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ON THE CONSTRUCTION OF SIMPLE GROUPS
OVER F ORMALLY REAL FIELDS

OHEN OHONHU (l‘)‘f ﬁ’ Py

.- Abstraet | |
The problem of classffying the semi—simple a.lgebraic groups defined over R is reduced -
~ to the ‘problemi of finding all admissible (R)-indices (i.e. the Satake diagrams). In this
.- paper, by a s1m11ar way as in the constructlon of Chevalley groups and the tw1sed groups, A
for all adm1s51b1e (R)—mdmes (except two ‘indices” given in table IT"), a- umform o
construction of simple groups of adjoint type defined over formally. real fields is given.
Moreover, the quasi~Bruhat [decomposition of such groups is given also in this paper.
'Thus a uniform proof of the existence of simple algebraic groups of adjoint type defined

over R is given.

The proof of the existence of semi—simple algebraic groups defined over an
algebraically closed field K for all p0551ble types of simple root system was given by
C. Chevalley™,

SL{I+1, K) are simply connected simple algebraic groups defined over K of
type 4, and PSL(1+1, K) are adjoint groups of type A;. Groups of type B, Ci. D,
can be obtained in similar ways. A group of type G can be constructed explicitly, as
the automorphism group of 8-dimensional Cayley algebra. Groups of types 4, Hs,
B, Hg can be treated in gimilar ways.

0, Chevalley™ gave a uniform construction of the groups of adjoint type over
K for all irreducible simple root systems (This of course presupposes the existence
theorem for simple Lie algebras over C). Thus C. Chevalley™ gave a uniform proof
of the existence of simple algebraic groups defined over K (adjoint type) for all
possible types 4—@G.

In C. Chevalley [1], expose 23, there is a construction of a simply connected
group of any given type, provided some group of that type already exists.

For a given root system, we denote by I the lattice with Lo LCLy where Iy
and L; are the roots and the weight lattices respectively. R. Steinberg™ gave a
. uniform proof of the existence of semi-gimple algebraic groups defined over K, of
which global roots and characters are Ly and L respectively.
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Using Weil’s theorem, an existence proof for a reductive group with given root:
datum is given by M. Demasure and A. Grothendieck™.

‘The classification of semi-simple algebrale groups. deﬁned over perfect field &
is considered by J. Tits™ and I. Satake®, S - C '

" The problem of classifying the semi-simple algebraic groups defined over & is
reduced o the problem of finding the admissible: (k)-indices of semi-simple
algebrai¢ groups defined over % and all possible semi-simple anisetropic kernels
for a given admissible (k)~index. J. Tits™ enumerated all -possible admissible
(k)~indices when £ is R(real numbers ﬁeld), p ( p—adlc ﬁelds), and n (number
fields). . '

For each admissible (R)-index of types 4, B;, O, D; J. Tits'™ gave a clagsical
group which is identical with the simple algebraic group defined over R with such
index. For each admissible (R)—index of types Gs, Fi, Hs, E;, H; (except certain
indices, for example, the index E VI, i.e., B3, in[5]), J. Tits™ constructed the
simple-algebraic group defined over R with such index by means of Cayley algebra,
Jordan algebra, associative division algebra, division Cayley algebra.

In this paper, by a similar way as in [2, 8, 9], for all possible admissible
(R)-indices (except two indices given in the toble II'), a uniform construction of
simple groups of adjoint type over formally real.fields is.given. Thus for all
possible admissible (R)-indices, a uniform _proef of the exigtence of simple algebraic
groups of adjoint type defined over R is given. .

‘We shall use the contents and notations in [7, 10] in our paper.

Obviously, all admissible (R)-indices are the Satake dlagrams (B, 0), Where B
(denoted by II in our paper) is a simple root system of a simple Lie algebra L over
C and @ is a Cartan involution™™), We denote by @ the root system with the
fandamental system II. Olearly, we have 6(&)=@. For each r&€®, we define

r=—@(r) and ,,~'=__%_(,,~+{~) (The notation ¢ in our paper is the notation 7 in [10]).

We can define an ordering on @ such that #'>0 for each positive root r (#>0).

