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GLOBAL CLASSICAL SOLUTIONS OF THE
CAUCHY PROBLEMS FOR NONLINEAR |
VORTICITY EQUATIONS AND
ITS APPLICATIONS

Mv Mu (% #)*

Abstract
In this paper, the definition of a vorticity equatlon on a compact Rlema.nman
manifold without boundary is given. Some accurate a priori estimates are obtained with -
the use of the peculiarity of the equation. Then, the existence and “uniqueness” of global
classical solution of the Cauchy problem for the equatmn is proved. As.its application,

the existence and “uniqueness” of Cauchy problem for barotropic nondlvergent model is
obtained. The model is a fundamental one in atmospheric dynamies.

§1. I_ntroduction

Barbf»r‘opib nondivergent model is a fundamental one in atmospherioc dynamics.
In 1950, with the use of electronio computer, the first' successful numerical
weather prediction was made by Charney by use of this model. The following
Cauchy problem for this model which corresponds to the global weather prediction
is frequently investigated™. ’

{‘%‘Ampﬁ}fﬂtp, A+ T (f, 200030) =0, in % (O+0),  (1.D)

Mpliso=tbo, | | (1.2)
where i is unknown funetion (stream function) of independent variables (A, §, £);
A is longitude, 0<?\.<2av; 6 is colatitude (i.e. the North Pole corresponds to the
point §=0), 0<O<w; ¢ is time; @ is radius of the earth; o is angular speed of the
rotation of the earth; §2={(A, 6)' |0<A<2m; 0<<f<w} is the unit sphere of R?;

~1 o, 1 &
A= sin0<aes in g+ sma‘a;@)
is the laplacian on §% .
oF oG _ oF oG
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Equation (1.1) known as vorticity equation is the most simple model in atmospheric
dynamics. It desoribes the general character of atmospheric motion caused by
Qoriolis force and gravity. Up to now Equations (1.1), (1.2) still play an important
role in the theory of atmospheric dynamics. The well-posedness of it was considered
by many authors. In 1959, the existence and the “uniqueness” of the classical
solution of the Cauchy problem for the linearized equation was proved'. In 1964,
Tan and others® proved the existence and “uniqueness” of generalized solution of

‘the Cauchy problem for the quasilinearized equation. In 1979, Zeng™ proved that

the local weak solution of Equations (1.1), (1.2) exists anb and two classical
solutions of Equations (1.1), (1.2) merely differ by a function depending on time
¢ only. In this paper, the existence and “uniqueness” of global classical solutoin
of Equations (1.1), (1.2) is given (The precise meaning of uniqueness will be
explained in the following sections).

For convenience’s sake of mathematical treatment, we now introduce the
definition of vorticity equation on a Riemannian manifold. Equation (1.1) is one
of this type. ,

Let M be an n-dimensional, compact, oriented O“-Riemannian manifold
without boundary. {Q;, ;) is a O~-atlas on it. Q; = i(2) C B .o = (af, -+, @)
denotes an arbitrary point in &;.(P, ) is a point in Mx [0, +oo). If F is a
function defined in M X [0, +o0), we write F;=Fog;* defined in Q;% [0, +o0).

Let T (P, t) be a given 2-order contravariant tensor field on M which depends
on parameter ¢ smoothly. In each &; % [0, -+ o0), T (P, #) can be designated by
functions {r}s (@, £)}% s=1. We also assume that R (P, ¢), i?:(P ), Bo(P, t) are
three given O~-vector fields on M, which also depend on parameter ¢ smoothly,

i (R) ={ri(’, )}, o1 (B) = 7L, 1) Yor, o1 (Bo) = {rba(et, §)}ius.

For any differentiable function »(P, ¢) defined on M x [0, +<0), we define

on M a family of vector fields W(T, R, ﬁ, v) varying with parameter ¢ as follows:

W@, B, B, 0)(?, )= 7"+ { 3 rta@’, 1) L2 +ri(@, 1)+ 740, 3,

when (P, 1) =p7i(af, £) €Q;% [0, +o00).
We will always abbreviate W(7', R, ﬁ, v) to W(w).

