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REPRESENTATION OF LINEAR FUNCTIONALS
ON LIPSCHITZ SPACES 4, OF FUNCTIONS
HOLOMORPHIC IN THE UNIT BALL OF <

SuI JIEUAT (£ F ) *

Abstract

In this paper three spaces 4,(B), Ax(B) and I',(B) of functions holomorphie in the
unit ball of €» are defined and the representations of linear functionals on A,(B) and
I',(B) are obtained.

8§ 1. Introduction |

Let B denote the unit ball of C*,- § denote its boundary, o denote the positive
rotation—invariant measure on § with ¢(8)=1 and A(B) denote the class of
functions holomorphic in B and continnous on B,

Let @ denote the class of functions @: [0, 1]—[0, oo) satlsfylng the following
conditions:

(1) @ is continuous, increasing and ¢(0) =0, p(¥) #0 if ¢+0,

(ii) t/p(t) is increasing and /¢ (t)—>0 as t—>0,

(i) j ng(t) Jidt=0(p(3)) and f :q)(t) J£d8=0(p(3)/8) for 3>0.

Definition 1. Let p €D. A function fE€ A(B) is said to be of class 4,(B) if its
boundary function satisfies the Lipsohitz condition

| (exp (G (6-+7))0) —F (exp () | <Ko (|])
Sfor LES and 6, hER, where the constant K is independent of 6, k and €.
" In the case ¢(#) =%, 0<a<<1, we get the usual Lipschitz spaces.

Recently G.D. Lyevshina™® studied the representation of linear functionals on
Lipschitz spaces 4, in the unit dise. In the present paper we will study the same
problem in the unit ball of C".

§ 2. The Spaces 4,(B) and A,(B)

If f is holomorphic in B with expansion in terms of homogeneous polynomialg
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given by f(2) = ng(z), as usual, for a>>0, we define the fractional derivative f*!
and the fractional integral fi,; of order a of f by the following formulas respectively.

fo@ = 3 LEED g,

.fl:u] (z) %m F,,(z),
. £,z are holomorphic in B™»-389,
Theorem 1. Suppose f is holomorphic in B and ¢ E®D. Then fEA,(B) if and
only if
o) | <x 2220 o

for LER and rE [0, 1), where the constant K is independent of { and r.

Proof In the case n=1, the proof of theorem may be found in [5, Lemma 2
" and Lemma 8]. We now assume n>1 and let f&€A4,(B). Since f€ A(B), if leb
f.M) =0, (€8, LeC, [A]| <1, then f,€ A(U), where U is the unit dise and
A(U) the disc algebra. of U. Application of the necessity of the case n=1 gives

<K 24D,

where the constant K is independent of {. Thus (1) follows from the equality
OGO = fi )+ @D, e

Oonversely, if f satisfies (1), since |
ofe ) =5 | = | [ h1 as| = [ rocnal
<KI -——Q—Q-dKK lp(1—¢) +p(1—¢")]—0

as 7'—>1, r"->1 by the properties (i) and (iii) of p, we see that f(r{) converges,
uniformly on § as r—1, to a limit that we call f({); this extends f to §. The
continuity of f in B and f£({) on § shows that f is continuous on B, in other words,
FEA(B). OOmbmmg the equality (2) and inequality (1), we have

ey <K LD,

By the sufficiency of the caée n=1, f, is of class 4,(U). Thus

| Fexp(3(8+h))) — £ (oxp (1)) | <K p([h])
for { €8 and 6, A €R. This completes the proof.
On the basis of Theorem 1, we have

Definition 8. Let pE€® and feAq, (B), define the norm of f as

I S LI B PTY
Wlams3p 55~ oy 1O (®)
Definition 8. Let p €D and f € A,(B), we say that f is to be of class M, (B) if
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(p(ll—'_ I’i‘zz—'_!l 3 |f @) [0, as [2|>1.

Theorem 2. (i) 4,(B) is a Banach space with the norm (8).

(ii) Ay (B) is & closed subspace of A, (B).

(iii) If FEA,(B), then | frla,<}fla, for r€ (0, 1), where
F@=fa.

