Chin. Ann. of Math. 8B (2) 1987

ON THE HOMOLOGY OF THE VIRASORO ALGEBRA

QIU SEN (邱 森)*

Abstract

This paper gives the structure of the homology of the Witt algebra and the Virasoro algebra with coefficients in a Verma module. Let $s_k = (3k^2 + k)/2$, $t_k = (3k^2 - k)/2$, $k \in \mathbb{Z}_+$, and $P = \{-s_k, -t_k | k \in \mathbb{Z}_+\}$. Then the author obtains the homology of the Witt algebra with coefficients in an irreducible module $L(\lambda)$ with highest weight $\lambda \notin P$, and the homology of the Virasoro algebra with coefficients in some irreducible modules.

§1. Introduction

In [2] the author obtained the homology of Kao-Moody Lie algebras with coefficients in a Verma module. In this paper, we determine the structure of the Witt algebra and the Virasoro algebra with coefficients in a Verma module. Let $s_k = (3k^2 + k)/2$, $t_k = (3k^2 - k)/2$, $k \in \mathbb{Z}_+$ (the set of the non-negative integers), the non-negative integers s_k , $t_k(k \in \mathbb{Z}_+)$ are called Euler's pentagonal numbers. Let $P = \{-s_k, -t_k | k \in \mathbb{Z}_+\}$. Then we also obtain the homology of the Witt algebra with coefficients in an irreducible module $L(\lambda)$ with highest weight $\lambda \notin P$.

Let g be the complex Lie algebra with basis $\{e_i\}_{i\in\mathbb{Z}}$, where

$$[e_i, e_j] = (j-i)e_{i+j}, i, j \in \mathbb{Z}.$$

g is also known as the Witt algebra. Let $h = Ce_0$ (it is a Cartan subalgebra of g), $n = \bigoplus_{i \in N} Ce_i, n^- = \bigoplus_{i \in N} Ce_{-i}$, and identify h^* with C. In [4], Goncharova computed the cohomology $H^*(n, C)$, or equivalently, the homology $H_*(n^-, C)$. She proved that

$$\begin{cases} H_k(\boldsymbol{n}^-, \boldsymbol{C})_{\nu} = 0, \text{ unless } \nu = -s_k \text{ or } \nu = -t_k, \\ H_k(\boldsymbol{n}^-, \boldsymbol{C})_{\nu} = \boldsymbol{C}(\nu), \text{ if } \nu = -s_k \text{ or } \nu = -t_k, \end{cases}$$
(1.1)

where C is regarded as 1-dimensional trivial n^- -module, $H_k(n^-, C_{\nu})$ is the ν -weightspace of $H_k(n^-, C)$ relative to the action of h and $C(\nu)$ is the 1-dimensional h-module, where h acts as ν (cf. [8, Theorem 6.6]).

Similarly, we can also obtain the homology of n with the trivial coefficient:

$$H_k(\boldsymbol{n}, \boldsymbol{C}) = \boldsymbol{C}(s_k) \oplus \boldsymbol{C}(t_k), \ k \ge 0.$$
(1.2)

* Department of Mathematics, East China Normal University, Shanghai, China.

Manuscript received November 5, 1984.

In § 2, we shall use (1.2) and the methods in [2] to compute the homology of the Witt algebra with coefficients in a Verma module (see Theorem 2.8). In [10], Rocha-Caridi and Wallach obtained character formulas for the irreducible highest weight modules over the Witt algebra. Using [10, Theorem A], we obtain the homology of the Witt algebra with coefficients in an irreducible module $L(\lambda)$ with highest weight $\lambda \notin P$ (see Corollary 2.10).

Now we consider the central extension \tilde{g} of g defined as the complex Lie algebra with basis $\{E'_0, E_i\}_{i \in \mathbb{Z}}$ and bracket relations

$$[E'_0, X] = 0$$
, for all $X \in \tilde{g}$,

$$[E_i, E_j] = (j-i)E_{i+j} + \delta_{i,-j}(i^3-i)E'_0/12, i, j \in \mathbb{Z}.$$

 \tilde{g} is known as the Virasoro algebra. In § 3, using the computation of the spectral sequences, we obtain the homology of the Virasoro algebra with coefficients in a Verma module (see § 3, Theorem 3.8). Using the relation between Verma modules and irreducible highest weight modules, we also obtain the homology of the Virasoro algebra with coefficients in some irreducible modules (see § 3).