We define 1°={a € II |a= —a} and ®°={a € D|a= —a}. Clearly, II° is a subset
of II consisting of all simple roots which correspond to the black nodes in the
Satake diagram (II, ) and @° is a root system with the fundamental system II°,
Furthermore, we define II*=II\II® and ®*=®\@°, and we define

Dy ={r EQ*|r=r}, By ="\ By, Oypp={r EPyy|r+7r €D},
Diio=D11\Pipp, Pio={r+7|rEDis}, Dio= D1\ Dy

Proposition 1. . For each Satake diagram (II,§) there ewist Ohefudlly basis
Co=1{h,, r€Il; ¢, rED} of L and an involutive automorphism p, of L such that
poler) =Ker, 1ED, ¢, €0y, k=31 which satisfies conditions (4), k=1 if
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r €Dy Pugy bip=—1 ’bf r € Dy,

Proof It follows from the properties of Satake diagram that there exist a
Ohevalley basis 0= {h,, r EII; &,, r ED} of L and an involutive automorphism p,
of L such that ps(e,) =Fer, rED, &, 6:C€Ch, F,=+1. Lot e,=une,, rED, ¢,€0,,

= %1, By a similar argument as in 18.6.2 of [7] (or Lemma 2,1 of [9]), we can
ohoose the appropriate %, such that pe(e,) =kser, rED, k.= +1 which satisfies the
condition (A). It follows from p. 58 of [7] that Cy=[h,, rE1l; e, rED} is a
Qhevalley basis of L. :

. We assume that K is a field of charactenstm p%2. Let f be a non—“orwxal
involutive automorphism of K. We write #=1(¢) for each ¢€K and we define a
map o for.all r€P and :€K by o(a®)) =2r(k?), where x,(¢) =exp(tad e,) and
@7 (ket) = exp(hiade;). It is eagily verified that the map o can he extended to an
involutive-automorphism o of the Ohevélley group

c TS L G=L(K)=Xa(t), rED, tEK D,

"We define Ut={uc Ulou=u}, Vi={0 €V |ov=0} and G*=<U*, V*). Olearly,
G is determlned by the Satake d1agram (II #) and K, f, so we denote by L, 6;
K , f) the group G~ ‘

" 'We shall define some notations and terminology which will be used.
I If r €Dy X1(2) =zv,(t), teK,—-{teK[t-k,t}, Wi=W,,
Niw) =n,(w), u€ K=K \{0}, B2 (0) =hy(v), vEKY={v €K |o=7}\{0},
a. If r € Pyap: X7 (t) =2,(H)ar () ; tE K=K, Wi=1w,wr,

N2 (w) =n,(wWne(u), €K7 =K\ {0}, b (v) =k (0)hr(v), vEKY=K"=K\{0}.

IIb. If Te@nb: X}(t) =m,(t)wf(5)w,+;(———é— Nyffii), tEK,-‘—‘K, W71~=w¢+7,

N (W) =npsr (W), Y€Kz, B(0) =hy(0)lr(v), v €KY =K\{0}.
Furthermore, we define W=<W73;, r&®*), N*={Ni(w), hi(v), rE€D, u€ K},
vE K} > and H*=N*1 H. We denote by @* the positive root system contammg i}
and denote by &~ the negative root system {—r |r €D},
The following proposition is easily verified.
Proposition 2. (a) Let » € D**=D* N D* and t € K. Then X1(t) €U, (b) Each

element u of U* has an unique expression in the form

m _ : .
U=H.X'¢<t‘)) 9",-6@*"‘={¢Ed5*+|q'<o"}, t;GK:‘, 'I;=1’ 2) °rey, My, PR E <0’m

‘We define J; (u) =2y and J (w) ={ry, rg, ***, u}.

It is clear that similar results hold for ¥* in ferms of negative roots.
- Proposition 8. (a) HcN'CG* and NY/H'=W*={W?E, rEII% WL, where
Wi=Lw,, a CII°YNW?, (b) Let r D" and v € K. Then hi(v) € H*.

Proof For each r&®@*\Dyy,, we have Ni(u)=Xi(w) Xi(—~uw)Xi(u), u€K?:,
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Since r+r&®, we have Ni(u) € G, and hl(s) EGY, fuéK*’

Clearly, the image of N}(w) under the natural homomorphism from N onto W
is just Wt for r € 9%, u€ K, so we have N'/H*=W?. It follows from the properties
of Satake diagram that W=<{W3, r € II*, W, SO

For all r €D* /Dy, the statement b is obvious by the stabement 1 By a similar
argument as in 13.7.2 of [7] (cf. the case in which J has type As), we have
ht (fv) € H! for all r EcDm, ) EK since J = {r, r, r+r} has type 4y It follows that

cNic@r. . : :

Let Nt denote the element Ni(£,), & be a fixed element of K. A

We define Gy =<, (1), s €D°, t & K; HY, Y*=G*NG, and B'=Y*U1,

Proposition 4. Let y&Y?, ucU:, o€V and nEN Then yuy*cUl,
yoy €V and nyn €Y1,

Proof Suppose r ED* and & D°, If or - gaG@ i, 7 bemg a pair of positive

integers, then we have ir+ ja € d** since o =-2- (a+a)=0. Thus it follows from

Chevalley’s fcommutator] formula that yuy €U Similarly, we have yuy *€V™.
Suppose w&W?* and a€®’. Then we have (w(«))'=0. Thus it follows from
Proposition S(a) that nyn™* €Y.