Let b and @ be two given smooth functions defined on M X [0, +o0). We define
first-order linear partial differential operators Ly, s and Lg, 4 as follows:

(Low wy, o) 07 (&, $)
=E[Zm(w’ t) -+ra(w’ t)vs+ 15, t)] +bsun

(Lgy,yw) op5* (2, 1) = 2 s (o, t) j L+ dyy,
when (P, t) =@71(af, £) €Q;x [0, +00),
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Here and afterwards,  is a differentiable function defined on M X [0, +o0).
Lastly, let A be a second—order linear elliptic operator on M with smooth
coefficients not depending on ¢. We define

L (% @) = (-—gt* +Lew, b))A“"" Lig,at

and call L(u, u) a vorticity operator on M.
In the paper, we consider the following Uauchy problem
{(——a—+L(W(,,),,,))Au+Lm,,d)u=f , in M x [0, +o0), 1.8)

A} o= Aus, ‘ 14

where « is an unknown function, % and f are given funciuons _

Generally speaking, A=0 may be an eigenvalue of operator 4. In Equations
(1.1), (1.2), A=0 is an eigenvalue of Laplacian 4 on the unit sphere §%. It is just
the difficulty in solving the (auchy problem. Observlng Equation (1.1) carefully,
we are ingpired o make the following assumptions in this paper.

(H1). A is a second—order self-adjoint elliptic operator.

(H2). Let N ={u|Au=0 in M}. Then, for any differentiable function u(P, ),
U, ), v(P,t), : L
Loww,vy w(®) LN, Leg,oU (8) LN, Vt>0 (1-5)
hold, where f_| N means (f, 9) z =0, VgEN. Co

It is easy to verify that Equations (1.1), (1.2) satisfiy (HL1), (H2) In fact,
now A=A is a self-adjoint operator. N = {ulu constant} and '

Lewwou (@) = 7 J(v(¢), u(t)_),

Lg,oU @) =J (U(t), 20 cos ). Because J’s, J(F, @) ds=0 for any differentiable

functions F, @, the equality (1.5) holds. Thus, (H2) is also satisfied.
In the paper, all functions and all functional spaces are real ones.

§ 2. Elliptic Problem and A Priori Estimates

At first, we introduce Sobolev space W*?(M) and Horlder space as usual, here
integer k>0, 1< p<—+oo, 0<a<l. Let {oy}]; be a O~—partition of umty being
subordinate to {Q;}/_;. For any u€ O*** (M), let

10) Dovar = S ) @) o

where

ﬂ]FaﬂL;) (az’ ) nlgx(ﬁ_,) " OlU; " on(ﬁ J)-f"' S‘l.lepJ Py ,D"‘ (Oﬂfui) (;?l)w:-ly)‘i‘)(“ﬂ@) (2/) ) ’

2(8) =s(1—1s8), 0<s<1

lo—al<1
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It is wellknown from the theory of elliptic equation that the null gpace of
operator A denoted by N belongs to 0°(M) and is a finite dimensional space. Let
{e:}iz1 Do an orthonormal base of N in La(I). :

Lemma 2.1, Let A be a second-order Vinear self-adjoini elliptic operator on M
with smooth coefficients. f(¢) € O° (M X [0, +o0)) such that for any t>0 F(@) LN,
Then, there ewists @ unique w€ O~ (M X [0 +00)) such that

{Au=F, in M % [0, +00); u(t) LN, Vi=>0}.
Proof Existence. For any fixed ¢ € [0, +o0), since A is a self-adjoint operator

" and f(#) LN, there exists a u; () €0%(M) such that Au;(f) = f(#). Writing ¢i(s) =
(), edr,an and setting u(f) =ui_§'; 06, we have Aa<t>=~= F(8) and u(t) LN for
bi ] - . . v = C. :

any =0,

Smoothness Note that {A(u(t+At) u(t)) = f(t—i—At) ~f(®), in M (u(t+ 48)

—u(t))J_N }. Thus, by the theory of elliptic equation, we have

l(é+48) —u(t) [ oraar <O|f (b4 48) —f (8) |orary, “imboger 5=>1. |

Setting 4650, it follows that w(£) €O°([0, +0); O¥1(M)).