(iv) fEAM(B) if and only ¢f f € A,(B) and|f,—f]a,—0 as r—>1,

Proof (i) Let {fi} be a Cauchy sequence in 4,(B). By the definition of the
norm of A4,(B),

1
£19) ﬂW@|<¢l_ﬁ'>ijwM<¢<)mﬁ fila,
for 2 € pB, where pB is the ball of radius p centered at the origin. Therefore {fi

converges uniformly on any compact subset -of B, so it converges to a function ¢

holomorphic in B. Let f=gy,, then f™=g, We now prove that f€.4,(B). Since

{fs} is a Cauchy sequence in A,(B), there is a constant M with | fi] 1, <M, k=1, 2,
-+, For given p € (0,1), there exists a positive integer ko such that

IfB @) =) | <e(l-p)
for 2€pB and k>ko, and - . .

2 {1 [13 _ 1’ ‘
e ru OIS P ORS OIEI VA FES RS S

for z € pB. Letting p—1 in (4) glves f€4,(B). To prove {fi} converges to f in
A4,(B), we note that : :

j%%WW%)W®IMfMG
for 2€ B and %, 1 sufficiently large. Fixing ¥ and letting I—>co yield
| | "fk-"fﬂﬁw<8
for & sufficiently large. This completes the proof.

(i) Let {fi}<h,(B) and {fi} converges to f in 4,(B). For given &>0, there
exists a positive integer ko such that | fu— f|s,<e for k>ko. Fix k>k, there is an
70€ (0, 1) such that o -
|z[ iy <.s- o
for ro< |z l<1 since f €y (B). Thus

— |z | 11 1._ |z] . |
¢(1 l |) If[ (Z>I "fk f"‘dﬂ (1___Iz l)' If[ ]<Z>l<2s

for ro<< |2 <1. Hence f €A, (B).
(iii) It follows from the property (ii) of p.
(iv) Let f€MN,(B). Since
|2

Sy PO -7 <ag St 01
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as p—>1, there is a po € (0, 1) such that

113 b 5
Izl o (p(l I PO (z)|<8 )
for given >0, p€ (py, 1) and #€(0, 1). On the ofther hand, there exists an
ro € (0, 1) such that | ' '
[f™ (r2) — f™(2) | <ep(1—p0)
for € po B and € (v, 1). Thug

et 17 1) | <s S ®

for 2 € poB and r € (r,, 1). Combining (5) and (6) shows that (6) is true in B. This
gives | fe—f|4,—0 as r—1.

The converse follows from the facts that §/p(¢)—0 as >0 and A,(B)is a closed
subspace of 4,(B).

§3. The Space I'y(B)

Definition 4. Let p € D. A function g holomorphw in B is said o be of olass
Ir',(B), if A o
1
[ [, 0=0 1920 do Qdr<oo.
The norm of g€ I',(B) is defined as

l9lz,= [ p(1=0) [5G0 | do Q. ™

Theorem 8. (i) I, (B). 4s & Banach space with the norm (7),

(ii) lgr—9glr,0 as r—1 for every g€ I',(B), '

(di1) If there is a constant M with |g.|r, <M for every r € (0 1), then g€ I',(B)
and |gr, <M.

To prove this theorem we need the following Lemma,

Lemma 1. If g€I'y(B), then for r& (0, 1)

sup [g(2) | <2 [rp(l—r) A~r)"T gl

Progf For t&(0, 1), gL,y is holomorphic in B, the Cauchy integral formula
gives ’

| g™ G0 | <j

gm(”t )| [1=52 <& > | "o (o)

1+t )do'("?):

where { €8. Thus



No.2  8hki,J. H. REPRESENTATION OF FUNCTIONALS ON LIPSCHITZ SPACES 193

9GO <] 192D |

gr * o(1—1)
<'1"9’(1—40 L—-r)t jo <p1—t L

() s

2n+2 .

<=y )7L~ ), 167 ldo (r)dp
=22 [r(1—r)"p (1~1)1"*|glx,

as claimed. .

