And the second

5 S. S. S. S. S.

and go to the second state of the second state of the

ON THE CONSTRUCTION OF SIMPLE GROUPS OVER FORMALLY REAL FIELDS

CHEN CHONHU (陈仲沪)*

At the second second second second Abstract

The problem of classifying the semi-simple algebraic groups defined over \mathbb{R} is reduced to the problem of finding all admissible (\mathbb{R})-indices (i.e. the Satake diagrams). In this paper, by a similar way as in the construction of Chevalley groups and the twised groups, for all admissible (\mathbb{R})-indices (except two indices given in table II'), a uniform construction of simple groups of adjoint type defined over formally real fields is given. Moreover, the quasi-Bruhat (decomposition of such groups is given also in this paper. Thus a uniform proof of the existence of simple algebraic groups of adjoint type defined over \mathbb{R} is given.

The proof of the existence of semi-simple algebraic groups defined over an algebraically closed field K for all possible types of simple root system was given by C. Chevalley^[1].

 $SL(l+1, \mathbb{K})$ are simply connected simple algebraic groups defined over \mathbb{K} of type A_l and $PSL(l+1, \mathbb{K})$ are adjoint groups of type A_l . Groups of type B_l , C_l . D_l can be obtained in similar ways. A group of type G_2 can be constructed explicitly, as the automorphism group of 8-dimensional Cayley algebra. Groups of types F_4 , E_6 , E_7 , E_8 can be treated in similar ways.

C, Chevalley^[2] gave a uniform construction of the groups of adjoint type over \mathbb{K} for all irreducible simple root systems (This of course presupposes the existence theorem for simple Lie algebras over \mathbb{C}). Thus C. Chevalley^[2] gave a uniform proof of the existence of simple algebraic groups defined over \mathbb{K} (adjoint type) for all possible types A-G.

In C. Chevalley [1], expose 23, there is a construction of a simply connected group of any given type, provided some group of that type already exists.

For a given root system, we denote by L the lattice with $L_0 \subset L \subset L_1$ where L_0 and L_1 are the roots and the weight lattices respectively. R. Steinberg^[3] gave a uniform proof of the existence of semi-simple algebraic groups defined over K, of which global roots and characters are L_0 and L respectively.

Manuscript received September 24, 1984.

^{*} Department of Mathematics, Xiangtan University, Xiangtan, Hunan, China.

Using Weil's theorem, an existence proof for a reductive group with given root. datum is given by M. Demasure and A. Grothendieck^[4].

The classification of semi-simple algebraic groups defined over perfect field k is considered by J. Tits^[5] and I. Satake^[6].

The problem of classifying the semi-simple algebraic groups defined over k is reduced to the problem of finding the admissible (k)-indices of semi-simple algebraic groups defined over k and all possible semi-simple anisotropic kernels for a given admissible (k)-index. J. Tits^[5] enumerated all possible admissible (k)-indices when k is \mathbb{R} (real numbers field), p (p-adic fields), and n (number fields).

For each admissible (\mathbb{R})-index of types A_l , B_l , O_l , D_l J. Tits^[5] gave a classical group which is identical with the simple algebraic group defined over \mathbb{R} with such index. For each admissible (\mathbb{R})-index of types G_2 , F_4 , E_6 , E_7 , E_8 (except certain indices, for example, the index E VI, i.e., $E_{7,4}^9$ in [5]), J. Tits^[5] constructed the simple algebraic group defined over \mathbb{R} with such index by means of Cayley algebra, Jordan algebra, associative division algebra, division Cayley algebra.

In this paper, by a similar way as in [2, 8, 9], for all possible admissible (\mathbb{R}) -indices (except two indices given in the toble II'), a uniform construction of simple groups of adjoint type over formally real fields is given. Thus for all possible admissible (\mathbb{R}) -indices, a uniform proof of the existence of simple algebraic groups of adjoint type defined over \mathbb{R} is given.

We shall use the contents and notations in [7, 10] in our paper.

Obviously, all admissible (\mathbb{R}) -indices are the Satake diagrams (B, θ) , where B (denoted by Π in our paper) is a simple root system of a simple Lie algebra \mathbb{L} over \mathbb{C} and θ is a Cartan involution^[10,11]. We denote by Φ the root system with the fundamental system Π . Clearly, we have $\theta(\Phi) = \Phi$. For each $r \in \Phi$, we define $\overline{r} = -\theta(r)$ and $r' = \frac{1}{2}(r+\overline{r})$ (The notation r' in our paper is the notation \overline{r} in [10]). We can define an ordering on Φ such that $r' \ge 0$ for each positive root r (r>0).

We define $\Pi^0 = \{ \alpha \in \Pi \mid \alpha = -\overline{\alpha} \}$ and $\Phi^0 = \{ \alpha \in \Phi \mid \alpha = -\overline{\alpha} \}$. Clearly, Π^0 is a subset of Π consisting of all simple roots which correspond to the black nodes in the Satake diagram (Π, θ) and Φ^0 is a root system with the fundamental system Π^0 . Furthermore, we define $\Pi^* = \Pi \setminus \Pi^0$ and $\Phi^* = \Phi \setminus \Phi^0$, and we define

$$\varPhi_1 = \{r \in \varPhi^* | r = \overline{r}\}, \ \varPhi_{11} = \varPhi^* \setminus \varPhi_1, \ \varPhi_{11b} = \{r \in \varPhi_{11} | r + \overline{r} \in \varPhi\},$$