By Proposition 4, we have the following proposition immediately.

Proposition §. Y*U*=U* Y* and B* is a subgroup of G1

. For each r & @*, ‘we deﬁne

() ={a€@*|s'=7w', h=1, 2, or JZL_}

and I;L(/I"):{SGI(’)") l8<§}. If Ii(’r> ={’I'1, Ta, ***, Tn}; we deﬁne X!‘(T> '—:3.—:]1; X},(t;),v

HEK,, T=_(t, ts, -, t,) and D(T) =t;t;+tata+++++tuts. The following lemma is
easily verified.

Lemma 1. Suppose r S II*. Then I(r)={scd**|Wt (s) €D},

For each r&II* there exists a Satake diagram (I, #) whose R-rank ig
equivalent to one such that I(r) =@, =@; N D; where &= {36525,].975= —s},D, being
the root system with fundamental system II,,and @} is the positive root system of
D, containing II,. . '

All Satake diagrams whose R-rank is equivalent t0 one are given in table I.

Lemma 2. Suppose r EII*, I;(r) ={rs, 79, *++, 7uy and D(T)#0, TEK, X K,,
Koo X K, Then X (1) =X, (THNLX (T")y, y&€¥*, T*, T"E K X K, %+ X K, .

Proof We shall consider the cases 1-6 given in table 1 separately.

Case 1. We have I(r)=Is(r)={r} (r=r) and X_(T) = Xir(ti) = w_,(tl,) b=
1€ K,. SinceD(T) #0 we have #;=¢+0, so we have
X o(T)=a,(8 1)h (=t )@ (t7) = -X (T*)NlX,\T*’)y,

e ——— s
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by 6, 4.4 of [7], where y=h(—%)EY?, n=NLEN, T*=("), T"=(0) €K,,

~1), | - | | -

Oase 2. We have I(r)={r, r}, Li@@)={r}(r+r) and X_,(T)=X1,(t)
=a_,(t)w_5({), T= (ti), tieK Smce D(T)-,-EO we have t=1%,%#0, so by 6.4.4 of
[7] we have -

X_(T) ==w,(t"1)a*r(t‘1)h (- t‘i)h-(zf 1) n,n—w,(t 1)w;(t"1), =X, (T*) N:X, (T*')y, |
where : : ‘ L ‘
Y= (= )l (—8) €7, myny= NN, T (8, %= (1) € Ko Er=1).

Case 3. We have I(r)={r=ri=@s—@s, Ta=@s—@s, T1=01—Ps, Ta=@1—Ps},

I (fr) {r1, ra}. We write ay=@;— @, as=g@s— @ By 4.1.2, of [7] we have
Ny, o= N—r.,r. Noyorn=01, Nopyr,=N_;p,00=Noyyr, =0,
N wi-n=N_rn=Nry-0.=0s Nry-n=N_r, 0=N_s7=0a.
Since p, is an involutive automorphism of L., we have —cacs= —ci63=1. We have
X (T)=X1L, () XL, (bs) =@y, (}1) ®5,(81) -, ($2) ®_7, (B2,
T=(t, ts), L€ K,, i=1, 2.

Since D(T) %0, we have T+ (0, 0). If either %, or #, is equal to zero the asser
tion is verified from case 2. Assuming #;%0 and tzséO by 5.2.2 and 6. 4 4 of ['7]
we have