Proof of Theorem 8. (i) Let {gy} be a Cauchy sequence in I",(B), it converges
uniformly on any compact subset of B by Lemma 1, so it converges to a function g¢
holomorphic in B, and o

[ 126D do @ =tim| |0 (D) o @)
for any r € (0, 1), By Fatou’s theorem _ _ _
1 ) 1 .
[l =n | |F26D e @ar<tim| o1 - o |90 1de @ ar
=k£ne{|gullr¢<°°-
Therefore g € I',(B). Using the same method we have
| 94— gl r,<Lima| g — gs| r,>0, as k—>oo.
R 100 o
This shows that I',(B) is a Banach space under the norm (7).
(i) Let gEFq, (B). Since

p(1—p) | 19(o) — 9200 |do Q) <2p (1—p) | |92 (61) | a0 D)

and

2 0= 0 [ 192(o) ldo ©dp=21glr, <o,

we have .
lim] g, glr, ~lm [ (1 = p) 198 (1) ~ 4(6) | dr (D)o =0
by the Lebesgue dominant convergence theorem, | |
(iii) Choose r 1 as k—>co, then L | gt (L) |do ({) is an increasing sequence for

every p € (0, 1) by the monotonicity of the mean, Application of the Levi’s lemma
gives | '

[0 =p] 1970 4o ©dp=lim{ ¢ = ) 168 (D) |do ) dp<t.
The proof is complete, '

§ 4. The Bounded Linear Funct'onals on the
Spaces A,(B) and I';(B)

Let f, g be holemorphic in B and
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o= S o — ST d
f® 7§) |§kw“z » 9@) IE xagrc bat.
A caleulation based on-the formulas of [1, p. 16] yields

ST © = 5 a0 ®
where 0<fr<p<1 and

_ alg i’ _ (n—l)! 1
or Ltc [2der(2) (n_mfm

* 'We denote the limit of (8) as r—>1, if it exists, by
(9=l 3 (S abuwn) o =lim| fOFEE D@, )
Lemma 2. If f€4,(B) and gE€I,(B), then
(i) The limit of (8) ewists and '
| (s DI<Olflalglrn, ' (10)

where the constani C is independent of f and ¢.
(ji) : lj._’gl(f,-, gP) = (f} gp)

Jor any p€ (0, 1).
Proof (i) By the deﬁn1t1on of the fractlonal derlvatlve :
[ SO @ = 5 G e B b ()

Multiply both sides of (11) by p log %, then integrate with respect to p on the

interval (0, 1) and use the equality

jl i1 ]og ._j-_d - 1
o T p P 4(k+1)2°

we obtain

2 > tabawa)r® ——4J plog —J fEi](PZ>9m(’)“pc>dO'(C)dp | (12)

lotl =k

Applymg the inequality p log %<1 p, (0< p<1), o (12) glves

|g< S g awM

lal=k

<4uf||,1q,H p(1— rp)lgm(rpolda(odp

<1 flalglz, | (18)

Letting #—>1 in (18) gives (10) if the limit of (8) exists.
We now prove that the limit of (8) exists. By the equalit ¥y (12) and Theorem

8 (i)

kﬁ}( P “a batre) TF— g( E Qo awa)’l'z

<4 plog [ 17GL) | |9 (ru00) — ™ (rapl) |do Qo
<elflalan—gle+lgn— gl 0
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e

as r1¥->1 re—>1. This completes the proof.
(i) It follows from the Lebesgue ‘bounded convergence theorem.
The followmg two theorems are the main result of the present paper.
Theorem 4. (1) For efveq'g/ TeTI,(B), there emsts a unique fE€ A4, (B) such
that .
- | T@=@n
for every g &€I',(B), and ‘
: Ol fla<ITIs<Olflay- - - (14
where the constanis O, O’ are independent of f and T
(11) Conversely, for every f€A,(B),
Ti(g) = (g, f )
defines a bounded linear funotional on I',(B) and
[T 2 <O fl 4y
awhere the constant O i @ndependent of f.
Proof (i) Suppose T €I"(B), and define

F©=3 3 TGy, )
A simple estimate gives ' '
11z, o1 = ) (18] + D L] do (Odr < p (O Ve (16)
Using (16) -and Schwarz inequality, we obtain
| 3 T@Tw# | <ITlr B eI, ||

b=

<o nTnp;i,;’b—;%——,f“:f}—f—lzlk.

