REPRESENTATION OF LINEAR FUNCTIONALS ON LIPSCHITZ SPACES A_{φ} OF FUNCTIONS HOLOMORPHIC IN THE UNIT BALL OF \mathbb{C}^n

SHI JIHUAI (史济怀)*

Abstract

In this paper three spaces $\Lambda_{\varphi}(B)$, $\lambda_{\varphi}(B)$ and $\Gamma_{\varphi}(B)$ of functions holomorphic in the unit ball of \mathbb{C}^n are defined and the representations of linear functionals on $\lambda_{\varphi}(B)$ and $\Gamma_{\varphi}(B)$ are obtained.

§ 1. Introduction

Let B denote the unit ball of \mathbb{C}^n , S denote its boundary, σ denote the positive rotation-invariant measure on S with $\sigma(S)=1$ and A(B) denote the class of functions holomorphic in B and continuous on \overline{B} .

Let Φ denote the class of functions φ : $[0, 1] \rightarrow [0, \infty)$ satisfying the following conditions:

- (i) φ is continuous, increasing and $\varphi(0) = 0$, $\varphi(t) \neq 0$ if $t \neq 0$,
- (ii) $t/\varphi(t)$ is increasing and $t/\varphi(t) \rightarrow 0$ as $t\rightarrow 0$,

(iii)
$$\int_0^\delta \varphi(t)/tdt = O(\varphi(\delta))$$
 and $\int_\delta^1 \varphi(t)/t^2dt = O(\varphi(\delta)/\delta)$ for $\delta > 0$.

Definition 1. Let $\varphi \in \Phi$. A function $f \in A(B)$ is said to be of class $\Lambda_{\varphi}(B)$ if its boundary function satisfies the Lipschitz condition

for $\zeta \in S$ and θ , $h \in \mathbb{R}$, where the constant K is independent of θ , h and ζ .

In the case $\varphi(t) = t^{\alpha}$, $0 < \alpha \le 1$, we get the usual Lipschitz spaces.

Recently G.D. Lyevshina^[8] studied the representation of linear functionals on Lipschitz spaces Λ_{φ} in the unit disc. In the present paper we will study the same problem in the unit ball of \mathbb{C}^n .

§ 2. The Spaces $\Lambda_{\varphi}(B)$ and $\lambda_{\varphi}(B)$

If f is holomorphic in B with expansion in terms of homogeneous polynomials

Manuscript received November 6, 1984.

^{*} Department of Mathematics, University of Science and Technology of China, Hefei, China.

given by $f(z) = \sum_{k=0}^{\infty} F_k(z)$, as usual, for $\alpha > 0$, we define the fractional derivative $f^{[\alpha]}$ and the fractional integral $f_{[\alpha]}$ of order α of f by the following formulas respectively

$$f^{(\alpha)}(z) = \sum_{k=0}^{\infty} \frac{\Gamma(k+\alpha+1)}{k!} F_k(z),$$

$$f_{(\alpha)}(z) = \sum_{k=0}^{\infty} \frac{k!}{\Gamma(k+\alpha+1)} F_k(z),$$

 $f^{{\scriptscriptstyle {[\alpha]}}}$, $f_{{\scriptscriptstyle {[\alpha]}}}$ are holomorphic in $B^{{\scriptscriptstyle {[4,p.389]}}}$

Theorem 1. Suppose f is holomorphic in B and $\varphi \in \Phi$. Then $f \in \Lambda_{\varphi}(B)$ if and only if

$$|f^{\text{(1)}}(r\zeta)| \leqslant K \frac{\varphi(1-r)}{1-r} \tag{1}$$

for $\zeta \in S$ and $r \in [0, 1)$, where the constant K is independent of ζ and r.

Proof In the case n=1, the proof of theorem may be found in [5, Lemma 2 and Lemma 3]. We now assume n>1 and let $f\in A_{\varphi}(B)$. Since $f\in A(B)$, if let $f_{\xi}(\lambda)=f(\lambda\zeta)$, $\zeta\in S$, $\lambda\in\mathbb{C}$, $|\lambda|<1$, then $f_{\xi}\in A(U)$, where U is the unit disc and A(U) the disc algebra of U. Application of the necessity of the case n=1 gives

$$|f'_{\ell}(\lambda)| \leq K \frac{\varphi(1-|\lambda|)}{1-|\lambda|},$$

where the constant K is independent of ζ . Thus (1) follows from the equality

$$f^{\text{(i)}}(r\zeta) = rf'_{\zeta}(r) + f(r\zeta). \tag{2}$$

Conversely, if f satisfies (1), since

$$\begin{aligned} |r'f_{\xi}(r') - r''f_{\xi}(r'')| &= \left| \int_{r'}^{r''} [tf_{\xi}(t)]' dt \right| = \left| \int_{r'}^{r''} f^{\text{II}}(t\zeta) dt \right| \\ &\leq K \int_{r'}^{r''} \frac{\varphi(1-t)}{1-t} dt \leq K \left[\varphi(1-r') + \varphi(1-r'') \right] \to 0 \end{aligned}$$