In this paper, we denote the universal enveloping algebra of a complex Lie algebra \boldsymbol{a} by $U(\boldsymbol{a})$. Unless the contrary is stated explicitly, \boldsymbol{a} -module will always be assumed to be left \boldsymbol{a} -module.

Deep gratitude is due to Professor Shen Guangyu. He offered valuable suggestions and read the manuscript.

§2. The Homology of the W.tt Algebra

For the Witt algebra g, we let $b = h \oplus n$, where $h = Ce_0$ and $n = \bigoplus_{i \in N} Ce_i$. If $\lambda \in h^*$, we let $C(\lambda)$ be the one-dimensional b-module, where n acts trivially and h acts via λ . Let $M(\lambda) = U(g) \otimes_{U(b)} C(\lambda)$. We call $M(\lambda)$ the Verma module with highest weight λ . Let $L(\lambda)$ denote the unique irreducible quotient of $M(\lambda)$. First we shall compute the homology of g in $M(\lambda)$.

Applying [3, Proposition 5.5.4] to the case of the Witt algebra, we have the following lemma.

Lemma 2.1. For $\lambda \in h^*$, we have

 $(M(\lambda))^* \cong \operatorname{Hom}_{U(b)}(U(g), C(-\lambda)).$

By [2, Proposition 3.4], we have the duality theorem between the homology groups and the cohomology groups of Lie algebras (possibly infinite-dimensional). Then

 $H_{j}(\boldsymbol{g}, M(\lambda)^{t})^{*} \cong H^{j}(\boldsymbol{g}, (M(\lambda)^{*}), \text{ for } j \ge 0,$ (2.2)

where the right g-module corresponding to the left g-module $M(\lambda)$ is denoted by

 $M(\lambda)^t$ and $(M(\lambda))^*$ is the dual **g**-module of $M(\lambda)$.

By Lemma 2.1 and (2.2), we have

$$H_{j}(\boldsymbol{g}, M(\lambda)^{t})^{*} \cong H^{j}(\boldsymbol{g}, \operatorname{Hom}_{U(\boldsymbol{b})}(U(\boldsymbol{g}), \boldsymbol{C}(-\lambda)), \text{ for } j \ge 0.$$
By (2.3) and [1, Proposition 4.2], we have
$$(2.3)$$

 $H^{i}(\boldsymbol{g}, \operatorname{Hom}_{U(\boldsymbol{b})}(U(\boldsymbol{g}), \boldsymbol{C}(-\lambda)) \cong H^{i}(\boldsymbol{b}, \boldsymbol{C}(-\lambda)), \text{ for } j \ge 0.$

Then using (2.3), we have the following lemma.

Lemma 2.4. For $\lambda \in \mathbf{h}^*$, we have

$$H_j(\boldsymbol{g}, M(\lambda)^t)^* \cong H^j(\boldsymbol{b}, \boldsymbol{C}(-\lambda)), \text{ for } j \geq 0.$$

Since **n** is an ideal of **b** and $b/n \cong h$, for the left **b**-module $C(\lambda)$, there is the Hochschild-Serre spectral sequence $\{E_r^{p,q}\}$, whose E_{∞} term is associated with $H^*(b, C(-\lambda))$, that is

$$E_{2}^{p,q} = H^{p}((\boldsymbol{h}, H^{q}(\boldsymbol{n}, \boldsymbol{C}(-\lambda))) \underset{p}{\Rightarrow} H^{n}(\boldsymbol{b}, \boldsymbol{C}(-\lambda)), \qquad (2.5)$$

for n = p + q (see [5, § 3, Corollary 4]).

If $C(\lambda)$ is regarded as the trivial *n*-module, then $H_*(n, C(\lambda)) = H_*(n, C)$. If $H_*(n, C(\lambda))$ and $H_*(n, C)$ are regarded as *h*-modules, then $H_q(n, C(\lambda)) \cong H_q(n, C) \otimes C(\lambda)$ (the standard action of *h* on $H_*(n, C(\lambda))$ and $H_*(n, C)$ are quite similar to that of [2, § 3, Remark]).