 $\Phi_{11a} = \Phi_{11} \setminus \Phi_{11b}, \quad \Phi_{1b} = \{r + \bar{r} \mid r \in \Phi_{11b}\}, \quad \Phi_{1a} = \Phi_1 \setminus \Phi_{1b}.$

Proposition 1. For each Satake diagram (Π, θ) there exist a Chevally basis $C_b = \{h_r, r \in \Pi; e_r, r \in \Phi\}$ of \mathbb{L} and an involutive automorphism ρ_{θ} of \mathbb{L} such that $\rho_{\theta}(e_r) = K_r e_{\overline{r}}, r \in \Phi, e_r, e_{\overline{r}} \in C_b, k_r = \pm 1$ which satisfies conditions (A): $k_r = 1$ if

 $r \in \Phi_{11} \cup \Phi_{10}, k_r = -1 \text{ if } r \in \Phi_{1b}.$

The former the proves

Proof It follows from the properties of Satake diagram that there exist a Obevalley basis $\tilde{C}_b = \{h_r, r \in \Pi; \tilde{e}_r, r \in \Phi\}$ of L and an involutive automorphism ρ_θ of L such that $\rho_\theta(\tilde{e}_r) = \tilde{k}_r \tilde{e}_{\bar{r}}, r \in \Phi$, $\tilde{e}_r, \tilde{e}_{\bar{r}} \in \tilde{C}_b$, $\tilde{k}_r = \pm 1$. Let $e_r = \eta_r \tilde{e}_r, r \in \Phi$, $\tilde{e}_r \in \tilde{C}_b$, $\eta_r = \pm 1$. By a similar argument as in 13.6.2 of [7] (or Lemma 2.1 of [9]), we can choose the appropriate η_r such that $\rho_\theta(e_r) = k_r e_{\bar{r}}, r \in \Phi, k_r = \pm 1$ which satisfies the condition (A). It follows from p. 58 of [7] that $C_b = [h_r, r \in \Pi; e_r, r \in \Phi\}$ is a Chevalley basis of L.

We assume that K is a field of characteristic $p \neq 2$. Let f be a non-trivial involutive automorphism of K. We write $\overline{t} = f(t)$ for each $t \in K$ and we define a map σ for all $r \in \Phi$ and $t \in K$ by $\sigma(x_r(t)) = x_{\overline{r}}(k_r\overline{t})$, where $x_r(t) = \exp(tad e_r)$ and $x_{\overline{r}}(k_r\overline{t}) = \exp(k_r\overline{t}ade_{\overline{r}})$. It is easily verified that the map σ can be extended to an involutive automorphism σ of the Chevalley group

$$G = \mathbb{L}(K) = \langle x_r(t), r \in \Phi, t \in K \rangle.$$

We define $U^1 = \{u \in U | \sigma u = u\}$, $V^1 = \{v \in V | \sigma v = v\}$ and $G^1 = \langle U^1, V^1 \rangle$. Clearly, G^1 is determined by the Satake diagram (Π, θ) and K, f, so we denote by $\lfloor (\Pi, \theta; K, f)$ the group G^1 .

We shall define some notations and terminology which will be used.

I. If
$$r \in \Phi_1$$
; $X_r^1(t) = x_r(t)$, $t \in K_r = \{t \in K \mid t = k_r \bar{t}\}$, $W_r^1 = W_r$,
 $N_r^1(u) = n_r(u)$, $u \in K_r^* = K_r \setminus \{0\}$, $h_r^1(v) = h_r(v)$, $v \in K_r^{*'} = \{v \in K \mid v = \bar{v}\} \setminus \{0\}$,
IIa. If $r \in \Phi_{116}$: $X_r^1(t) = x_r(t)x_{\bar{r}}(\bar{t})$, $t \in K_r = K$, $W_r^1 = w_r w_{\bar{r}}$,
 $N_r^1(u) = n_r(u)n_{\bar{r}}(\bar{u})$, $u \in K_r^* = K_r \setminus \{0\}$, $h_r^1(v) = h_r(v)h_{\bar{r}}(\bar{v})$, $v \in K_r^{*'} = K^* = K \setminus \{0\}$.
IIb. If $r \in \Phi_{116}$: $X_r^1(t) = x_r(t)x_{\bar{r}}(\bar{t})x_{r+\bar{r}}\left(-\frac{1}{2}N_{r,\bar{r}}t\bar{t}\right)$, $t \in K_r = K$, $W_r^1 = w_{r+\bar{r}}$,
 $N_r^1(u) = n_{r+\bar{r}}(u)$, $u \in K_{r+\bar{r}}^*$, $h_r^1(v) = h_r(v)h_{\bar{r}}(\bar{v})$, $v \in K_r^{*'} = K \setminus \{0\}$.
Furthermore, we define $W^1 = \langle W_r^1$, $r \in \Phi^* \rangle$, $N^1 = \langle N_r^1(u)$, $h_r^1(v)$, $r \in \Phi$, $u \in K$.

Furthermore, we define $W^1 = \langle W_r^1, r \in \Phi^* \rangle$, $N^1 = \langle N_r^1(u), h_r^1(v), r \in \Phi, u \in K_r^*$, $v \in K_r^{*\prime} \rangle$ and $H^1 = N^1 \cap H$. We denote by Φ^+ the positive root system containing Π and denote by Φ^- the negative root system $\{-r | r \in \Phi^+\}$.

The following proposition is easily verified.