as $r' \to 1$, $r'' \to 1$ by the properties (i) and (iii) of φ , we see that $f(r\zeta)$ converges, uniformly on S as $r \to 1$, to a limit that we call $f(\zeta)$; this extends f to S. The continuity of f in B and $f(\zeta)$ on S shows that f is continuous on \overline{B} , in other words, $f \in A(B)$. Combining the equality (2) and inequality (1), we have

$$|f'_{\iota}(\lambda)| \leqslant K \frac{\varphi(1-|\lambda|)}{1-|\lambda|}.$$

By the sufficiency of the case n=1, f_{ℓ} is of class $\Lambda_{\varphi}(U)$. Thus

$$|f(\exp(i(\theta+h))\zeta)-f(\exp(i\theta)\zeta)| \leq K\varphi(|h|)$$

for $\zeta \in S$ and θ , $h \in \mathbb{R}$. This completes the proof.

On the basis of Theorem 1, we have

Definition 2. Let $\varphi \in \Phi$ and $f \in \Lambda_{\varphi}(B)$, define the norm of f as

$$||f||_{A_{\varphi}} = \sup_{z \in B} \frac{1 - |z|}{\varphi(1 - |z|)} |f^{\text{[1]}}(z)|.$$
 (3)

Definition 3. Let $\varphi \in \Phi$ and $f \in \Lambda_{\varphi}(B)$, we say that f is to be of class $\lambda_{\varphi}(B)$ if

$$\frac{1-|z|}{\varphi(1-|z|)}|f^{\text{rij}}(z)|\rightarrow 0, \text{ as } |z|\rightarrow 1.$$

Theorem 2. (i) $\Lambda_{\sigma}(B)$ is a Banach space with the norm (3).

- (ii) $\lambda_{\varphi}(B)$ is a closed subspace of $\Lambda_{\varphi}(B)$.
- (iii) If $f \in \Lambda_{\varphi}(B)$, then $||f_r||_{\Lambda_{\varphi}} \leqslant ||f||_{\Lambda_{\varphi}}$ for $r \in (0, 1)$, where $f_r(z) = f(rz)$.
- (iv) $f \in \lambda_{\varphi}(B)$ if and only if $f \in \Lambda_{\varphi}(B)$ and $||f_r f||_{\Lambda_{\varphi}} \to 0$ as $r \to 1$.

Proof (i) Let $\{f_k\}$ be a Cauchy sequence in $\Lambda_{\varphi}(B)$. By the definition of the norm of $\Lambda_{\varphi}(B)$,

$$|f_k^{[1]}(z) - f_l^{[1]}(z)| \leq \frac{\varphi(1 - |z|)}{1 - |z|} ||f_k - f_l||_{A_{\varphi}} \leq \frac{\varphi(1)}{1 - \rho} ||f_k - f_l||_{A_{\varphi}}$$

for $z \in \rho B$, where ρB is the ball of radius ρ centered at the origin. Therefore $\{f_k^{[1]}\}$ converges uniformly on any compact subset of B, so it converges to a function g holomorphic in B. Let $f = g_{[1]}$, then $f^{[1]} = g$. We now prove that $f \in \Lambda_{\varphi}(B)$. Since $\{f_k\}$ is a Cauchy sequence in $\Lambda_{\varphi}(B)$, there is a constant M with $\|f_k\|_{\Lambda_{\varphi}} \leq M$, $k=1, 2, \dots$. For given $\rho \in (0,1)$, there exists a positive integer k_0 such that

$$|f_k^{\text{[1]}}(z) - f^{\text{[1]}}(z)| < \varphi(1-\rho)$$

for $z \in \rho B$ and $k > k_0$, and

$$\frac{1-|z|}{\varphi(1-|z|)}|f^{\text{[1]}}(z)| \leq \frac{1-|z|}{\varphi(1-|z|)}|f^{\text{[1]}}(z)-f_k^{\text{[1]}}(z)| + ||f_k||_{A_p} \leq 1+M \tag{4}$$

for $z \in \rho B$. Letting $\rho \to 1$ in (4) gives $f \in \Lambda_{\varphi}(B)$. To prove $\{f_k\}$ converges to f in $\Lambda_{\varphi}(B)$, we note that

$$\frac{1-|z|}{\varphi(1-|z|)} |f_k^{[1]}(z) - f_l^{[1]}(z)| \leq ||f_k - f_l||_{A_p} < \varepsilon$$

for $z \in B$ and k, l sufficiently large. Fixing k and letting $l \rightarrow \infty$ yield

$$||f_k - f||_{A_{\varphi}} \leq \varepsilon$$

for k sufficiently large. This completes the proof.

