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GLOBAL CLASSICAL SOLUTIONS OF THE
CAUCHY PROBLEMS FOR NONLINEAR 

VORTICITY EQUATIONS AND 
ITS APPLICATIONS

Mu Мл (#  # ) * * *

Abstract

In this paper, the definition of a vortieity equation on a compact Riemannian 
manifold without boundary is given. Some accurate a priori estimates are obtained with 
the use of the peculiarity of the equation. Then, the existence and “uniqueness” of global 
classical solution of the Cauchy problem for the equation is proved. As its application, 
the existence and “uniqueness” of Cauchy problem for barotropic nondivergent model is 
obtained. The model is a fundamental one in atmospheric dynamics.

1. Introduction

Barotropic nondivergent model is a fundamental one in atmospheric dynamics. 
In I960, with the use of electronic computer, the first successful numerical 
weather prediction was made by Oharney by use of this model. The following 
Cauchy problem for this model which corresponds to the global weather prediction 
is frequently investigated^.

(ф, Аф) + J (фу 2cocos 9) = 0 , in $ax  (0, +  oo), (1.1)
< Ob Ot
■ Аф\^о~Дфо> (1*2)

where ф is unknown function (stream function) of independent variables (Я, 9, i); 
Я is longitude, 0<Я<2я;; 9 is eolatitude (i.e. the North Pole corresponds to the 
point в =  0), 0 f is time? a  is radius of the earth; со is angular speed of the 
rotation of the earth; $2= {(Я , 9) |0<Ж 2я?; О<0<я?} is the unit sphere of R3;

_ 1 V A
sin ^ V 89 sin# 8 . 1 da 

89 sin 9 Ш
is the laplaoian on $ 2;
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Equation (1.1) known as vorticity equation is the most simple model in atmospheric 
dynamics. It describes the general character of atmospheric motion caused by 
Coriolis force and gravity. Up to now Equations (1 .1), (1.2) still play an important 
role in the theory of atmospheric dynamics. The well-posedness of it was considered 
by many authors. In 1969, the existence and the “uniqueness”  of the classical 
solution of the Cauchy problem for the linearized equation was proved1-2-1. In 1964, 
Tan and others1-3-1 proved the existence and “uniqueness” of generalized solution of 
the Cauchy problem for the quasilinearized equation. In 1979, Zengal proved that 
the local weak solution of Equations (1 .1), (1.2) exists anb and two classical 
solutions of Equations (1 .1), (1.2) merely differ by a function depending on time 
t only. In this paper, the existence and “uniqueness” of global classical solutoin 
of Equations (1 ,1 ) , (1.2) is given (The precise meaning of uniqueness will be 
explained in the following sections).

For convenience’s sake of mathematical treatment, we now introduce the 
definition of vorticity equation on a Riemannian manifold. Equation (1.1) is one 
of this type.

Let M  be an «-dimensional, compact, oriented 0 “-Riemannian manifold 
without boundary. is a 0°°-atlas on it. =  q>}(Qj) cz Rn.x} =  {x{, •••, x{)
denotes an arbitrary point in й}. (P , t) is a point in Ж X [0, -foo). If F  is a 
function defined in M x  [0, -foo), we write F j—Focpj1 defined in Q}x  [0, -boo).

Let T (P } t) be a given 2-order contravariant tensor field on M  which depends 
on parameter t smoothly. In each X [0, -foo), T  (P, t) can be designated by 
functions { r ^ ( xs, We also assume that R (P , t), R (P , f), R o(P , t) are
three given 0 “-veotor fields on M, which also depend on parameter t smoothly,

<Ph(R ) - {*»№ , t)}, <Ph(R )={ri(P , t)}5=i, <Ph(R o )= {rL W , 0>«=i.
For any differentiable function v(P , t) defined on Ж х[0 , -foo), we define 

on Ж a family of vector fields W(T, R , R , v) varying with parameter t as follows:

W(T, R , R , «>) (P, t) -  (p j1) *  { ^ a8«  0  t)v}+H W , i,

when (P, t) £Q }X. [0, -foo).
We will always abbreviate W(T, R , R , v) to WQo).