Proposition 2. (a) Let $r \in \Phi^{*+} = \Phi^* \cap \Phi^+$ and $t \in K_r$. Then $X_r^1(t) \in U^1$. (b) Each element u of U^1 has an unique expression in the form

$$u = \prod_{i=1}^{m} X_{r_i}(t_i), \ r_i \in \mathcal{P}_1^{*+} = \{ r \in \mathcal{P}^{*+} | r \leqslant \bar{r} \}, \ t_i \in K_{r_i}^*, \ i = 1, 2, \ \cdots, \ m, \ r_1 \leqslant r_2 \leqslant \cdots \leqslant r_m.$$

We define $J_1(u) = r_1$ and $J(u) = \{r_1, r_2, \dots, r_m\}$.

It is clear that similar results hold for V^1 in terms of negative roots.

Proposition 3. (a) $H^1 \subset N^1 \subset G^1$ and $N^1/H^1 \cong W^1 = \langle W_r^1, r \in H^*; W_0^1 \rangle$, where $W_0^1 = \langle w_{\alpha}, \alpha \in H^0 \rangle \cap W^1$, (b) Let $r \in \Phi^*$ and $v \in K_r^{*'}$. Then $h_r^1(v) \in H^1$.

Proof For each $r \in \Phi^* \setminus \Phi_{11b}$, we have $N_r^1(u) = X_r^1(u) X_r^1(-u^{-1}) X_r^1(u)$, $u \in K_r^*$.

Since $r \pm \tilde{r} \notin \Phi$, we have $N_r^1(u) \in G^1$, and $h_r^1(v) \in G^1$, $v \in K_r^{*'}$.

Clearly, the image of $N_r^1(u)$ under the natural homomorphism from N onto W is just W_r^1 for $r \in \Phi^*$, $u \in K_r^*$, so we have $N^1/H^1 \cong W^1$. It follows from the properties of Satake diagram that $W^1 = \langle W_r^1, r \in \Pi^*, W_0^1 \rangle$.

For all $r \in \Phi^*/\Phi_{11b}$ the statement b is obvious by the statement 1. By a similar argument as in 13.7.2 of [7] (cf. the case in which J has type A_2), we have $h_r^1(v) \in H^1$ for all $r \in \Phi_{11b}$, $v \in K_r^{*'}$ since $J = \{r, \bar{r}, r+\bar{r}\}$ has type A_2 . It follows that $H^1 \subset N^1 \subset G^1$.

Let N_r^1 denote the element $N_r^1(\xi_r)$, ξ_r be a fixed element of K_r^* .

We define $G_0 = \langle x_\alpha(t), \alpha \in \Phi^0, t \in K; H \rangle, Y^1 = G^1 \cap G_0 \text{ and } B^1 = Y^1 U^1.$

Proposition 4. Let $y \in Y^1$, $u \in U^1$, $v \in V^1$ and $n \in N^1$. Then $yuy^{-1} \in U^1$, $yvy^{-1} \in V^1$ and $nyn^{-1} \in Y^1$.

Proof Suppose $r \in \Phi^{*+}$ and $\alpha \in \Phi^0$. If $ir + j\alpha \in \Phi$, i, j being a pair of positive integers, then we have $ir + j\alpha \in \Phi^{*+}$ since $\alpha' = \frac{1}{2} (\alpha + \overline{\alpha}) = 0$. Thus it follows from Chevalley's commutators formula that $yuy^{-1} \in U^1$. Similarly, we have $yvy^{-1} \in V^1$. Suppose $w \in W^1$ and $\alpha \in \Phi^0$. Then we have $(w(\alpha))' = 0$. Thus it follows from Proposition 3(a) that $nyn^{-1} \in Y^1$.

By Proposition 4, we have the following proposition immediately.

Proposition 5. $Y^{1}U^{1} = U^{1} Y^{1}$ and B^{1} is a subgroup of G^{1} .

For each $r \in \Phi^*$, we define

 $I(r) = \left\{ s \in \Phi^* | s' = hr', k = 1, 2, \text{ or } \frac{1}{2} \right\}$

and $I_1(r) = \{s \in I(r) \mid s \leq \bar{s}\}$. If $I_1(r) = \{r_1, r_2, \dots, r_n\}$, we define $X_r(T) = \prod_{i=1}^n X_{r_i}^1(t_i)$, $t_i \in K_{r_i}, T = (t_1, t_2, \dots, t_n)$ and $D(T) = t_1 \bar{t}_1 + t_2 \bar{t}_2 + \dots + t_n \bar{t}_n$. The following lemma is easily verified.

Lemma 1. Suppose $r \in \Pi^*$. Then $I(r) = \{s \in \Phi^{*+} | W_r^1(s) \in \Phi^-\}$.

For each $r \in \Pi^*$ there exists a Satake diagram (Π_r, θ) whose \mathbb{R} -rank is equivalent to one such that $I(r) = \Phi_r^{*+} = \Phi_r^* \cap \Phi_r^+$ where $\Phi_r^* = \{s \in \Phi_r | s \neq -\bar{s}\}, \Phi_r$ being the root system with fundamental system Π_r , and Φ_r^+ is the positive root system of Φ_r containing Π_r .

All Satake diagrams whose R-rank is equivalent to one are given in table I.

Lemma 2. Suppose $r \in \Pi^*$, $I_1(r) = \{r_1, r_2, \dots, r_n\}$ and $D(T) \neq 0$, $T \in K_{r_1} \times K_{r_2} \times \cdots \times K_{r_n}$. Then $X_{-r}(T) = X_r(T^*)N_r^1X_r(T^{*\prime})y$, $y \in Y^1$, T^* , $T^{*\prime} \in K_{r_1} \times K_{r_2} \times \cdots \times K_{r_n}$.