(ii) Let $\{f_k\}\subset \lambda_{\varphi}(B)$ and $\{f_k\}$ converges to f in $\Lambda_{\varphi}(B)$. For given s>0, there exists a positive integer k_0 such that $||f_k-f||_{\Lambda_{\varphi}}<\varepsilon$ for $k>k_0$. Fix $k>k_0$, there is an $r_0\in (0, 1)$ such that

$$\frac{1-\left|z\right|}{\varphi(1-\left|z\right|)}\left|f_{k}^{\text{[1]}}(z)\right|\!<\!\varepsilon$$

for $r_0 < |z| < 1$ since $f_k \in \lambda_{\varphi}(B)$. Thus

$$\frac{1-|z|}{\varphi(1-|z|)} |f^{\text{[1]}}(z)| \leqslant ||f_k - f||_{A_{\varphi}} + \frac{1-|z|}{\varphi(1-|z|)} |f^{\text{[1]}}_k(z)| < 2s$$

for $r_0 < |z| < 1$. Hence $f \in \lambda_{\varphi}(B)$.

- (iii) It follows from the property (ii) of φ .
- (iv) Let $f \in \lambda_{\varphi}(B)$. Since

$$\sup_{|z|=\rho} \frac{1-|z|}{\varphi(1-|z|)} |f_r^{[1]}(z) - f^{[1]}(z)| \leq 2 \sup_{|z|=\rho} \frac{1-|z|}{\varphi(1-|z|)} |f^{[1]}(z)| \to 0$$

as $\rho \rightarrow 1$, there is a $\rho_0 \in (0, 1)$ such that

$$\sup_{|z|=\rho} \frac{1-|z|}{\varphi(1-|z|)} |f_r^{11}(z) - f^{11}(z)| < s \tag{5}$$

for given s>0, $\rho\in(\rho_0, 1)$ and $r\in(0, 1)$. On the other hand, there exists an $r_0\in(0, 1)$ such that

$$\left|f^{\text{\tiny [1]}}(rz)-f^{\text{\tiny [1]}}(z)\right|\!<\!\varepsilon\varphi(1\!-\!\rho_0)$$

for $z \in \rho_0 \overline{B}$ and $r \in (r_0, 1)$. Thus

$$\frac{1-|z|}{\varphi(1-|z|)}|f^{\text{(1)}}(rz)-f^{\text{(1)}}(z)|<\varepsilon$$
(6)

for $z \in \rho_0 \overline{B}$ and $r \in (r_0, 1)$. Combining (5) and (6) shows that (6) is true in B. This gives $||f_r - f||_{A_o} \to 0$ as $r \to 1$.

The converse follows from the facts that $t/\varphi(t)\to 0$ as $t\to 0$ and $\lambda_{\varphi}(B)$ is a closed subspace of $\Lambda_{\varphi}(B)$.

§ 3. The Space $\Gamma_{\varphi}(B)$

Definition 4. Let $\varphi \in \Phi$. A function g holomorphic in B is said to be of class $\Gamma_{\varphi}(B)$, if

$$\int_0^1 \int_{\mathbb{R}} \varphi(1-r) \left| g^{(1)}(r\zeta) \right| d\sigma(\zeta) dr < \infty.$$

The norm of $g \in \Gamma_{\varphi}(B)$ is defined as

$$||g||_{P_{\bullet}} = \int_{0}^{1} \int_{s} \varphi(1-r) |g^{(1)}(r\zeta)| d\sigma(\zeta) dr.$$
 (7)

Theorem 3. (i) $\Gamma_{\varphi}(B)$ is a Banach space with the norm (7),

- (ii) $||g_r-g||_{\Gamma_{\varphi}}\to 0$ as $r\to 1$ for every $g\in \Gamma_{\varphi}(B)$,
- (iii) If there is a constant M with $||g_r||_{\Gamma_o} \leq M$ for every $r \in (0, 1)$, then $g \in \Gamma_{\sigma}(B)$ and $||g||_{\Gamma_o} \leq M$.

To prove this theorem we need the following Lemma.

Lemma 1. If $g \in \Gamma_{\varphi}(B)$, then for $r \in (0, 1)$

$$\sup_{|z| \le r} |g(z)| \le 2^{n+2} [r\varphi(1-r)(1-r)^n]^{-1} ||g||_{\Gamma_{\sigma}}.$$