It is easy to verify that for any 10, g(3) ~—Ji 1 N. By the existence proved

above, there exists a v(#) € 0°( [o, + oo), O*(M)) such that

{A'v(t) =g (), in M X [O +c0); w(f) | N for Vt>0}
On the other hand SR

6# ’
Ah,ence
“ u(t—i—At) u(t) 'v() ‘ <0 “ f(t—{—At) —f@®) _of
' or ey . 0% oman”
Setting 4t—0, we ha,vef_=rv'(t) €0 ([0, + o0); O¥(M)). Continuing this process,

ot
We can prove uco! ([0 +o0); OF(M)) for each integer § and %. It follows thai
wEO™(M % [0, +0)),
- Uniqueness. Let u(#) €0°(M X [0, +o00)) such that Au;=f and u (t) 1N for

‘any t=0, 4=1, 2, Then, (u1(¥) —ua(#)) EN for any $>0. This implies uy=u,.

Lemma, 2.9. Suppose A satisfies the assumpiions in Lemma 2.1. Then there
ewists a constant O, which &s independent of u, such that
leellonary <O| Au| goary, w€O=(M)and w].N.
Proo f Let o; be an element of the partition of unity. We have
A (au) = oz Au+ Agu, ,
where A, is a first-order pa,r‘ﬁial differential operator. Noting ey €Oy (ﬁ,) , we have
by Lemma 1.4 of [4]
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I (o) (@) lrcty <O () A8) ooy + | ) -
Summing the above inequalities with respect to j and noting [u|ean < O 4u]ooans
since u € NN, we complete the proof.

| ,§3° Linearized PrOblem

In the following, 7>>0 is a constant agsigned é,rbitrarilyo
‘Lemma 8.1. Supposs v, u, U, fEO™(M % [0, T]), Us €0~ (M). Moreover

{(%Mw.w)AU+_L<R.,;>u=f, in M x [0, T, @.1)

'.AU|3=0=1_1U0 _ ‘ N . . - (8.2

and ' _
U@ LN, vie (o, T1.

Then

1T ®) Vrmoa<O( 1Tkt (1()hmanao

FUY Ol de)-oxp{0 [ (o oo 403}, @.8)
Partioularly, if U= in (3.1), then |

[T () onacr< O ([Tl tmacort . 1 @) i)

xexp{ 0 [} (1o (@) o+ 1}, | 3.9)
VT @) lmean< O ("'Uou ?v'w(M)‘FJ’; 1f @) |frsands ) ,
xep{0f (o@loaw+Dasf. @)

In above inequalities, 0<<t<<T', integer k=>4, n<p<+oo. We also denote by O
the different constants depending on &, p, T and M only, not depending on U, u, o,
U, f. } . : .
Proof Let AU=W, Multiplying Equation (8.1) by a,,. we have in &;x (0, T,

R SN S P
( ot A [;2:;"""”
Q[ < ov : ~] O
- i i gl 5| G0y
E [“%’rgw =] +frﬁa),+r3] 20l W,
z o .
+ “i(%’r(!m(w’: t)m + d;)’vr—‘aif 5
The corresponding initial condition is-

oW 3] 1-0=0;(AU0) 1.
Since oW ,;€ 0 (&;), by the methods of [5] it is easy t0 prove that

aa::i +¢,’aw,+a7{;]~a—%— +b; ) (a;W;)
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'%‘ |0V 3(8) [ Brr-ao @y <ONW (&) [ -0 (|0 () | wr-soaany +1)
+O(f @ [3rsean+ [w@) lfrrean).
We sum the above inequalities with respect to §, and then integrate it with respect
to ¢ in [0, T]. Because of U(¢) | N for any >0, it follows that
1T @) lweoay <OLAU ) lwr-socans.
Usmg this fact and Gronwall’s mequahty, we obtain (8.8). The inequalities (3.4)

and (8.5) can be proved 51m11ar1y
In the following, we denote by C°([0, T] W’“"‘(M )) the completmn of funoiuon

épace 0= (M % [0, 1’]) normed by sup lw(®) | wroqe . If u and—— both belong to

0°([0, T]; Wh?(M)), we write u€ O*([0, T]; Wh?(M)). Ifu€0°([0 T]; W""’(M))
for any T'>0, we write u€C°([0, +o0); W""(M)), eto.