Proof We shall consider the cases 1-6 given in table 1 separately. Case 1. We have $I(r) = I_1(r) = \{r\}$ $(r = \bar{r})$ and $X_{-r}(T) = X_{-r}^1(t_1) = x_{-r}(t_1), t_1 = t \in K_r$. Since $D(T) \neq 0$ we have $t_1 = t \neq 0$, so we have

 $X_{-r}(T) = x_r(t^{-1})h_r(-t^{-1})n_r x_r(t^{-1}) = X_r(T^*)N_r^1 X_r(T^{*\prime})y,$

by 6, 4.4 of [7], where
$$y = h_r(-t) \in Y^1$$
, $n_r = N_r^1 \in N^1$, $T^* = (t^{-1})$, $T^{*'} = (t) \in K_r$, $(\xi_r = 1)$.

Case 2. We have $I(r) = \{r, \bar{r}\}, I_1(r) = \{r\} (r \neq \bar{r}) \text{ and } X_{-r}(T) = X_{-r}^1(t_1)$ = $x_{-r}(t_1)x_{-\bar{r}}(\bar{t}_1), T = (t_1), t_1 \in K_r$. Since $D(T) \neq 0$, we have $t = t_1 \neq 0$, so by 6.4.4 of [7] we have

 $X_{-r}(T) = x_r(t^{-1})x_{\bar{r}}(\bar{t}^{-1})h_r(-t^{-1})h_{\bar{r}}(\bar{t}^{-1})n_rn_{\bar{r}}x_r(t^{-1})x_{\bar{r}}(\bar{t}^{-1}), = X_r(T^*)N_r^1X_r(T^{*\prime})y,$ where

$$y = h_r(-t)h_{\bar{r}}(-\bar{t}) \in Y^1$$
, $n_r n_{\bar{r}} = N_r^1 \in N^1$, $T^* = (t^{-1})$, $T^{*'} = (t) \in K_r$, $(\xi_r = 1)$.

Case 3. We have $I(r) = \{r = r_1 = \varphi_2 - \varphi_3, r_2 = \varphi_2 - \varphi_4, \bar{r}_1 = \varphi_1 - \varphi_4, \bar{r}_2 = \varphi_1 - \varphi_3\},\$ $I_1(r) = \{r_1, r_2\}.$ We write $\alpha_1 = \varphi_1 - \varphi_2, \alpha_2 = \varphi_3 - \varphi_4.$ By 4.1.2. of [7] we have

$$N_{r_1}, \ \alpha_1 = N_{-\bar{r}_3, r_1} = N_{\alpha_1, -\bar{r}_3} = c_1, \ N_{r_1, -r_2} = N_{-r_2, \alpha_2} = N_{\alpha_2, r_1} = c_2,$$
$$N_{-\alpha_1, -r_2} = N_{-r_3, \bar{r}_1} = N_{\bar{r}_1, -\alpha_1} = c_3, \ N_{\bar{r}_1, -\bar{r}_3} = N_{-\bar{r}_2, -\alpha_2} = N_{-\alpha_3, \bar{r}_1} = c_4$$

Since ρ_{θ} is an involutive automorphism of \mathbb{L} , we have $-c_2c_4 = -c_1c_3 = 1$. We have

$$X_{-r}(T) = X_{-r_1}^1(t_1) X_{-r_2}^1(t_2) = x_{-r_1}(t_1) x_{-\bar{r}_1}(\bar{t}_1) x_{-r_2}(t_2) x_{-\bar{r}_2}(\bar{t}_2),$$

 $T = (t_1, t_2), t_i \in K_{r_i} i = 1, 2.$

Since $D(T) \neq 0$, we have $T \neq (0, 0)$. If either t_1 or t_2 is equal to zero, the assertion is verified from case 2. Assuming $t_1 \neq 0$ and $t_2 \neq 0$, by 5.2.2 and 6.4.4 of [7] we have

$$\begin{split} X_{-r}(T) = & x_{\bar{r}_1}(\bar{t}_1^{-1}) h_{\bar{r}_1}(-\bar{t}_1^{-1}) n_{\bar{r}_1} x_{\bar{r}_1}(\bar{t}_1^{-1}) x_{-r_1}(t_1) x_{-r_2}(t_2) x_{-\bar{r}_2}(\bar{t}_2) \\ = & x_{\bar{r}_1}(\bar{t}_1^{-1}) h_{\bar{r}_1}(-\bar{t}_1^{-1}) n_{\bar{r}_1} x_{-r_1}(t_1) x_{-r_2}(t_2) x_{\sigma_1}(-\sigma_3 \bar{t}_1^{-1} t_2) x_{-\bar{r}_2}(\bar{t}_2) x_{\sigma_2}(\sigma_4 \bar{t}_1^{-1} \bar{t}_2) x_{\bar{r}_1}(\bar{t}_1^{-1}) \\ = & x_{\bar{r}_1}(\bar{t}_1^{-1}) h_{\bar{r}_1}(-\bar{t}_1^{-1}) n_{\bar{r}_1} x_{-r_1}(d) x_{-r_2}(t_2) x_{-\bar{r}_2}(\bar{t}_2) x_{\bar{r}_1}(\bar{t}_1^{-1}) y_1, \end{split}$$

where $d = t_1 - c_1 c_3 \bar{t}_1^{-1} t_2 \bar{t}_3$ and $y_1 = x_{\alpha_1} (-c_3 \bar{t}_1^{-1} t_2) x_{\alpha_3} (c_4 \bar{t}_1^{-1} \bar{t}_2)$. Since $D(T) \neq 0$, we have $d = \bar{t}_1^{-1} D(T) \neq 0$. Thus we have