Proof For $t \in (0, 1)$, $g_{(1+t)/2}^{(1)}$ is holomorphic in \overline{B} , the Cauchy integral formula gives

$$|g^{\text{(1)}}(t\zeta)| \leq \int_{s} \left|g^{\text{(1)}}\left(\frac{1+t}{2}\eta\right)\right| \left|1 - \frac{2t}{1+t}\langle \zeta, \eta \rangle\right|^{-n} d\sigma(\eta)$$

$$\leq \frac{2^{n}}{(1-t)^{n}} \int_{s} \left|g^{\text{(1)}}\left(\frac{1+t}{2}\eta\right) d\sigma(\eta),$$

where $\zeta \in S$. Thus

$$\begin{split} |g(r\zeta)| \leqslant & \frac{1}{r} \int_{0}^{r} |g^{\text{II}}(t\zeta)| \, dt \\ \leqslant & \frac{2^{n}}{r \varphi(1-r) (1-r)^{n-1}} \int_{0}^{r} \frac{\varphi(1-t)}{1-t} \int_{s} \left|g^{\text{II}}\left(\frac{1+t}{2} \eta\right) \right| d\sigma(\eta) dt \\ \leqslant & \frac{2^{n+2}}{r \varphi(1-r) (1-r)^{n}} \int_{0}^{1} \varphi(1-\rho) \int_{s} |g^{\text{II}}(\rho\eta)| \, d\sigma(\eta) d\rho \\ = & 2^{n+2} [r(1-r)^{n} \varphi(1-r)]^{-1} \|g\|_{P_{\bullet}} \end{split}$$

as claimed.

Proof of Theorem 3. (i) Let $\{g_k\}$ be a Cauchy sequence in $\Gamma_{\varphi}(B)$, it converges uniformly on any compact subset of B by Lemma 1, so it converges to a function g holomorphic in B, and

$$\int_{s} \left| g^{\text{[1]}}(r\zeta) \right| d\sigma(\zeta) = \lim_{k \to \infty} \int_{s} \left| g_{k}^{\text{[1]}}(r\zeta) \right| d\sigma(\zeta)$$

for any $r \in (0, 1)$. By Fatou's theorem

$$\begin{split} \int_0^1 \varphi(1-r) \int_s \left| g^{\text{\tiny{LI}}}(r\zeta) \left| d\sigma(\zeta) dr \leqslant & \lim_{k \to \infty} \int_0^1 \varphi(1-r) \int_s \left| g_k^{\text{\tiny{LI}}}(r\zeta) \left| d\sigma(\zeta) dr \right| \right. \right. \\ &= & \lim_{k \to \infty} \lVert g_k \rVert_{r_\varphi} < \infty. \end{split}$$

Therefore $g \in \Gamma_{\varphi}(B)$. Using the same method we have

$$\|g_k - g\|_{\Gamma_{\varphi}} \leq \underline{\lim_{l \to \infty}} \|g_k - g_l\|_{\Gamma_{\varphi}} \to 0$$
, as $k \to \infty$.

This shows that $\Gamma_{\varphi}(B)$ is a Banach space under the norm (7).

(ii) Let $g \in \Gamma_{\varphi}(B)$. Since

$$\varphi(1-\rho)\!\int_{s}\!|g_{r}^{\text{[1]}}(\rho\zeta)-g^{\text{[1]}}(\rho\zeta)\,|\,d\sigma(\zeta)\!\leqslant\!2\varphi(1-\rho)\!\int_{s}\!|g^{\text{[1]}}(\rho\zeta)\,|\,d\sigma(\zeta)\!$$

and

$$2\int_{0}^{1}\varphi(1-\rho)\int_{s}|g^{\text{Lil}}(\rho\zeta)|d\sigma(\zeta)d\rho=2\|g\|_{\Gamma_{\varphi}}<\infty,$$

we have

$$\lim_{r \to 1} \|g_r - g\|_{\Gamma_{\varphi}} = \lim_{r \to 1} \int_0^1 \varphi(1 - \rho) \int_{\mathbb{R}} |g_r^{[1]}(\rho\zeta) - g^{[1]}(\rho\zeta)| d\sigma(\zeta) d\rho = 0$$

by the Lebesgue dominant convergence theorem.

(iii) Choose $r_k \nearrow 1$ as $k \to \infty$, then $\int_s |g_{r_k}^{[1]}(\rho\zeta)| d\sigma(\zeta)$ is an increasing sequence for every $\rho \in (0, 1)$ by the monotonicity of the mean. Application of the Levi's lemma gives

$$\int_0^1 \varphi(1-\rho) \int_s |g^{[1]}(\rho\zeta)| d\sigma(\zeta) d\rho = \lim_{k \to \infty} \int_0^1 \varphi(1-\rho) \int_s |g^{[1]}_{r_k}(\rho\zeta)| d\sigma(\zeta) d\rho \leqslant M.$$
 The proof is complete.