By the above formula, (1.2) and [2, Proposition 3.4], we have

$$H^{q}(\boldsymbol{n}, \boldsymbol{C}(-\lambda)) \cong H_{q}(\boldsymbol{n}, \boldsymbol{C}(\lambda))^{*} \cong \boldsymbol{C}(-s_{q}-\lambda) \oplus \boldsymbol{C}(-t_{q}-\lambda).$$
(2.6)

Let \boldsymbol{a} be an abelian Lie algebra. It is easy to check that for $p \ge 0$,

$$H^{\mathfrak{p}}(\boldsymbol{a}, V^{u}) = \begin{cases} \operatorname{Hom}_{\boldsymbol{C}}(\wedge^{\mathfrak{p}}(\boldsymbol{a}), V^{u}), & \text{if } u = 0, \\ 0, & \text{if } u \neq 0, \end{cases}$$
(2.7)

where V^u is an a-module such that $a \cdot v = u(a)v$, for $a \in a$, $v \in V^u$ and $u \in a^*$ and $\wedge (a)$ is the exterior algebra of a.

Since h is abelian, by (2.6) and (2.7), we have

$$E_{2}^{p,q} = H^{p}(\boldsymbol{h}, H^{q}(\boldsymbol{n}, \boldsymbol{C}(-\lambda)) = H^{p}(\boldsymbol{h}, \boldsymbol{C}(-s_{q}-\lambda) \oplus \boldsymbol{C}(-t_{q}-\lambda))$$

$$= \begin{cases} 0, & \text{if } \lambda \neq -s_{q} \text{ or } -t_{q}, \\ (\wedge^{p}(\boldsymbol{h}))^{*}, & \text{if } \lambda = -s_{q} \text{ or } -t_{q} \text{ and } q \neq 0, \\ \wedge^{p}(\boldsymbol{h}))^{*} \oplus (\wedge^{p}(\boldsymbol{h}))^{*}, & \text{if } \lambda = 0 \text{ and } q = 0, \end{cases}$$

where $(\wedge^{p}(h))^{*} = \operatorname{Hom}_{C}(\wedge^{p}(h), C)$. Then we obtain the three cases:

1) If $\lambda \neq -s_q$ or $-t_q$, for all $q \in \mathbb{Z}_+$, then $E_2^{p,q} = 0$, for $p \ge 0$ and q > 0. Thus the spectral sequence $\{E_r\}$ collapses. By (2.5), we have

$$H^{n}(\boldsymbol{b}, \boldsymbol{C}(-\lambda)) = E_{2}^{n,0} = 0, \text{ for } n \ge 0.$$

2) If $\lambda = -s_{q_0}$ or $-t_{q_0}$, for some $q_0 \in N$, then

$$E_2^{p,q} = \begin{cases} 0, \text{ for } p \ge 0 \text{ and } q \neq q_0, \\ (\wedge^p(\mathbf{h}))^*, \text{ for } p \ge 0 \text{ and } q = q_0. \end{cases}$$

Then the spectral sequence $\{E_r\}$ collapses and

 $H^{n}(\boldsymbol{b}, \boldsymbol{C}(-\lambda)) = E_{2}^{n-q_{0}, q_{0}} = (\wedge^{n-q_{0}}(\boldsymbol{h}))^{*}, \text{ for } n \geq 0.$

3) If $\lambda = 0$, then the same argument just used shows that

 $H^{n}(\boldsymbol{b}, \boldsymbol{C}(-\lambda)) = (\wedge^{n}(\boldsymbol{h}))^{*} \oplus (\wedge^{n}(\boldsymbol{h}))^{*}, \text{ for } n \geq 0.$

Using the above remark and Lemma 2.4 we obtain the following theorem.

Theorem 2.8. Let g be the Witt algebra, h the Cartan subalgebra of g and $M(\lambda)$ the Verma module with highest $\lambda \in h^*$. Then the homology of g with coefficients in $M(\lambda)$ is given as follows:

1) If $\lambda \neq -s_q$ or $-t_q$, for all $q \in \mathbb{Z}_+$, then

$$H_j(\boldsymbol{g}, M(\lambda)^t) = 0$$
, for all $j \ge 0$.