$$\begin{aligned} X_{-r}(T) = & x_{\bar{r}_1}(\bar{t}_1^{-1}) h_{\bar{r}_1}(-\bar{t}_1^{-1}) x_{r_1}(d^{-1}) h_{r_1}(-d^{-1}) n_{\bar{r}} n_r x_{-r_1}(t_2) x_{-\bar{r}_2}(\bar{t}_2) \\ \times & x_{-\bar{r}_1}(-d^{-1}t_2\bar{t}_2) x_{r_1}(d^{-1}) y_2 x_{\bar{r}_1}(\bar{t}_1^{-1}(y_1), \end{aligned}$$

where $y_2 = x_{-\alpha_1}(-c_1d^{-1}\bar{t}_2)x_{-\alpha_2}(c_2d^{-1}t_2)$. We write $T^* = (t_1^*, t_2^*)$ and $T^{*\prime} = (t_1^{*\prime}, t_2^{*\prime})$, where $t_1^* = t_1D(T)^{-1}$, $t_2^* = \bar{t}_2D(T)^{-1}$, and $t_1^{*\prime} = t_1$, $t_2^{*\prime} = t_2$. Finally we have

$$\begin{aligned} X_{-r}(T) &= x_{r_1}(t_1^*) x_{\bar{r}_1}(\bar{t}_1^*) x_{r_2}(t_2^*) x_{\bar{r}_2}(\bar{t}_2^*) n_{\bar{r}} n_r x_{r_1}(t_1^{*\prime}) x_{r_1}(\bar{t}_1^{*\prime}) x_{r_3}(t_2^{*\prime}) x_{r_1}(\bar{t}_2^{*\prime}) y \\ &= X_{r_1}^1(t_1^*) X_{r_2}^1(t_2^*) N_r^1 X_{r_1}^1(t_1^{*\prime}) X_{r_2}^1(t_2^{*\prime}) y = X_r(T^*) N_r^1 X_r(T^{*\prime}) y, \end{aligned}$$

where $y = h_{\bar{r}}(-t_1)h_{r_1}(-d)y_1y_2$ and $n_{\bar{r}}n_r = N_r^1 \in N^1(\xi_r - 1)$. Since $y \in G_0$ and $X_{-r}(T)$, $X_r(T^*)$, $X_r(T^{*\prime})$, $N_r^1 \in N^1$, we have $y \in Y^1$.

By a similar argument, this lemma can be verified for other cases.

Henceforth we assume that $K = K_0(\sqrt{-1})$, where K_0 is a formally real field (or ordered field) and f is the conjugation of K. Thus if $T \neq (0, 0, \dots, 0) \in K \times K \dots \times K$, then $D(T) \neq 0$.

Lemma 3. Suppose $r \in \Pi^*$. Then the subset $B^1 \cup B^1 N_r^1 B^1$ is a subgroup of G^1 .

Proof Clearly, we have $(B^1)^{-1} = B^1$ and $(B^1N_r^1B^1)^{-1} = B^1N_r^1B^1$. In order to prove that the subset is closed under multiplication, it is sufficient to show

 $N_r^1 B^1 N_r^1 \subset B^1 \cup B^1 N_r^1 B^1$. By Lemma 1, if $I_1(r) = \{r_1, r_2, \dots, r_n\}$, each element b of B^1 has an expression in the form $b = X_r(T')u_ry_1$, where $y_1 \in Y^1$, $T' \in K_{r_1} \times K_{r_2} \times \dots \times K_{r_n}$ and $u_r \in U^1$ satisfies $N_r^1 u_r N_r^1 \in U^1$. Suppose first $T' \neq (0, 0, \dots, 0)$. Then $N_r^1 X_r(T') N_r^1 = X_{-r}(T)$, $D(T) \neq 0$. It follows from Lemma 2 that

$$\begin{split} N_r^1 b N_r^1 &= N_r^1 X_r(T') u_r y_1 N_r^1 = X_{-r}(T) u'_r y'_1 = X_r(T^*) N_r^1 X_r(T^{*\prime}) y u'_r y'_1, \\ \text{where } u'_r &= N_r^1 u_r N_r^1 \in U^1, \ y'_1 = N_r^1 y_1 N_r^1 \in Y^1, \text{ and } T^*, \ T^{*\prime} \text{ and } y \text{ are given as in Lemma 2.} \\ \text{By Proposition 4 we have } N_r^1 B^1 N_r^1 \subset B^1 N_r^1 B^1. \end{split}$$

Suppose $T' = (0, 0, \dots, 0)$. Then we have $N_r^1 B^1 N_r^1 \subset B^1$. The proof is complete.

Using Lemmas, 1, 2, 3 we have the following lemma by a similar argument as uesd in 8, 1.5 of [7]

Lemma 4. Suppose $r \in \Pi^*$ and $n \in N^1$. Then $B^1 n B^1 N_r^1 B^1 \subseteq B^1 n N_r^1 B^1 \cup B^1 n B^1$.

Theorem 1. Let $K = K_0(\sqrt{-1})$, K_0 being a formally real field. Then the subset $B^1N^1B^1$ is a subgroup of G^1 and $G^1 = B^1N^1B^1$.