§ 4. The Bounded Linear Functionals on the Spaces $\lambda_{\varphi}(B)$ and $\Gamma_{\varphi}(B)$

Let f, g be holomorphic in B and

$$f(z) = \sum_{k=0}^{\infty} \sum_{|\alpha|=k} a_{\alpha} z^{\alpha}, \quad g(z) = \sum_{k=0}^{\infty} \sum_{|\alpha|=k} b_{\alpha} z^{d}.$$

A calculation based on the formulas of [1, p.16] yields

$$\int_{s} f(\rho \zeta) \overline{g(r\rho^{-1}\zeta)} d\sigma (\zeta) = \sum_{k=0}^{\infty} \left(\sum_{|\alpha|=k} a_{\alpha} \overline{b}_{\alpha} \omega_{\alpha} \right) r^{k}, \tag{8}$$

where $0 < r < \rho < 1$ and

$$\omega_{\alpha} = \int_{s} |\zeta^{\alpha}|^{2} d\sigma(\zeta) = \frac{(n-1)!\alpha!}{(n-1+|\alpha|)!}.$$

We denote the limit of (8) as $r\rightarrow 1$, if it exists, by

$$(f, g) = \lim_{r \to 1} \sum_{k=0}^{\infty} \left(\sum_{|\alpha| = |k|} a_{\alpha} \overline{b}_{\alpha} \omega_{\alpha} \right) r^{k} = \lim_{r \to 1} \int_{s} f(\rho \zeta) \overline{g(r \rho^{-1} \zeta)} d\sigma(\zeta). \tag{9}$$

Lemma 2. If $f \in \Lambda_{\varphi}(B)$ and $g \in \Gamma_{\varphi}(B)$, then

(i) The limit of (8) exists and

$$|(f,g)| \leq C ||f||_{A_{\varphi}} ||g||_{\Gamma_{\varphi}},$$
 (10)

where the constant C is independent of f and g.

(ii)
$$\lim_{r\to 1} (f_r, g_\rho) = (f, g_\rho)$$

for any $\rho \in (0, 1)$.

Proof (i) By the definition of the fractional derivative

$$\int_{s} f^{(1)}(\rho\zeta) \overline{g^{(1)}(r\rho\zeta)} d\sigma(\zeta) = \sum_{k=0}^{\infty} (k+1)^{2} r^{k} \rho^{2k} \sum_{|\alpha|=k} a_{\alpha} \overline{b}_{\alpha} \omega_{\alpha}.$$
 (11)

Multiply both sides of (11) by $\rho \log \frac{1}{\rho}$, then integrate with respect to ρ on the interval (0, 1) and use the equality

$$\int_0^1 \rho^{2k+1} \log \frac{1}{\rho} d\rho = \frac{1}{4(k+1)^2},$$

we obtain

$$\sum_{k=0}^{\infty} \left(\sum_{|\alpha|=k} a_{\alpha} \overline{b}_{\alpha} \omega_{\alpha} \right) r^{k} = 4 \int_{0}^{1} \rho \log \frac{1}{\rho} \int_{s} f^{[1]}(\rho \zeta) \overline{g^{[1]}(r \rho \zeta)} d\sigma(\zeta) d\rho. \tag{12}$$

Applying the inequality $\rho \log \frac{1}{\rho} \le 1-\rho$, $(0<\rho \le 1)$, to (12) gives

$$\left| \sum_{k=0}^{\infty} \left(\sum_{|\alpha|=k} a_{\alpha} \overline{b}_{\alpha} \omega_{\alpha} \right) r^{k} \right| \leqslant 4 \| f \|_{A_{\varphi}} \int_{0}^{1} \int_{s} \varphi (1 - r\rho) \left| g^{[1]} (r\rho \zeta) \right| d\sigma(\zeta) d\rho$$

$$\leqslant \frac{4}{r} \| f \|_{A_{\varphi}} \| g \|_{F_{\varphi}}. \tag{13}$$

Letting $r\rightarrow 1$ in (13) gives (10) if the limit of (8) exists.

We now prove that the limit of (8) exists. By the equalit y (12) and Theorem 3 (ii)

$$\begin{split} & \left| \sum_{k=0}^{\infty} \left(\sum_{|\alpha|=k} a_{\alpha} \bar{b}_{\alpha} \omega_{\alpha} \right) r_{1}^{k} - \sum_{k=0}^{\infty} \left(\sum_{|\alpha|=k} a_{\alpha} \bar{b}_{\alpha} \omega_{\alpha} \right) r_{2}^{k} \right| \\ \leqslant & 4 \int_{0}^{1} \rho \log \frac{1}{\rho} \int_{s} \left| f^{\text{[1]}}(\rho \zeta) \right| \left| g^{\text{[1]}}(r_{1} \rho \zeta) - g^{\text{[1]}}(r_{2} \rho \zeta) \right| d\sigma(\zeta) d\rho \\ \leqslant & 4 \| f \|_{A_{\varphi}} \{ \| g_{r_{1}} - g \|_{\Gamma_{c}} + \| g_{r_{3}} - g \|_{\Gamma_{\varphi}} \} \to 0 \end{split}$$

as $r_1 \rightarrow 1$, $r_2 \rightarrow 1$. This completes the proof.