2) If $\lambda = -s_{q_0}$ or $-t_{q_0}$, for some $q_0 \in N$, then

$$H_{j}(\boldsymbol{g}, M(\lambda)^{t}) = \begin{cases} \boldsymbol{C}, \text{ for } j = q_{0}, q_{0}+1, \\ 0, \text{ otherwise.} \end{cases}$$

3) If $\lambda = 0$, then

$$H_{j}(\boldsymbol{g}, M(\lambda)^{\dagger}) = \begin{cases} \boldsymbol{C} \oplus \boldsymbol{C}, \text{ for } j=0, 1, \\ 0, \text{ otherwise.} \end{cases}$$

Next we consider the homology groups $H_*(g, L(\lambda)^t)$ of the Witt algebra g with coefficients in an irreducible highest weight module $L(\lambda)$ ($\lambda \in C$).

In [6], Kac gave the irreducibility criterion for Verma modules: $M(\lambda)$ is irreducible, i.e., $M(\lambda) \cong L(\lambda)$ iff $\lambda \neq -\frac{1}{24}(m^2-1)$, for all $m \in N$. Then this condition implies that

$$H_*(\boldsymbol{g}, L(\lambda)^t) = H_*(\boldsymbol{g}, M(\lambda)^t).$$

If $\lambda = -\frac{1}{24}(m^2-1)$, $m \in N$, Rocha-Coridi and Wallach proved the following

theorem.

Theorem 2.9 ([10, Theorem A]). Let $k \in \mathbb{Z}_+$. Then these are resolutions:

1)
$$\cdots \xrightarrow{d_{k+i+1}} M(-s_{k+i}) \oplus M(-t_{k+i}) \xrightarrow{d_{k+i}} \cdots \xrightarrow{d_{k+2}}$$

 $M(-s_{k+1}) \oplus M(-t_{k+1}) \xrightarrow{d_{k+1}} M(\nu_k) \xrightarrow{e_k} L(\nu_k) \to 0$

for $\nu_k \in \{-s_k, -t_k\}$,

$$-s_{k} = -\frac{1}{24} [(6k+1)^{2} - 1] = -\frac{1}{2} (3k^{2} + k)$$

and

$$-t_k = -\frac{1}{24} [(6k-1)^2 - 1] = -\frac{1}{2} (3k^2 - k).$$

2)
$$0 \rightarrow M(\nu_{k+2}) \xrightarrow{j_{k+2}} M(\nu_k) \xrightarrow{e_k} L(\nu_k) \rightarrow 0$$

$$\nu_k = -\frac{1}{24} [(6k)^2 - 1], k \ge 1.$$

for

3)
$$0 \rightarrow M(\nu_{k+1}) \xrightarrow{j_{k+1}} M(\nu_k) \xrightarrow{s_k} L(\nu_k) \rightarrow 0$$

for

$$\nu_k = -\frac{1}{24} [(6k+3)^2 - 1].$$

4)
$$0 \rightarrow M(\delta_{k+2}) \xrightarrow{j_{k+1}} M(\gamma_k) \xrightarrow{e_k} L(\gamma_k) \rightarrow 0$$

for

5)
$$0 \rightarrow M(\gamma_{k+1}) \xrightarrow{j_{k+1}} M(\delta_k) \xrightarrow{\varepsilon_k} L(\delta_k) \rightarrow 0$$

for γ_{j}, δ_{j} as in 4). Here j_{k} is the unique (up to scalar) embedding, ε_{k} is the canonical projection, and d_{k} is given in [10, Theorem A].

 $\gamma_j = -\frac{1}{24}[(6j+2)^2 - 1], \ \delta_j = -\frac{1}{24}[(6j+4)^2 - 1].$

By Theorem 2.8, Theorem 2.9 and the long exact sequence therem, we can easily obtain the following corollay.

Corollary 2.10. If $\lambda \notin P = \{-s_k, -t_k | k \in \mathbb{Z}_+\}$, then $H_j(g, L(\lambda)^t) = 0$, for $j \ge 0$.

§ 3. The Homoloy of the Virasoro Algebras

For the Virasora algebra \tilde{g} , we let $\tilde{h} = CE_0 \oplus CE'_0$, $\tilde{n} = \bigoplus_{i \in N} CE_i$ and $\tilde{b} = \tilde{h} \oplus \tilde{n}$. We identify a pair $(\lambda, c) \in \mathbb{C}^2$ with the linear functional on \tilde{n} taking value λ on E_0 and c on E'_0 and denote by $M(\lambda, c)$ and $L(\lambda, c)$ the Verma module with highest weight (λ, c) and its unique irreducible quotient, respectively.