Proof Clearly, we have $(B^1N^1B^1)^{-1} = B^1N^1B^1$. In order to prove that the subset is closed under multiplication, it is sufficient to show $B^1n_1B^1n_2B^1 \subseteq B^1N^1B^1$ for each pair $n_1, n_2 \in N^1$. By Proposition 3 we have $n_2 = N_{r_1}^1N_{r_2}^1\cdots N_{r_q}^1\tilde{n}_0$, where $r_i \in \Pi^*$ $i=1, 2, \cdots, q$ and \tilde{n}_0 is an element of N^1 whose image under the natural homomorphism from N onto W belongs to W_0^1 . Thus we have $\tilde{n}_0 \in Y^1$, so we have

 $B^{1}n_{1}B^{1}n_{2}B^{1} = B^{1}n_{1}B^{1}N_{r_{1}}^{1}N_{r_{2}}^{1}\cdots N_{r_{q}}^{1}B^{1}, r_{i} \in \mathbb{I}^{*}, i = 1, 2, ..., q.$ By Lemma 4 we have

 $B^{1}n_{1}B^{1}n_{2}B^{1} \subseteq (B^{1}n_{1}B^{1} \cup B^{1}n_{1}N_{r}^{1}B^{1}) B^{1}N_{r_{1}}^{1}B^{1} \cdots B^{1}N_{r_{d}}^{1}B^{1} \subseteq \cdots \subseteq BNB.$ Thus the subset $B^{1}N^{1}B^{1}$ is a subgroup of G^{1} . Since B^{1} , $N^{1} \subset B^{1}N^{1}B^{1}$ we have $G^{1} = B^{1}N^{1}B^{1}$. The proof is complete.

By Theorem 1 we have

 $G^{1} = \bigcup_{w \in W^{1}} B^{1} n_{w} B^{1} = \bigcup_{w \in W^{1}} U^{1} Y^{1} n_{w} U^{1-}_{w}, \ U^{1-}_{w} = U^{-}_{w} \cap U^{1}, \ (n_{w} \in N^{1}).$

This decomposition of G^1 into the double coset of B^1 is called the quasi-Bruhat decomposition of G^1 . Clearly, the quasi-Bruhat decomposition of G^1 is the generalized Bruhat decomposition of twisted groups and Chevalley groups.

Lemma 5. Let $r_1, r_2 \in \Phi^*$ such that $r_1 \neq r_2$ and $r_1 \neq \overline{r_2}$. Then there exists $h(\chi) \in H^1$ such that $\chi(r_1) = 1, \chi(r_2) \neq \chi(r_1)$ or $\chi(r_2) = 1, \chi(r_1) \neq \chi(r_2)$.

Proof We define $s' = \frac{1}{2}(s+\bar{s})$ for each $s \in \Phi^*$ and denote by F the set $\{r_1, r_2\}$. We shall consider separately the different possibilities:

I. Suppose $I(r_1) \neq I(r_2)$:

a. Suppose $(r'_1, r'_2) = 0$. Then we put $h(\chi) = h^1_{r_2}(2)$.

b. Suppose $(r'_1, r'_2) \neq 0$. (1) If $F \cap \Phi_{11b} = \emptyset$, then we put $h(\chi) = h_r^1(-1)$, where $r \in F$ satisfies $(r', r') \geq (s', s')$, $s \in F \setminus \{r\}$. (2), If there is a root r of F such that $r \notin \Phi_{11b}$ and $F \setminus \{r\} \in \Phi_{11b}$, then we put $h(\chi) = h_r^1(-1)$. (3), If $F \subset \Phi_{11b}$, then we put

II. Suppose $I(r_1) = I(r_2)$:

a. Suppose $F \not\subset \Phi_{iib}$. Then we put $h(\chi) = h_{r_s}^1 (5^{-1} (3 + 4\sqrt{-1}))_{s}$.

b. Suppose $F \subset \Phi_{11b}$. Then we put

 $h(\chi) = h_{r_1}^1(d) h_{r_2}^1(d^{-3}) h_r^1(2), \ d = I + \sqrt{-1}, \ r = r_1 + \overline{r_1}.$

c. Suppose $r_1 \in \Phi_{11b}$ and $r_2 \in \Phi_{1b}$. Then we put $h(\chi) = h'_{r_1}(-1)$.

It is easily verified that $h(\chi)$ put above are the elements of H^1 as required. Corollaray 1. Let $n_w \in N^1$ such that $w \notin W_0^1$. Then there exists $h(\chi) \in H^1$

such that $n_w h(\chi) n_w^{-1} = h(\chi') \neq h(\chi)$ and $\chi(\alpha) = 1$ for all $\alpha \in \Phi^0$.

Lemma 6. Suppose $y \in Y^1$ and $y \neq I$. Then there exists $u \in U^1$ such that $yuy^{-1}u^{-1} \neq 1$ or there exists $v \in V^1$ such that $yvy^{-1}v^{-1} \neq I$.

Proof We assume that $y \in Z^1$ where Z^1 is the centre of G^1 . Clearly, y has a unique expression in the form $y = u_1 h(\chi_0) n_w u$, where $u_1 \in U \cap G_0$, $u \in U_w^- \cap G_0$ $h(\chi_0) \in H$ and $w \in W_0 = \langle w_a, a \in \Phi^0 \rangle$. Obviously, for each $a \in \Phi^0$ there is $h(\chi) \in H^1$ such that $\chi(a) \neq 1$. Thus we have $u_1 = u = I$. It is clear that if $w \neq 1$, then there is $r \in \Phi^*$ such that $w(r) \neq r$, so we have $y = h(\chi_0)$. If $h(\chi_0) \neq 1$, then there exists $r \in \Phi^*$ such that $\chi_0(r) \neq 1$. We have a contradiction if $y \neq I$. The proof is complete.