(ii) It follows from the Lebesgue bounded convergence theorem.

The following two theorems are the main result of the present paper.

Theorem 4. (i) For every $T \in \Gamma_{\sigma}^*(B)$, there exists a unique $f \in \Lambda_{\sigma}(B)$ such that

$$T(g) = (g, f)$$

for every $g \in \Gamma_{\varphi}(B)$, and

$$C' \| f \|_{A_{\varphi}} \leqslant \| T \|_{\Gamma_{\varphi}^*} \leqslant C \| f \|_{A_{\varphi}} \tag{14}$$

where the constants C, C' are independent of f and T.

(ii) Conversely, for every $f \in \Lambda_{\varphi}(B)$,

$$T_f(g) = (g, f)$$

defines a bounded linear functional on $\Gamma_{\sigma}(B)$ and

$$||T_f||_{\varGamma_{\Phi}^*} \leqslant C||f||_{\varLambda_{\Phi}},$$

where the constant C is independent of f.

Proof (i) Suppose $T \in \Gamma_{\sigma}^{*}(B)$, and define

$$f(z) = \sum_{k=0}^{\infty} \sum_{|\alpha|=k} \overline{T(z^{\alpha}/\omega_{\alpha})} z^{\alpha}.$$
 (15)

A simple estimate gives

$$||z^{\alpha}||_{\Gamma_{\varphi}} = \int_{0}^{1} \varphi(1-r) \int_{s} (|\alpha|+1) r^{|\alpha|} |\zeta^{\alpha}| d\sigma(\zeta) dr \leqslant \varphi(1) \sqrt{\omega_{\alpha}}.$$
 (16)

Using (16) and Schwarz inequality, we obtain

$$\begin{split} \Big| \sum_{|\alpha|=k} \overline{T(z^{\alpha}/\omega_{\alpha})z^{\alpha}} \, \Big| &\leqslant \|T\|_{\Gamma_{\varphi}^{k}} \sum_{|\alpha|=k} \frac{1}{\omega_{\alpha}} \|z^{\alpha}\|_{\Gamma_{\varphi}} |z^{\alpha}| \\ &\leqslant \varphi(1) \, \|T\|_{\Gamma_{\varphi}^{k}} \Big(\frac{(n+k-1)!}{k! \, (n-1)!} \Big)^{\frac{1}{2}} \Big(\sum_{|\alpha|=k} \frac{1}{\omega_{\alpha}} |z^{\alpha}|^{2} \Big)^{\frac{1}{2}} \\ &\leqslant \varphi(1) \, \|T\|_{\Gamma_{\varphi}^{k}} \frac{(n+k-1)!}{k! \, (n-1)!} |z|^{k}. \end{split}$$

This shows that the series (15) converges uniformly on any compact subset of B and so f is holomorphic in B. We now prove that $f \in \Lambda_{\varphi}(B)$. Fix $\eta \in S$ and let

$$h(z) = \sum_{k=0}^{\infty} (k+1) \sum_{|\alpha|=k} (\overline{\eta^{\alpha}}/\omega_{\alpha}) z^{\alpha}.$$

By the continuity of T,

$$T(h_r) = \sum_{k=0}^{\infty} (k+1) \left(\sum_{|\alpha|=k} T(z^{\alpha}/\omega_{\alpha}) \overline{\eta^{\alpha}} \right) r^k = \overline{f^{\text{[ii]}}(r\eta)}, \quad 0 < r < 1$$

and

$$|f^{[1]}(r\eta)| \leq ||T||_{\Gamma_{\sigma}^{*}} ||h_{r}||_{\Gamma_{\sigma}^{*}}.$$
 (17)

Since $\{z^{\alpha}/\sqrt{\omega_{\alpha}}\}$ is a complete orthogonal system in B and orthonormal on S, we see that $\sum_{k=0}^{\infty} \sum_{|\alpha|=k} (z^{\alpha}/\sqrt{\omega_{\alpha}}) (\overline{\eta^{\alpha}}/\sqrt{\omega_{\alpha}})$ is the Cauchy-Szego kernel of B, i.e.

$$\sum_{k=0}^{\infty} \sum_{|\alpha|=k} (z^{\alpha} \overline{\eta^{\alpha}})/\omega_{\alpha}) = (1-\langle z, \eta \rangle)^{-n} = C(z, \eta).$$