This shows that the series (15) converges uniformly on any compact subset of B
and so f is holomorphle in B. We now prove that f € 4,(B). Fix n€8 and let

@)= J WD) B, OF ey
By the continuity of 7',

7 (hy) = kﬁ E+D( 3 T(z"‘/wa) ) o= fm(m)', 0<r<1
and =

‘fm(’“?) | <IT') gl el e : an
Since {2"/~/ @, } is & complete orthogonal system in B and orthonormal, on S, we

see that % g (2% /N @q) (/N @) is the Cauchy-Szego kernel of B, i.e.
=0 |a|= :

é"‘d ldl2=k (za%-a‘)/“’a) - (1~<z, m) _"’—‘Q'(z, 7).
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By the formula of [1, p. 18] ‘
f, |0 (rpl, ) |do () <Af 1=l w |4 do (O <A(1-rp)7,
where 4 is a constant, Thus I - B
Itulr, = p (1~ p>J IO“*"(rpL Pldo @

1 o(1=p) | A (1 r) .

by the property (iii) of ¢. Ooxﬁbining 17) and (18) shows that f €4,(B) and

P10 L SR T
Now let g€ I',(B) and g(2) = 5% 2‘, 'baz“,' | |
)= 2 (Z BT odad® @)

Beeause of the continuity of 7' and | g,— g| r,—> O as r—>1, letting r—>1 in (20) implies
T(g)= hmZ( 22, 0T &%/ wa)wa)r= (g, f)

—1 k=0
On the other hand, by Lemma 2 -
IT (Di<e llgllmllf lagr
hence
~T l!p¢<0 | flap _ - ()
Conibining (19) and (21) gives (14) :
The proof of the uniqueness of f is easy. If there exists another f€4,(B) with -
T(g)=(g, F) for every g€ I',(B), then |
(g: f_.?) =0 (22)'
for every g€ I',(B), Taking g=2* in (22) gives f—F=0.
(ii) Conversely, by Lemma 2, (g, f) exists for g€ I',(B) and f€4,(B) and
g, HI<Clglr,| 14,
This shows that T';(g) = (g, f) is a bounded linear functional on I',(B), and
NTs <O f | 4,0

This completes the proof. v
Theorem §. (i) For every F EN(B), there emists & unique g €I',(B), such that

F (f ) = (f ) g)
Jor every f €A, (B), and . o
O'lglr,<|F|:<O|glr, (23)
(u) OOnverrsely, for overy g €1, (B), '
: Fo(f)=(f ,g) '
defines a bounded linear functiondl on A,(B) and
" Fy| AN

Proof (i) Let FEM(B) and define
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9(2) = ;; D FE o #
We first prove that ¢ is holomorphioc in B. For given ¢ €8, a not hard computation
gives

g( 5. I4dls ) k_;.(i% })'% (24).'

lai=k wa

A more general formula about (24) may be found in [2, Theorem 4.5. 1]. Thus
Lol <V T A=), o] =k
and
4,==sup —-——‘-———q’(l —lz| (|a|+1)|z°‘|<k—(%~/war T(1—r) -%
by the inoreasing property of #/p(#) and the maximum prinoiple. Let |2|<r<1,
then :
| || =r'!| (&/)* |<fr supli“l<~/ al (1 )™
go that
| - |F<z“/w¢>z“|<1|Fua-<¢<1>>-1(1 .

This shows that the function
< 1 % 0%
,;, ) |2 F(2 /wa)z (25)

o=k
is holomorphio in rB and so is holomorphic in B since the arbitrariness of »& (0, 1).

Therefore g, the fractional derivative of order 1 of (25), is holomorphic in B.

Now let fEA, (B) and f(2) = g |;|2=k a2, then N
| F(f) = g< Ekaazr(zw/wa)waw. | (26)
Let r—1 in (26), we obtain | _
P(f)=1im 3} ( 3} acF @/w)odr=(f, 9) e

by the continuity of F and Theorem 2 (iv).
To prove g€ I',(B), we note that the norm of A€ I',(B) can be written as

hlr,= sup WL

Tery T+0 T I1

by a corollary of Hahn-Banach theorem, and

| Ch, £)
ﬂhllf <OreSAI:,?aeo i |A¢ (28)
by Theorem 4. Now f,EA,(B), 9,€ ';(B) for any f €4, (B) and r, p€(0, 1), by
(27) and Theorem 2 (iii), we have

| Frr 9| =1 Gror D=1 FGeo) | SIFLigl Frol s <IF lisl Fh o

| (f5 9 |<IFlss] fllas
by Lemma 2 (i1). Thus | g,|r,<O|F s by (28). This gives g€ I',(B) and

and
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19l <Ol 7| (29)
by Theorem 3 (111) Using Lemma 2 again yields
o |F]:5<OClyg|r,. | T (30)

Oombining (29) and (80) gives (23).
The proofs of the umqueness of ¢ and ‘the second part of Theorem 5 are the

same as that of Theorem 4. .
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