Since $[CE'_0, \tilde{g}] = 0$ and $\tilde{g}/CE'_0 \cong g$ (the Witt algebra), by [1. Chap. 16, §7, (6a)], we have

$$E_{i,j}^{2} = H_{i}(\boldsymbol{g}, H_{j}(\boldsymbol{C} E_{0}^{\prime}, M(\lambda, c)^{t})) \underset{i}{\Rightarrow} H_{n}(\boldsymbol{\widetilde{g}}, M(\lambda, c)^{t}), \qquad (3.1)$$

for n=i+j. Note that if a is a complex Lie algebra and N^t is a right a-module, then

 $H_{*}(a, N^{t}) = \operatorname{Tor}_{*}^{U(a)}(N^{t}, C).$

Then we can obtain (3.1) from [11, Theorem 11.39]. Hence we can apply the computation of the spectral sequences in [11, Chap. 11].

Now we compute $H_j(CE'_0, M(\lambda, c)^t)$ directly by the definition of homology of Lie algebra (see [2, § 3]) and note the action of g on it. By [2, (3.1)], $H_*(CE', M(\lambda, c)^t)$ is the homology groups of the complex

$$\cdots \to M(\lambda, c)^{t} \otimes_{\mathbf{C}} \wedge^{2}(\mathbf{C}E_{0}^{\prime}) \xrightarrow{\partial_{2}} M(\lambda, c)^{t} \otimes_{\mathbf{C}} \wedge^{1}(\mathbf{C}E_{0}^{\prime}) \xrightarrow{\partial_{1}} M(\lambda, c)^{t} \otimes_{\mathbf{C}} \wedge^{0}(\mathbf{C}E_{0}^{\prime}) \to 0,$$

$$(3.2)$$

where $\wedge^{i}(CE'_{0}) = 0$ for $j \ge 2$, and $\partial_{1}(v \otimes E'_{0}) = v \cdot E'_{0}$ for all $v \in M(\lambda, c)^{i}$. Then we have

$$H_0(CE_0', M(\lambda, c)^t) = M(\lambda, c)^t / \operatorname{im} \partial_1 = \begin{cases} 0, \text{ for } c \neq 0, \\ M(\lambda, 0)^t, \text{ for } c = 0; \end{cases}$$

(3.3)

$$H_1(CE'_0, M(\lambda, c)^t) = \ker \partial_1 / \operatorname{im} \partial_2 = \begin{cases} 0, & \operatorname{for} \ c \neq 0, \\ M(\lambda, 0)^t, & \operatorname{for} \ c = 0; \end{cases}$$
$$H_j(CE'_0, M(\lambda, c)^t) = 0, & \operatorname{for} \ j \ge 2 \text{ and all } c \in C.$$
If $c \neq 0$, since $H_*(CE'_0, M(\lambda, c)^t) = 0$, by (3.1), we have $H_*(\widetilde{g}, M(\lambda, c)^t) = 0$, for all $\lambda \in C$ and $c \neq 0$.

Now we need to consider only the case of c=0. Since $[\tilde{g}, CE'_0]=0$, the trivial adjoint action of \tilde{g} on CE'_0 induces the trivial action on $\wedge^i(C E'_0)$ and the tensor product action on $M(\lambda, 0)^t \otimes \wedge^j(CE'_0)$. Since the action of \tilde{g} commutes with the maps ∂_{j} , the action of \tilde{g} on the complex (3.2) induces the action of \tilde{g} on the homology spaces $H_j(CE'_0, M(\lambda, 0)^t)$ ($j \ge 0$). If j=0, 1, then the action of \tilde{g} on $H_j(CE'_0M(\lambda, 0)^t) = M(\lambda, 0)^t$ is the original one. Since CE'_0 acts trivially on $M(\lambda, 0)^t$, we can induce the action of $g \cong \tilde{g}/CE'_0$ on it. Then $M(\lambda, 0)$ can be regarded as a g-module and is isomorphic to the Verma module $M(\lambda)$ of the Witt algebra g.