Using Lemma 8.1. we have

Theorem 8.1, Suppose (HL), (H2) hold. v€EO0= (M X [0, +o0)) is a function
given arbitrarily. f(8) €0°([0, +o00); W*22(M)) such that f() LN for any #=0.
U EW™? (M), k=>4, n<p < +oo, Then, there emists a unique solution w Of the
Jollowing Oauchy problem for the linearized equation

{(-—?—-{-LW(,,),,,))Au+L(Ro,d)u=f,- dn M X (0, + 00) ° (3 .6)

A’wlt-o—Auo, 3.7
such that uw€0°([0, + o), W""(M)) N ([0, + o0); WeL2(M)) and u(t) | N,
Vi=>0.
- Proof At first, we assign a constant 7'>0 arbﬂsrar:ly and assume u 0™ (M),
FEOC*(M %[0, T]) such that f() _LN for any ¢€ [0, T1]. For any given U€O”
(M x [0, T7), solving the hyperbolic Cauchy problem

{(—’-3—-+L(W(w oW +Lg,oU=f, n Mx(,T), 3.8)

WIt—O_AuO) . (3 9)
we obtain W € 0°(M x [0, T1). Let us prove that W(t) 1N for any ¢ € [0, T]. By
(8.8), (8.9) and (H2)

L[ W@ear=0, Vi€, T1, Vo N (3.10)
holds. Since 4 i3 a self-adjoint opertor,
jM W(O)edM =JM (Auo)édM = Juque dM =0,
Thus
[, W®eart =0

for any ¢€ [0, T]. By Lemma 2.1, there exists a W &O0™ (M x [0, T]) such thas
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{4AW =W, in Mx [0, T]; Vi€ [0, T, W (t) L N}.

If ue EW=2(M), f€0° ([0, T1; WP 22 (M)) and f(t) LN for any £=0, there
exists a sequence {f,(#)}<O~(M X [0, T1) such that
; fu=>f, in O°([0, T]; We22(M)); Vn, VEE [0, T, fa(8) _l_N
Then, using the methods of [6], we complete the proof of the theorem.

§ 4. Nonlinear Problem

In this section, using the method™ of integrating and estimating along the
characteristic curve lying on manifold, we will prove further estimates by the
results given above. Then, the existence and “uniqueness” of global classical
solution of Equations (1.8), (1.4) will be proved by the methods of [6]. Lastly,
we will prove the existence and “uniqueness” of global classical solution of
Equations (1.1), (1.2). ' |

Since M is a smooth compact manifold without boundary, for any » € O°(M X
[0, + o)), Vs€ [0, T1, P*€ M, the characteristic curve I(# s, P*) of operator

-g——ﬂ-L(W(Q,)) (i.e. the curve satisfying {I'(#) = W(»); 1(?) |,=S=P*}' exists on [0, 7]

globally according to the theory of ordinary differential equation™.

For the sake of technical need, we construct two equivalent atlases {Q, Oitia
and {w;, ¢i}l.; such that o, CQ; and @;(wi)=By, ¢i(2;) = B,. Here B; is an open ball
of radius j, with center at the origin of R", j=1, 2.

Suppose vector fields R(P, t) depend on. ¢ smoothly. We define

H-Licry Novcarco, 7 = Sup a Elﬂm(w i) ooy

<t<T a=
Lemma 4.1. Suppose P* € oy, |l|L<R>|l|00(cho,mn <D (a positive constant). Then,
ourve 1(t; s, P*) lies im chart &, when |t—s|<——— \/—— D
Proof Let af(%; s, P*) be the ¢—th component of p,(1(%; s, P*)). Then

{M%f_’_f_)_=r?(w"(i; s, P, 1),

o} | s = e (PY),

b=1, 2,ee, m,

hold in &,. Hence | ,
13
A5 8, P =gh(PY) + | H@ (s, 5, P, ).

If follows that

(a%(% s, P*)| <2, when [{—s|< \/%D .

This completfes the proof.
In the following, O:;(F4, -+, Fy) denote the constants which only depend on
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Fy, <o, Fy. The different subscripts ‘“4” meen different dependent relations.