Let Ъ and d be two given smooth functions defined on Ж х [0, -foo). We define 
first-order linear partial differential operators £ (mi,)ib) and L (Ritd) as follows: 

(Pcww.b)^) °^71 (a ,̂ t)
п г nж

dut

(P , О - Р Г Ч * * ,  0  € ф х  [0, - fo o ).when
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Her© and afterwards, ад is a differentiable function defined on Ж X [0, + °o )o
Lastly, let A be a second-order linear elliptic operator on M with smooth 

coefficients not depending on t. We define

L(v, ад) ’̂m(~^-+I/(.ww.b)jAu+L^Iittt)U>

and call L(u, ад) a vortieity operator on Ж.
In the paper, we consider the following Cauchy problem

in Ж х [0, + ° ° ) ,  (1.3)

\.Аи\^ь=Ащ, (1*4)
where ад is an unknown function, щ  and /  are given functions.

Generally speaking, Л=0 may be an eigenvalue of operator A, In Equations 
(1 .1), (1 .2), A=0 is an eigenvalue of Laplaoian A on the unit sphere $9. It is just 
the difficulty in solving the Oauohy problem. Observing Equation (1.1) carefully, 
we are inspired to make the following assumptions in this paper.

(H I). A is a second-order self-adjoint elliptic operator.
(H2). Let 1\Г =  {ад| Am—0 in Ж }. Then, for any differentiable function u(P, t), 

17(P, 0 ,  < P ,  C ,
u(t) X N , L(Ho,d)l7 (t) ± N , Vt>0, (1.5)

hold, where f ± N  means ( / ,  g)L,(U)=0,
It is easy to verify that Equations (1 .1), (1.2) satisfiy (H I), (H2). In fact, 

now A =A  is a self-adjoint operator. N —{и | m= constant} and

Oj

L cr̂ X J  (t) =  J  (U (i), 2wcos9). Because f J ( F ,  G) ds= 0 for any differentiable

functions F , G, the equality (1 .5) holds. Thus, (H2) is also satisfied.
In the paper, all functions and all functional spaces are real ones.
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2. Elliptic Problem and A Priori Estimates

At first, we introduce Sobolev space ЖЙ,Р(Ж) and Horlder space as usual, here 
integer # > 0 ,  l < p < + o o ,  0 < « < 1 .  Let be a ©"-partition of unity being
subordinate to {£}*}£=*. For any м£Ой+1(Ж), let

j
Цад(«) lo w  III (<m) («0 lc*(S,),

where

\a>—p\<l
x(?) = s (  1-Z„s), 0 < s < l .
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It is wellknown from the theory of elliptic equation that the null space of 
operator A denoted by N  belongs to 0°°(M) and is a finite dimensional space. Let 

be an orthonormal base of N  in Ы М ).
Lem m a 2.1. • Let Abe a second-order linear self-adjoint elliptic operator on i f  

with smooth coefficients. f ( t ) 6  О" (Ж X [0, + o o )) such that for any t> 0 , f ( t )  J_N. 
Then, there exists a unique u £ 0 °°(M x  [0, + o o )) such that

{Au=*f, in My. [0, +oo ); u($)J\_N, Wt>0}.
Proof Existence. For any fixed 26 [0, -f oo), since A is a self-adjoint operator 

and/(г)_]_Ж, there exists a Mi(2) 6 0 "  ( i f )  such that Aux(t) =  f ( t ) .  Writing eft)  =

(wj(t), and setting w(t) =  Mi—2  O{60 we have Au(i) =  f ( i )  and u(t)\f_N for

any 2>0.
1 Smoothness. Note that {A (u(t+A t) — u(t)) =  f ( t  4- A t)- f ( t ) } in i f ;  (u(t+At) 

~ u (t ) )± N } .  Thus, by the theory of elliptic equation, we have

\u(t+At) —u(t) [|c*+»oo^Of/(t+ At) —f( t )  1 ациь integer # > 1 .
Setting it follows that м(4) 6 0 °([0 , +OQ); ( i f ) ) .