By the formula of [1, p. 18]

$$\int_{s} |C^{\text{C2J}}(r\rho\zeta,\,\eta)| d\sigma(\zeta) \leqslant A \int_{s} |1-\langle r\rho\zeta,\,\eta\rangle|^{-(n+2)} d\sigma(\zeta) \leqslant A(1-r\rho)^{-2},$$

where A is a constant. Thus

$$||h_r||_{\Gamma_{\varphi}} = \int_0^1 \varphi(1-\rho) \int_{\mathfrak{s}} |C^{[2]}(r\rho\zeta, \eta) |d\sigma(\zeta) d\rho$$

$$\leq A \int_0^1 \frac{\varphi(1-\rho)}{(1-r\rho)^2} d\rho \leq \frac{A}{r} \frac{\varphi(1-r)}{1-r}$$
(18)

by the property (iii) of φ . Combining (17) and (18) shows that $f \in A_{\varphi}(B)$ and

$$||T||_{\Gamma_{\bullet}^*} \geqslant C' ||f||_{A_{\bullet}^*} \tag{19}$$

Now let $g \in \Gamma_{\varphi}(B)$ and $g(z) = \sum_{k=0}^{\infty} \sum_{|\alpha|=k} b_{\alpha} z^{\alpha}$,

$$T(g_r) = \sum_{k=0}^{\infty} \left(\sum_{|\alpha|=k} b_a T(z^a/\omega_a) \omega_a \right) r^k. \tag{20}$$

Because of the continuity of T and $\|g_r - g\|_{\Gamma_p} \to 0$ as $r \to 1$, letting $r \to 1$ in (20) implies

$$T(g) = \lim_{r \to 1} \sum_{k=0}^{\infty} \left(\sum_{|\alpha|=k} b_{\alpha} T(z^{\alpha}/\omega_{\alpha}) \omega_{\alpha} \right) r^{k} = (g, f).$$

On the other hand, by Lemma 2

$$|T(g)| \leq C ||g||_{\Gamma_0} ||f||_{A_0}$$

hence

$$||T||_{P_{\phi}^{*}} \leqslant C||f||_{A_{\phi}}.$$
 (21)

Combining (19) and (21) gives (14).

The proof of the uniqueness of f is easy. If there exists another $\tilde{f} \in \Lambda_{\varphi}(B)$ with $T(g) = (g, \tilde{f})$ for every $g \in \Gamma_{\varphi}(B)$, then

$$(g, f - \tilde{f}) = 0 \tag{22}$$

for every $g \in \Gamma_{\varphi}(B)$. Taking $g = z^{\alpha}$ in (22) gives $f - \tilde{f} = 0$.

(ii) Conversely, by Lemma 2, (g, f) exists for $g \in \Gamma_{\varphi}(B)$ and $f \in \Lambda_{\varphi}(B)$ and $|(g, f)| \leq C \|g\|_{\Gamma_{\varphi}} \|f\|_{\Lambda_{\varphi}}$.

This shows that $T_f(g) = (g, f)$ is a bounded linear functional on $\Gamma_{\varphi}(B)$, and

$$||T_f||_{\Gamma_{\varphi}^*} \leqslant C ||f||_{A_{\varphi}^*}$$

This completes the proof.

Theorem 5. (i) For every $F \in \lambda_{\varphi}^*(B)$, there exists a unique $g \in \Gamma_{\varphi}(B)$, such that F(f) = (f, g)

for every $f \in \lambda_{\omega}(B)$, and

$$C' \|g\|_{\Gamma_{\bullet}} \leq \|F\|_{\lambda_{\bullet}^{*}} \leq C \|g\|_{\Gamma_{\bullet}^{*}}. \tag{23}$$

(ii) Conversely, for every $g \in \Gamma_{\varphi}(B)$,

$$F_g(f) = (f,g)$$

defines a bounded linear functional on $\lambda_{\varphi}(B)$ and

$$\|F_g\|_{\lambda_p^s} \leqslant C \|g\|_{\Gamma_{oldsymbol{\phi}^o}}$$

Proof (i) Let $F \in \lambda_{\varphi}^*(B)$ and define

$$g(z) = \sum_{k=0}^{\infty} \sum_{|\alpha|=k} \overline{F(z^{\alpha}/\omega_{\alpha})} z^{\alpha}.$$

We first prove that g is holomorphic in B. For given $\zeta \in S$, a not hard computation gives

$$\sum_{k=0}^{\infty} \left(\sum_{|\alpha|=k} \frac{|\zeta^{\alpha}|^2}{\omega_{\alpha}} \right) r^k = (1-r)^{-\frac{n}{2}}. \tag{24}$$

A more general formula about (24) may be found in [2, Theorem 4.5.1]. Thus

$$|\zeta^{\alpha}| \leqslant \sqrt{\omega_{\alpha}} r^{-\frac{k}{2}} (1-r)^{-n}, |\alpha| = k$$

and

$$\|z^{\alpha}\|_{A_{\varphi}} = \sup_{z \in B} \frac{1 - |z|}{\varphi(1 - |z|)} (|\alpha| + 1) |z^{\alpha}| \leq \frac{k + 1}{\varphi(1)} \sqrt{\omega_{\alpha}} r^{-\frac{k}{2}} (1 - r)^{-\frac{n}{2}}$$

by the increasing property of $t/\varphi(t)$ and the maximum principle. Let $|z| \le r < 1$, then

$$|z^{\alpha}| = r^{|\alpha|} |(z/r)^{\alpha}| \leqslant r^k \sup_{\zeta \in s} |\zeta^{\alpha}| \leqslant \sqrt{\omega_{\alpha}} r^{\frac{k}{2}} (1-r)^{-n}$$

so that

$$\frac{1}{k+1} |F(z^{\alpha}/\omega_{\alpha})z^{\alpha}| \leq ||F||_{\lambda_{x}^{\alpha}} (\varphi(1))^{-1} (1-r)^{-\frac{n}{2}}.$$