Henceforth we assume that R^1 is an arbitrary normal subgroup of G^1 such that $R^1 \neq \{1\}$. For each $r \in \Phi^*$ we define $X_r^1 = \{X_r^1(t) \mid t \in K_r\}$.

Lemma 7. There is a root $r^* \in \Phi^{*+}$ such that $R^1 \cap X_{r^*}^1 \neq \{1\}$, where

 $X_{r^*}^1 = \{ X_{r^*}^1(t) \mid t \in K_{r^*} \}.$

Proof It follows from Theorem 1 That there is $x \in \mathbb{R}^1$ such that $x \neq 1$ and x has an expression $x = bn_w = \tilde{u}yn_w$, $b \in \mathbb{R}^1$, $w \in W^1$, $\tilde{u} \in U^1$, $y \in Y^1$. We shall consider separately the different possibilities.

I. Suppose $w \in W_0^1$. Then $x = \tilde{u}y_1, y_1 = yn_w \in Y^1$.

a. Suppose $\tilde{u} \neq I$. Then $x_1 = h_r^1(2) x h_r^1(2)^{-1} x^{-1} = u \in R^1 \cap U^1$, $x_1 = u \neq I$, where $r = J_1(\tilde{u})$. b. Suppose $\tilde{u} = I$. Then there is $u \in R^1 \cap U^1$, $u \neq I$ or $v \in R^1 \cap V^1$, $v \neq I$ by Lemma 6.

II. Suppose $w \notin W_0^1$. Then $x_1 = h(\chi)xh(\chi)^{-1}x^{-1} = h(\chi'_1)u_1 \in \mathbb{R}^1$ where $h(\chi)$ is the element of H^1 given in Corollary 1 and $u_1 \in U^1$. moreover, we have

 $h(\chi'_1) = h(\chi)h(\chi')^{-1} \neq I.$

a. Suppose $u_1 \neq I$. Then we have $u \in R^1 \cap U^1$, $u \neq I$ by a similar argument as in case 1, a. mentioned above. b. Suppose $u_1 = I$. Then there exists $r \in \Phi^{*+}$ such that $\chi'_1(r) \neq 1$. Then $u = h(\chi'_1) X_r^1(t) h(\chi'_1)^{-1} X_r^1(t)^{-1} \in R^1$, $t \in K_r^*$. Clearly, we have $u \in R^1 \cap U^1$, $u \neq I$.

We may summarize the results mentioned above in a statement as follows: there is $u \in \mathbb{R}^1 \cap U^1$, $u \neq I$ or there is $v \in \mathbb{R}^1 \cap V^1$, $v \neq I$. We assume that there exists $u \in \mathbb{R}^1 \cap U^1$ such that $u \neq I$. Then

$$J(u) = \{r_1, r_2, \dots, r_n\}, n \ge I.$$

If n=1 lemma is established immediately in this case. Now we assume that n>1. Let $u_1^*=h(\chi)uh(\chi)^{-1}u^{-1}$ where $h(\chi)$ is the element of H^1 given in Lemma 5. Then $u_1^* \in R^1 \cap U^1$ and $J(u_1^*) = \{r_1^*, r_2^*, \cdots, r_m^*\}$ such that either $r_1 \prec r_1^*$ or $r_1 = r_1^*, r_2 \prec r_2^*$. Finally, after a finfte number of the step used above we have

 $u^* = X_{r^*}^1(t) \in R^1 \cap X_{r^*}^1, u^* \neq I.$

We assume that there exists $v \in R^1 \cap V^1$ such that $v \neq I$. Then by a similar argument used above we have $X_{-r^*}^1(t) = v^* \in R^1 \cap V^1$, $t \in K_{r^*}^*$. Thus we have $u^* = N_{r^*}^1 v^* N_{r^*}^1 \in R^1 \cap X_{r^*}^1$, $u^* \neq I$. This finishes the proof.

Theorem 2. Let $K = K_0(\sqrt{-1})$, K_0 being a formally real field. Then G^1 is simple.

Proof By Lemma 7 there is $r^* \in \Phi^{*+}$ such that $X_{r^*}^1(t) \in R^1$, $t \in K_{r^*}^*$. If $r^* \notin \Phi_{110}$ we put $h(\chi) = h_{r^*}^1(2)$, if $r^* \in \Phi_{110}$ we put $h(\chi) = h_{r_1}^1(2)$, $r_1 = r^* + \overline{r^*}$. Clearly, we have $h(\chi) \in R^1$. It follows from the properties of the Satake diagram that for each $r \in \Phi^*$ there exists $w \in W^1$ such that $\chi(w(r)) \neq 1$. For an arbitrary $c \in K_s$ we have

 $h(\chi) X_s^1(t)h(\chi)^{-1}X_s^1(t)^{-1} = X_s^1(c), s = w(r), t = (I - \chi(s))^{-1}c.$ It is clear that $X_s^1(c) \in \mathbb{R}^1$ and $X_s^1 \subset \mathbb{R}^1$. We have $X_r^1 \subset \mathbb{R}^1$ since $n_w^{-1}X_s^1n_w = X_r^1, n_w \in \mathbb{N}^1$. It follows that $U^1 \subset \mathbb{R}^1$ and $V^1 \subset \mathbb{R}^1$, so G^1 is simple

We denote by N_0^1 the subgroup generated by all elements of N which map to the elements of W_0^1 under the natural homomorphism of N onto W. We define $\Pi_1^* = \{r \in \Pi^* | _{r < \tilde{r}}\}$. Clearly, Π_1^* can be expressed in the form $\Pi_1^* = \{r_i, i \in I\}$ where Iis a finite set. We define $W^{1\prime} = \{w_i, i \in I\}$, $w_i = W_{r_i}^1$, $i \in I$.

