)= X, is a closed invariant space of T. Because for any
2€F, &£€p(Ti| X,), & must be contained in p(T | Xz(F)). Thus Xp(F) ER(T) is
obtained. :

If F is compact in €", then X ,(F) < ﬁ Dy, by Proposition 1. 14. The restriction

T:| Xp(F) is closed and defined on Banach space X,(F), it must be bounded by
colsed graph theorem, :
Theorem 2.17. Lot T = (T4, -+, T.) have SDP. Suppose f; is an analytic function
on a neighbourhood of o(T), 1<j<m. Then f(T) = (fi(T), -+, fu(T)) has SDP.
Proof Suppose {G;}}.; is an open cover of €™ Then {f*(Gy)}}, is an open
cover of o (T"). Using the same method as in the proof of Theorem 2.16, we can find

k
X;€R(T), 1<j<k, such that X=§1 X; and o(T'|X;)<f2(Gy). Consequently

X;€Inv(f(T)) and f( T)| X;=f(T| X;). Therefore
o(f(| X)) =o(f(T| X)) =floT|X))f(fE)) =6 1<j<bh.
By definition f(7") has SDP.
In closing, I should like to express my appreciation to Professor Chang
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