X _ () =ar, BT br, ( — 37 0,07, FTD 2, (B1) @ ys (b2) B, (52)
= @7, GTY) b, (= 37) 07—y, (81) By, (b0) s ( = a1 80) @7y (B2) oy (CaF T E0) 7, (BTY)
=7, (t1l)h (=TT 178y, (@) 0y, (b) @7, (o) @, (BT Y1,
where d=t;— 0;65t7 sty and ¢y =, (— csl1 a)We, (04t1%s). Since D(T') 0, we have
d=17*D(T) #0. Thus we have
X _(T) =2, (ZI Dz, (— Zf:l) B, (87 Py, (— &) ey, (3) @7, (%9)
X &z, (— & gt a) @y, () yawr, E72 (y1),
where yy=2_a,( — 010" 3) 2o, (cad " ts). We write T*= (#;, £3) and T* = (¢/, £3'), where
tl—tiD(T) 1 t=1.D(T)™%, and £} =4y, {3’ =45. Finally we have
X o (T) =y, (817, (81) @r, (85) @7, (2) ey, (1) @, (B1) @0, (82 1 (85
= X5, (41) X7.(82) N7 X3, (4) X1, () y = X, (T*) N7 X . (T")y,
where y=/h(— 1)y, (—d)yzys and ngn, = NTE N*(§, —1). Since yEG and X_.(T),
X, (T, X,(T"), N:€ N*, we have y €Y,

By a similar argument, this lemma can be verified for other cases.

Henceforth we assume that K'=K,(n»/—1), where K, is a formally real field
(or ordered field) and f is the conjugation-of K. Thus if T#(0, 0,+++, 0) EK X K+«
% K, then D(T) +0. |

Lemma 8. Suppese r €1I*. Then the subset B BiN +B* is a subgroup of G*.

Proof COlearly, we have (B*)™*=pB! and (B'NiB')*=B'N!B'. In order to

prove that the subset is closed under multiplication, it is sufficient to show
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N}B'N;cB*U B*N:B'. By Lemma 1, if I;(r)={ry, ra, *-*, 7a}, each element b of B*
has an expression in the form b=X;.(T")uy,;, where s €Y, T'EK, X K, X -+ X
K, and u,&U* satisfies Niu Ni€U*. Suppose first 1'% (0, 0, :+, 0). Then
NIX, (TYNt=X_.(T), D(T) +#0. It follows from Lemma 2 that

NN NAX (T uys N = X (T)ulefs = X o (T%) NEX (T il
where u,=Nu,Nt €U, yi =Ny N: €Y and T*, T* and y are glven as in. Lemma 2.
By Proposition 4 wé have NiB*NicB'NIB'. . : : S

Suppose T'=(0, 0, +++, 0). Then we have. N:B'N 1cB1 The proof is complete

Using Lemmas, 1, 2, 3, we have the following lemma by a similar argument ag
wesd in 8, 1.5 of [7] - s '

Lemma4.. Suppose r €11* and'n & N*. Then BinB N} 131C BiaN 131 u BinB1

Theorem 1. Lot K =K (n/—1), K; being o forrmauy real ﬁeld Then the subset
B*N*B? is'a subgroup of G* and G*=BN'B*, -

Proof COlearly, we have (B*N'B')™*=B'N'B!, In order to prove that the
subset is closed under multiplication, it is sufficient to show B'n,B'n,B*C BN'B*
for each pair ny, ne€ N, By Proposition 8 we have ng=N:N%.-N} ny, where ;€ II*
$=1, 2, -, q' and Mo is an element.of N* whose image under the natural
homomorphism from N onto W belongs to W3. Thus we have n, €Y, s0 we have

BlniBifngBl=B1niBiN}.,N$,--~N¥qBI, & II*, 4=1, 2, +es, q.
By Lemma 4 we have. :
B'nyB'nyB'C (B'ny B B'ny N1, BY) B'NL, B BN}, B'C - C:BNB
Thus the subset BIN*B* is a subgroup of G1 Since B!, N*BN'B' we have G'=
BiNiB. The proof is complete.
By Theorem 1 we have : :
= ) Bw,B'= | UV, UY, Uy =U;NU, (n,ENY).

we Wt weW!

 This decomposition of G* into the double coset of B! is called the quasi-Bruhat
decomposition of G*. Clearly, the quasi-Bruhat decomposition of G* is the generalized

Bruhat decomposition of twisted groups and Chevalley groups.
Lemma 5, Let ry, r: € D* such that ri#re and ri%rs. Then there exists h(y) € H*
such that x(ry) =1, x(ra) #x(rs) or x(rs) =1, x(rs) #x(ra).