If $\lambda = 0$, then by Theorem 2.8, 3) and (3.1), we have

$$E_{i,j} = H_i(\boldsymbol{g}, H_j(\boldsymbol{C} E'_0, M(\lambda, 0)^t)) \\ = \begin{cases} \boldsymbol{C} \oplus \boldsymbol{C}, \text{ if } (i, j) = (0, 0), (0, 1), (1, 0), (1, 1), \\ 0, \text{ otherwise.} \end{cases}$$
(3.4)

By the definition of the spectral sequence (see [11, Theorem 11.10 and p. 313, Definition]), we have

$$E_{i,j}^{r+1} = \ker d_{i,j}^r / \operatorname{im} d_{i+r,j-r+1}^r, \quad \text{for } r \ge 1,$$

where $d_{i,j}^r$ is a map from $E_{i,j}^r$ into $E_{i-r,j+r-1}^r$ whose bidegree is (-r, r-1). Since $E_{i,j}^3$ is a subquotient of $E_{i,j}^2$ by (3.4), we have

 $E_{i,j}^3 = E_{i,j}^2 = 0$, for $(i, j) \neq (0, 0)$, (0, 1), (1, 0), (1, 1). Similarly, $E_{i,j}^r = 0$, for $r \ge 2$. Hence

 $E_{i,j}^{\infty} = 0$, for $(i, j) \neq (0, 0)$, (0, 1), (1, 0), (1, 1).

Now we consider $E_{0,n}^3$, $n \ge 0$. Since $E_{2,n-1}^2 = 0$, im $d_{2,n-1}^2 = 0$. Since $E_{-2,n+1}^2 = 0$, the map $d_{0,n}^2$ is 0. Hence ker $d_{0,n}^2 = E_{0,n}^2$. Therefore we have $E_{0,n}^3 \cong E_{0,n}^2$. Similarly, $E_{0,n}^{r+1} \cong E_{0,n}^r$, $r \ge 2$. Thus $E_{0,n}^\infty \cong E_{0,n}^2$, for $n \ge 0$. By the same manner we have $E_{1,j}^\infty \cong E_{1,j}^2$, for j=0, 1. Then if $\lambda = 0$, then

$$E_{i,j}^{\infty} \cong E_{i,j}^2. \quad \text{for } i, j \ge 0. \tag{3.5}$$

For convenience, we denote $H_n(\tilde{g}, M(\lambda, 0)^t)$ by H_n , for $n \ge 0$. By the definition of convergence of the spectral sequence (see [11, p317, Definition]), there exists a bounded filtration $\{\Phi^t H\}$ such that

$$E_{i,j}^{\infty} \cong \Phi^{i} H_{n} / \Phi^{i-1} H_{n}, \qquad (3.6)$$

for all i, j (n=i+j).

Since $E_{i,j}^2$ is the spectral sequence in the first quadrant, the filtration $\{\Phi^i H\}$ defined by [11, p.324, Definition] is bounded, and for each *n*, we have

$$0 = \Phi^{-1}H_n \subset \Phi^0H_n \subset \cdots \subset \Phi_nH_n = H_n.$$

1.

For n=0, by (3.6) and (3.7), we have

 $E_{0,0}^{\infty} \cong \Phi^0 H_0 / \Phi^{-1} H_0 \cong H_0.$

For n=1, by (3.6) and (3.7), we have

$$E_{1,0}^{\infty} \cong H_1 / \Phi^0 H_1,$$

$$E_{0,1}^{\infty} \cong \Phi^0 H_1 / \Phi^{-1} H_1 = \Phi^0 H_1$$

Hence $E_{1,0}^{\infty} \cong H_1/E_{0,1}^{\infty}$. Then we have

dim $H_1 = \dim E_{1,0}^{\infty} + \dim E_{0,1}^{\infty}$.

For n=2, $E_{2,0}^{\infty}\cong H_2/\Phi^1H_2$, $E_{1,1}^{\infty}\cong \Phi^1H_2/\Phi^0H_2$, $E_{0,2}^{\infty}\cong \Phi^0H_2$. Hence we have $H_2\cong E_{1,1}^{\infty}$.

It is obvious that for $n \ge 3$, we have $H_n = 0$. Now we have proved that for $\lambda = 0$,

	ſ 2,	if n=0,
dim $H_n(\widetilde{\boldsymbol{g}}, M(0, 0)^t) =$	4,	if $n=1$,
	2,	if $n=2$,
	lo,	if n≥3.

For $\lambda = -s_{a_0}$ or $-t_{a_0}$, for some $q_0 \in N$ and $\lambda \notin P$, the computation is similar to that for $\lambda = 0$. Combining these results we obtain the following theorem.