Theorem 3. Let $K = K_0(\sqrt{-1})$, K_0 being a formally real field. Then G^1 has a (B^1, N^1) pair.

Proof We shall verify that group G^1 satisfies the axioms BN. 1—BN. 5.

- BN. 1: By Theorem 1 we have $G^1 = \langle B^1, N^1 \rangle$ immediately.
- BN. 2: It is easily verified that $B^1 \cap N^1 = N_0^1$ and N_0^1 is a normal subgroup of N^1 .
- BN. 3: Obviously, we have $N^1/B^1 \cap N^1 = N^1/N_0^1 \cong W^1/W_0^1 \cong W^{1\prime}$.

Such a $W^{1'}$ is generated by a set of elements w_i , $i \in I$, $w_i^2 = I$.

BN. 4: If n_i is an element of N^1 which maps to w_i , $i \in I$ under the natural homomorphism from N onto W, then there is $r_i \in \Pi_1^*$ such that $n_i = N_{r_i}^1 h$, $h \in H^1$. Thus we have $B^1 n_i B^1 n B^1 \subseteq B^1 n_i n B^1 \cup B^1 n B^1$ for any element n of N^1 by Lemma 4.

BN. 5: Since $N_{r_i}^1 X_{r_i}^1 N_{r_i}^1 = X_{-r_i}^1$, $i \in I$, we have $n_i B^1 n_i \neq B^1$

Theorem 4. Group $G^1 = \mathbb{L}(\Pi, \theta; \mathbb{C}, f)$ is a simple algebraic group defined over \mathbb{R} and the admissible (\mathbb{R}) -index of G^1 is just (Π, θ) .

Proof Clearly, $G = \mathbb{L}(\mathbb{C})$ is a simple algebraic group defined over \mathbb{C} . The

conjugation f of fiele \mathbb{C} can be extended a field automorphism f of G. For each $x \in G^1$ we have $f(x) \in G^1$. Thus it follows from proposition I.I.I of [6] that G^1 is defined over \mathbb{R} . Then by Theorem 6 of [3], G^1 is an algebraic group defined over \mathbb{R} . It follows from Theorem 2 that G^1 is a simple algebraic group defined over \mathbb{R} . It is easily verified that the admissible (\mathbb{R}) -index of G^1 is just (Π, θ) .

Let $K = K_0$ ($\sqrt{-1}$), K_0 being a formally real field and \emptyset be the empty set. The following statements are easily verified:

I. Suppose $\Pi^{0} = \emptyset$ (The all nodes of the Satake diagram (Π, θ) are white). Then $G^{1} = \mathbb{L}(\Pi, \theta; K, f)$ is a twisted group² $\mathbb{L}(K)$ or Chevalley group $\mathbb{L}(K_{0})$. It is clear that for the index (Π, θ) the semisimple anisotropic kernel is equal to $\{I\}$. Thus we have $Y^{1} = H^{1}$ and $B^{1} = H^{1}U^{1}$. It follows that B^{1} is a Borel subgroup of G^{1} .

II. Suppose $\Pi^0 \neq \emptyset$ (There are the black nodes in the Satake diagram (Π, θ)). Then $G^1 = \mathbb{L}(\Pi, \theta; K, f)$ may be interpreted as a generalized twisted group and generalized Chevalley group. It is clear that for the index (Π, θ) the semisimple anisotropic kernels which are not equal to $\{I\}$ are contained in Y^1 . Thus we have $Y^1 \neq H^1$, $H^1 \subset Y^1$ and $B^1 \neq H^1 U^1$. It follows that B^1 is not a Borel subgroup of G^1 .

Let p be a p-adic field. In a similar ways as in this paper, for each admissible (p)-index we can construct a simple algebraic group of adjoint type defined over p which has such an admissible (p)-index.

In table II we give all Satake diagrams and all Satake diagrams which correspond to the groups of twisted type or Chevalley type.

1

Table II (Satake diagrams)

Table II'

·

FI ●──●⇒●

References

- [1] Chevalley, C., Seminaire sur la classification des groupes de Lie algebriques, Paris, Scole Norm Sup, 1956-1958.
- [2] Chevalley, C., Sur certains groupes simple, Tohoku, Math, J., 7 (1955), 14-56.
- [3] Steinberg, R., Lecturos on Chevalley groups, Yale University, 1967.
- [4] Demasure, D., and Grothendieck, A., Schemas on groupes, Lect, Notes in Math nos 151, 152, 153, Springer-verlag, 1970.
- [5] Tits, J., Classification of algebraic semisimple groups, Proceedings of Symposia in Pure Math, Vol. 9. Algebraic groups and discontinious subgroup, 32-62.
- [6] Satake, I., Classification theory of semi-simple algebraic group, New York, Marcal Dekker, 1974.
- [7] Carter, R., Simple groups of Lie type, London-New york, Wiley, 1972.
- [8] Steinberg, R., Variations on them of Chevalley, Pacific J. Math., 19 (1959), 875-891.
- [9] Cheng ChonHu (陈仲沪), Some simple groups of Lie type constructed by inner automorphism, Chin, Ann, of Math., 1: 2 (1980), 161-171.
- [10] Helgson, S., Differential geometry, Lie groups, and symmetric space, Acad, Press, 1978.
- [11] Yan, Zhi-Da (严志达), Sur le caracteristique d'une algebra de Lie Semi-Simple (Chiens), Acta Math. Sinica, 14(1965), 861-869.

СЕП