Proof We define s’=—%—($+§) for each s:E @ and denote by F the set {ry, ’)"2'}.,

‘We shall consider separately the different possibilities:

I. Suppose I(ry) #1I(ry): .

a. Suppose (¢}, r5) =0. Then we put A(x) =1L (2).

b. Suppose (74, r3) #0. (1) If FNDyy=@, then we put A(y) =hi(—1), where
¢ EF satisfies (¢, )=(, §), s€ F\{r}. (2), If there is a root r of F such that
1 ¢ Dyyp and F\{r} € P11, then we put h(x) =hi(—1). (3), If FCDyy,then we put
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h(x) = (=1).
II. Suppose I(rs) =I(ry):
a. Suppose FEDyy,. Then we put h(y) = AL, (571 (8+44/ ?I'))c
b. Suppose FC®Pyyy. Then we put
h(x) =k (@) h,(d2)BE(2), d=T+~/—1, p=ry+7s.
o. Suppose r; € Py and 19 € Py,. Then we put h(y) =hl,(—1).
It is easilly verified that ~(x) put above are the elements of H* as required.

Corollaray 1. . Let n, € N* such that weE Wh. Then there. ewists h(x) € H*

‘such that S e  nph()ngt=h(x") #h(x)
and x(«) =1 for all « € D°. '

Lemma 6. Suppose yEY* and y+I. Then there ewists uCU* such that
yuyut%1 or there ewists vEV™* such that yoy v 21,

Proof 'We assume that y € Z* where Z* is the centre of G*. Clearly, y has a
unique expression in the form y=ush(xo)n,u, where w CUNG, u€UZNG,
h(%o) €H and wEWo=<w,, a €D°). Obviously, for each a€®° there is h(y) € H?
such that ¥ (a) #1. Thus we have uy=u=1I. It is clear that if w1, then there is
r € D" guch that w(r) %, so we have y=h(xo). If 2(x) #1, then there exists » € &*
such that go(r) #1. We have a contradiction if y+ I. The proof is complete.

~ Henceforth we assume that B! is an arbitrary normal subgroup of G* such
that B+ {1}. For each r € ®* we define X1={X1(¢) |t € K,}.
- Lemma 7. There is a root * € D** such that R* N X 1.5 {1}, where
Xt={XL()|tE K}

Prroof It follows from Theorem 1 That there is # € B! such that #+1 and o has
an expression ®=bn,=uyn,, ODE B!, wEW?*, wcU?, yE€Y¥Y: We shall consider
separately the different possibilities.

I. Suppose w EW§. Then o=y, y1=yn, EYL

a. Suppose u+I. Then z,=hri(2) vhl(2) 2w '=uCR'NUY, @y=u+I, where
r=J3(%). b. Suppose #=1I. Then there is u€ R*NU*, u#I or vERNVY, vI by
Lemma 6. :

II. Suppose wg W§. Then @y =h(x)wh(x) e =h(x1)us € R* where k() is the
element of H* given in Corollary 1 and u, € U*. moreover, we have ’

| h(x) =h()h () *+1.

a. Suppose u;#I. Then we have u€ B*NUY, u1I by a similar argument as in
case 1, a. mentioned above. h. Suppose uy=1I. Then there exists » €P** such that
2i(r)#1. Then wu=h()Xi@®)h(L) 1 XI@)TER, (€K, Clearly, we have
uER'NU, ukl.

‘We may summarize the results mentioned above in a statement as follows
" there is u€ RN U*, u+I or there is v€ER'NV?, v 1.
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Weo assume that there exists u & R*NU* such that uI. Then
. J W) ={ry, ra, ++*, tu}, n=1. '
If n=1 lemma is established immediately in this case. Now we assume that n>1.
Lot ui=h(x)uh(x) *u™ where h(x).is the element of H* given in Lemma 5.: Then
wi€ERNU* and J () ={r}, s, *-+, rm} such that either r4~<rior ry=ri, ra~<rs.
Finally, after a finfte number'of the step used above we have
XL ERNXL, u*+1. :

Wo assume thab there exists v € R*\V* such that v#I. Then by a similar

argument used above we have X1.(3) =¢*E€R'NV?, £€ K*;a. Thus we have u'=
Niw'Nu€ R*(\ X7, u'+ I. This finishes the proof.

Theorem 2 Let K=K 0(\/—_ ), Ko being a formally real field. Then G1 is
simple.