The following lemmag are extensions of the corresponding lemmas in section 5
of [5].

Lemma 4.2. . Suppose u, v, fEC(M X [0, T]), ue€O0~(M ) such that

{( o +II(W(,,) b))Au+L(Ro, )u f, 'Iﬂ'b MX [0 T] . (4:.1)
Ault=q—Auo. ‘ ' - (4:.2)
Then S

le(®) loan<01(T, “uo"c’uu); | f | vcarsceos ) s 0<s<T' 4.3

holds f0fr all w satis fying u(t) AN f0fr any € [0, 1.
Tt should be. pointed out that the right S1de of (4. 3) does not depend on v. We
deﬁne cons‘uant D vy

D=0u(T, Woloan, 1f® loanwom). @

If sup llo () Norcary < By, it is easy 0 Vel'lfy that |||L(W(v>)ﬂ|oo(uxco.m) 02(E1) We

‘define the con_stant 1)1 by

Lemma 4. 3 Suppose (H1), (H2) and all wssumpmons in Lemma 4.2 hold. Dy
is given by (4 5). We assume "lL(ww))llIoo(Mx:o.T3)<D1 o and B are two constants suoh
that 0<a<B<1, a=Re M where Jo =1+ [2T \/ n Dy] ([«] denotes the largest
dnteger such that [¢] <w). Then

) [eneay<Os(T, Dy, luollosean, 15 oo rnommany), 0<t<T. (4.6)

Here we only give the outline for the proof of Lemma 4.2 and Lemma 4.8,

At first, via “leealizaficjn”, the proof is reduce to a problem in chart &, x [0,7].
By the method of [56], we get corresponding estimates. In the intersection of two
different charts, we can link the estimates by} the method of [6, 8]. From Lemma
4.1, the times of this link we need to do is finite (at most Jo times). Noting
lu (£) | erary <O A | ocary holds for all u(z) satisfying u(t) | N, we obtain (4.8), (4.6)
by Lemma 2.2 and Gronwall’s inequality.

Using Lemma 4.2, Lemma 4.8, Lemma 3.1, Theorem 3.1 and Schauder fixed
point theorem, we can prove the fellewing theorem (The technical details can be
found in [5]). | |

Theorem 4.1. (i) Suppose f € C° ([0, + o0); W*22(M)) and f(¢) I N for

any t€ [0, +00), ue EWH?(M), integer k=5, n<p< +oo. Then, there ewists & unique

solution u of Equations (1.8), (1.4) such that

wE€C°([0, +o0); W2 (M)) NOH([0, +o0); WH 1"’(M))
and u(t) 1 N for any t=0. (ii) If fEO0°(M X [0, +o0)) and u(t) I N for any >0,
up SO~ (M), there ewists @ unique solution u o f BHquations (1.8), (1.4) such that
uC O™ (M X [0, +00)) and u(t) | N for any :=0.

Dl—os(ﬁ) | ; .f .. ' (4.5)
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In section 1 we have pointed out that Equations (1.1), (1.2) satisfy (H1),
(H2). From Theorem 4.1, we obtain the following theorem.
Theorem 4.2. (i) Suppose Yo EW™?(8?), integer k=5, 2<p<+0. Then, the/m
exists a unique solution P of Houations (1.1), (1. 2) such that
YEO([0, +o0); WH2(82) NOH([0, +o0); W45(8%))

and

[Ls@a=0
Jor any t=0. (ii) Suppose Py €O0=(S?). Then, there ewisis a@ unique solution P of
Equations (1.1), (1.2) such that yE0=(§?X [0, + o0)) and

Li P(t)ds=0

for any t=0."

By Theorem 4.1, there exists a global: classical solution of Equatxons @.1),
(1.2). Zeng Qingcun proved in [1] that any two classical solutions of Egquations
(1.1), (1.2) differ merely by a function which depends on time ¢ only, so they
correspond to the same field of velocity. Thus, Problem (1.1), (1.2) is “well-posed”

in V1eW of physics.
The author is much 1ndebted to his adwsors Professor Gua Chaohao andProfessor

Li Tagian for their guidance,
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