Theorem 3.8. Let \tilde{g} be the Virasoro algebra, \tilde{h} the Cartan subalgebra of \tilde{g} , and $M(\lambda, c)$ the Verma module with highest weight $(\lambda, c) \in \tilde{h}^*$. Then the homology of \tilde{g} with coefficients in $M(\lambda, c)$ is given as follows:

1) If $\lambda = c = 0$, then

dim
$$H_n(\tilde{g}, M(0, 0)^t) = \begin{cases} 2, & \text{if } n=0, \\ 4, & \text{if } n=1, \\ 2, & \text{if } n=2, \\ 0, & \text{if } n \ge 3; \end{cases}$$

2) If $\lambda = -s_{q_0}$ or $-t_{q_0}$, for some $q_0 \in N$, and c = 0, then

dim
$$H_n(\tilde{g}, M(\lambda, 0)^t) = \begin{cases} 0, & \text{if } 0 \le n < q, \\ 1, & \text{if } n = q_0, \\ 2, & \text{if } n = q_0 + 1, \\ 1, & \text{if } n = q_0 + 2, \\ 0, & \text{if } n \ge q_0 + 3; \end{cases}$$

3) If (λ, c) $(\in \tilde{h}^*)$ is not as in case 1) or 2), then

$$H_*(\boldsymbol{\tilde{g}}, M(\lambda, c)^{\tau}) = 0.$$

Remark. 1) By Corollary 2.10, we have

$$H_{\star}(\widetilde{\boldsymbol{g}}, L(\lambda, 0)^t) = 0, \text{ for } \lambda \notin P.$$

2) By [10, Theorem (0.15) and Corollary (0.17)], we have

i) $M(\lambda, 1) \cong L(\lambda, 1)$, if $\lambda \neq -m^2/4$ for all $m \in \mathbb{Z}_+$;

ii) there is a resolution

(3.7)

$$0 \rightarrow M(-1/4(m+2)^2, 1) \rightarrow M(-m^2/4, 1) \rightarrow L(-m^2/4, 1) \rightarrow 0,$$

if $\lambda = -m^2/4$ for some $m \in \mathbb{Z}_+$.

Hence we have

$$H_*(\tilde{\boldsymbol{g}}, L(\lambda, 1)^t) = 0$$
, for all $\lambda \in C$.

3) By [10, Theorem B(i)] we have

$$H_*(\tilde{g}, L(\lambda, 25)^t) = 0$$
, for all $\lambda \in C$.

4) By [10, Theorem B(ii)] we have

$$H_*(\tilde{\boldsymbol{g}}, L(\lambda, 26)^t) = 0$$
, if $\lambda \neq s_k - 1$ or $t_k - 1$ for all $k \ge 1$.

References

- [1] Cartan, H. and Eilenberg, S., Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956.
- [2] Qiu Sen (Chiu Sen), The homology of Kac-Moody Lie algebras with coefficients in a generalized Verma module, J. Algebra, 90 (1984), 10-17.
- [3] Dixmier, J., Enveloping algebras, North-Holland, Amsterdam, 1977.
- [4] Goncharova, L., V, The cohomologies of Lie algebras of formal vector fields on the line, Funkcional, Anal. i Priložen, 2 (1973), 6-14.
- [5] Hochschild, G. and Serre, J. P., Cohomology of Lie algebras, Ann. of Math., 57 (1953), 591-603.
- [6] Kac, V. G., Highest weight representations of infinite dimensional Lie algebras, Proceedings of the International Congress of Mathematicians (Helsinki 1978), pp. 299-304, Helsinki: Acad. Sci. Fennica 1980.
- [7] Rocha-Caridi, A. and Wallach, N. R., Projective modules over graded Lie algebras, I. Math. Z., 180 (1982), 151-171.
- [8] Rocha-Caridi, A. and Wallach, N. R., Highest weight modules over graded Lie algebras: resolutions, filtrations and character formulas, *Trans. Amer. Math. Soc.*, 277 (1983), 133-162.
- [9] Rocha-Caridi, A. and Wallach, N. R. Characters of irreducible representations of the Lie algebra of vector fields on the circle, *Invent. Math.*, 72 (1983), 57-76.
- [10] Rocha-Caridi, A. and Wallach, N. R., Characters of irreducible representations of the Virasoro, algebra Math. Z., 185 (1984), 1-21.
- [11] Rotman, J. J., An introduction to homological algebra, New York, Academic Press, 1979.