Proof By Lemma 7 there is *€ &"* such that X%(¢) ERY, 1€ K. If o* ¢@m-
we put k() =hL(2), if r* € Duy, we putb h(x) =~ (2), ri=r*+r*. Clearly, we have
h(x) € RL. It follows from the properties of the Satake diagram that for each r€®*
there exists wCW?* such that yx(w(r))+#1. For an arbitrary ¢€K, we have

B(x) XX)h(x) 2 Xi(t)*=X(e), s=w(r), t=_T—2x(s)) %. It is clear that
X1(¢) ER' and X !cR'. We have X}ICR! gince n*Xin,= X3, n, €N It follows
that U< R and V< R?, so G* is simple C

We denote by N§ the subgroup generated by all elements of N which map to
the elements of W} under the natural homomorphism of N onto W. We define
= {r € I*|,+}. Clearly, II7 can be expressed in the form II{={r, ¢€I} where I
is a finite set. We define WY ={w,, €1}, w,=W3i, ¢€l.

Theorem 8. Let K=Ko(v/—1), K, being a formally real field. Then G has
a (B*, NY) pair.

Proof 'We shall verify that group G* satisfies the axioms BN. 1—-——-BN 5.

BN. 1: By Theorem 1 we have G*={B!, N*}» immediately. :

BN. 2: It is easily verified that B*) N'=N§ and N} is a normal subgroup of N*.

BN. 8: Obviously, we have N1/B*(\ N'=N*/Ni=W*/WixW?. | |
Such a WY ig generated by a set of elements w;, $€ I, wi=1I.

BN. 4: If n; is an element of N! which maps to w;, ¢€I under the natural
homomorphism from N onto W, then there is m&II7 such that n;=DN}h,
h€ H*., Thus we have BnBnB*C B'nnB' B'nB! for any element n of N* by
Lemma 4. |

BN. 5: Since NiXiNi=X1, ,¢€I, we have nB'n+# B

Theorem 4. Group G*=L(I, 6; C, f) is a simple algebraic group defined over
R and the admissible (R)—indew of G* és gust (1T, 9). _

Proof Clearly, G=L(C) is a simple algebraic group defined over C. The



i78 » : CHIN., ANN. OF MATH, . Vol. 8 Ser. B

~conjugation f of fiele'C .can be -extended a field automorphism f of G'. For each
2EG* we have f(2) €G*. Thus it follows from proposition I.I.I of [6] that G* is
defined over R. Then by Theorem 6 of [8], G* is an algebraic group defined over R.
It follows from Theorem 2 that G is a simple algebraic group defined over R. It is
@asily verified that the admissible (R)-index of G* is just (I, §).

Let K=K, (/ =1.), K, being a formally real field and Q) be the empty set.
The following statements are, edasily verified: . R

1. Suppose II°=@ (The all nodes of the Satake diagram .(II, §) are white).

Then GH=L(II, §; K,.f) is a twisted group®L. (K) or Chevalley group L(K,). It is
clear that for the index (II, §) the semisimple anisotropic kernel is equal to {I}.
Thus we have Y*= H* and -B*= HU?2, It follows that B*is a Borel éubgroup of G*.

II. Suppose II°+(@ (There are the black nodes in the Satake diagram (I, 8)),
Then G*=L(II, 6; K, f) may be interpreted as a generalized twisted group and
generalized Chevalley group;; It ig clear that for the index (II, #) the semisimple
anisotropic kernels which are not equal to {I} are econtained in Y2, Thus we have
Y1 HY H'cY?and B's H'U*. It follows that B* is not a Borel subgroup of G2,

.Let p be a p-adic field. In a similar ways as in this paper, for each admissible
{p)—index we can construct a simple algebraio group of adjoint type defined. over p
which has such an admissible (p)—index.

In table II. we give all Satake diagrams and all Satake diagrams which
correspond fo the groups of twisted type or Chevalley type.

Table I
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Table II (Satake diagrams)

A I O-w-o_.u.._-.o _....o
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All 00— @—e—0—0
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' i
!
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0-—-‘0—-...._..\
[ [ ( /Q Twisted type
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O Ot O @ — R @
' Chevalley type
0l 0—Q-—++—Q&=0
Ol &—0— 80— @&=0
. /.
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/0
Qrmrrm ] Twisted type
N
Q
o

Chevalley type
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(o]
EIr
O3~ OO0 —-0 Twisted type
‘\____’—’7
- e
EIY
St ee
- . ()
Ely
O B @ e @ — O
O :
Ev
000 O OO Chevalley type
, ®
EVI
0‘——0'——0-—0-—-—0_._0.
@
EVI '
Qr—= Q@@ —= § O
o
Evil '
0-—0——0—0—0-—0-—& Chevalley type
(4
EIX »
O Qe O @ e @ eem @ =)
r1
o—0=20—0 Chevalley type
Goao Chevalley typs
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