This shows that the function

$$\sum_{k=0}^{\infty} \frac{1}{k+1} \sum_{|\alpha|=k} \overline{F(z^{\alpha}/\omega_{a})} z^{\alpha}$$
 (25)

is holomorphic in rB and so is holomorphic in B since the arbitrariness of $r \in (0, 1)$. Therefore g, the fractional derivative of order 1 of (25), is holomorphic in B.

Now let
$$f \in \lambda_{\varphi}$$
 (B) and $f(z) = \sum_{k=0}^{\infty} \sum_{|\alpha|=k} a_{\alpha} z^{\alpha}$, then
$$F(f_r) = \sum_{k=0}^{\infty} \left(\sum_{|\alpha|=k} a_{\alpha} F(z^{\alpha}/\omega_{\alpha}) \omega_{\alpha} \right) r^k. \tag{26}$$

Let $r\rightarrow 1$ in (26), we obtain

$$F(f) = \lim_{\alpha \to 1} \sum_{k=0}^{\infty} \left(\sum_{|\alpha| = k} a_{\alpha} F(z^{\alpha}/\omega_{\alpha}) \omega_{\alpha} \right) r^{k} = (f, g)$$
 (27)

by the continuity of F and Theorem 2 (iv).

To prove $g \in \Gamma_{\varphi}(B)$, we note that the norm of $h \in \Gamma_{\varphi}(B)$ can be written as

$$||h||_{\Gamma_{\varphi}} = \sup_{T \in \Gamma_{\varphi}^{*} T \neq 0} \frac{|T(h)|}{||T||_{\Gamma_{\varphi}^{*}}}$$

by a corollary of Hahn-Banach theorem, and

$$||h||_{\Gamma_{\varphi}} \leqslant C \sup_{f \in A_{\varphi}, f \neq 0} \frac{|(h, f)|}{||f||_{A_{\varphi}}}$$

$$\tag{28}$$

by Theorem 4. Now $f_r \in \lambda_{\sigma}(B)$, $g_{\rho} \in \Gamma_{\sigma}(B)$ for any $f \in \Lambda_{\sigma}(B)$ and $r, \rho \in (0, 1)$, by (27) and Theorem 2 (iii), we have

$$|(f_r, g_\rho)| = |(f_{r\rho}, g)| = |F(f_{r\rho})| \le |F|_{\lambda_{\theta}} |f_{r\rho}|_{A_{\phi}} \le |F|_{\lambda_{\theta}} |f|_{A_{\phi}}$$

and

$$|(f, g_0)| \leq ||F||_{\lambda_0^*} ||f||_{\Lambda_0}$$

by Lemma 2 (ii). Thus $\|g_{\rho}\|_{\Gamma_{\varphi}} \leq C \|F\|_{\lambda_{\varphi}^{\varphi}}$ by (28). This gives $g \in \Gamma_{\varphi}(B)$ and

$$\|g\|_{r_{\bullet}} \leqslant C \|F\|_{\lambda_{\bullet}^{\bullet}} \tag{29}$$

by Theorem 3 (iii). Using Lemma 2 again yields

$$||F||_{\lambda_{\mathfrak{s}}^*} \leqslant C||g||_{r_{\mathfrak{s}}}. \tag{30}$$

Combining (29) and (30) gives (23).

The proofs of the uniqueness of g and the second part of Theorem 5 are the same as that of Theorem 4.

References

- [1] Rudin, W., Function theory in the unit ball of Cn, Springer-Verlag, 1980.
- [2] Hua, L. K., Harmonic analysis of functions of several complex variables in the classical domains, Transl. of Math. Monog. 6, Amer. Math. Soc. Providence, R. I. (1963).
- [3] Лёвщина, Г. Д., Линеиные функционалы над пространствами липщица голоморфных функций в единичном круге, Математические заметки, 33 (1983), 679—688
- [4] Mitchell, J. and Hahn, K. T., Representation of linear functionals in H^pspaces over bounded symmetric domains in Cⁿ, J. of Math. Anal. and Appl. 56 (1976), 379—396.
- [5] Matheson, A., Mean growth and smoothness of analytic functions, Proc. Amer. Math. Soc., 85 (1982), 219—224.