It is easy to verify that for any 2>  0, g(t) — —Jjr  J_ N. By the existence proved

above, there exists a v(t) 6 0 ° ( [ 0, +oo); Ok(M )) such that

{Av (t) — g (f), in M  x  [0, +  oo); v (t) J_1V for 'it > 0 } .
On the other hand

л ( u (t+A t)- u(t) /,ч V f(t+ A t) - f ( t )  df
~ S ' — ~  ! '*■  ) -------- I T —  I P

hence
u (t+A t)—u(t)

At
. 8u

■ <o (t) < 0
II OHM)

f  (t+A t) —f( t )  8 f  I!
At dt |о*-чю*

Setting we h a v e — v(t) 6 0 °  ([0, +  oo); Ok(M )). Continuing this process,

we can prove и6 0 * ( [0, +oo); Ok(M )) for each integer j  and Tc. It follows that 
м 6 0 “  ( i f  X [0, -f oo) ).

Uniqueness. Let Mj (2) 6 0 "  ( i f  X [0, + o o )) such that Aui =  f  and us (t) J_iV for 
any 2>0, *== 1,,2. Then, (ux(i)—Ua(t)) £ N  for any t > 0. This implies

Lem m a 2.2. Suppose A satisfies the assumptions in Lemma 2.1. Then there 
exists a constant O, which is independent of u, such that

IMIoi(jr)<0|| A u \ w 6 0 "( if )  and и I N.

Proof. Let щ be an element of the partition of unity. We have
A(a,{u) =щАи+А^и,

where At is a first-order partial differential operator. Noting aftij 6  0 “ (Q}) , we have 
by Lemma 1.4 of [4]
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1 (<¥*/) (®9 IIIc>ĉ )< C '( |J .m) ||с»<и)+  ЦмЦсню) .
Summing the above inequalities with respeot to j  and noting | и Ц [| Au || счм)л
since u(~N, we complete the proof.

§3. Linearized Problem

In the following, T > 0  is a constant assigned arbitrarily.
Lemma 3.1. Suppose v, u, XJ, f€ 0 *°(M x [О, У]), XJo€0°°(M). Moreover

( ^ - + JWoo, ь>) AU+ L (B„a)W=/, in МУ. [0, T J , (3.1)

. Д17 |$_o=./lt7o (8.2)
&nd

U(t)±N,Vt€LO,Tl.
Then

№ ($)! W (if)<C,(  1 ̂ 01 W »o+ { 0 (lw(v) *̂-irfi(y)

+ 1/ СО II fr*-‘-»ao) d tj  • exp|(? ( || v (v) (j т-ъкю  (3.8)

Pwtioularly, ifX J^ u  m  (3 .1), then

1 XJ (t) (I iW.poo <s О ̂  (I XXо I I/ (?) I ^

X exp j  0  ( l« (v ) |тг*-».|>(ю+1)йтг|, (8.4)

tU(i) ||^г.р(ло  ̂0 |̂jI7o!|^«,p(if)4-|* 1 /(v) \ bw(№)dr^

x e x p |o £  (1 (тг) 1o*(m) +  1) «foj. (8.6)

In above inequalities, 0<t<5P, integer # > 4 , n < jp < + o o „ We also denote by О 
the different constants depending on Ь, p, T  and M only, not depending on Xf, u, v, 
Uo, / •

Proof Let AXT=W. Multiplying Equation (3.1) by щ, we have in ^ X  (0, T )s

( 1 + M  £ * ф + * г ь а ] £ + « о « ™

+  (<&, t) +  dj 'jvj =  djfj.

The corresponding initial condition is

affl j | *=<>= oij (AXJo) j,
Since a,jW j £  О” (Ц) , by the methods of [5] it is easy to prove that
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-щ- I OCjWj(f) I &*-*.«>(&) *^0  ! W (i) || §?К-г,Р(М) ( I b ( i ) i ^  1'Р(Ю + ©

+ 0 ( 1 / © !  ̂ *->.P(SO +  ||«(t) 1 ̂ *-1.р(ло).
We sum the above inequalities with respect to j,  and then integrate it with respect 
to t in [О, T] . Because of JJ (t) J JV  for any 0, it follows that

|| t7(i) I w*>p(V) -4(7 (t) 1 тг*-*-р(ао»
Using this fact and Gronwall's inequality, we obtain (3 .3). The inequalities (3.4) 
and (3.5) can be proved similarly.

In the following, we denote by O°([0, 21]; Wk,9f f l) )  the completion of function
fhr

Space 0°°(M  X [0, У]) normed by sup ||w(t) • If M and -5— both belong to
0««5Г ot

О0 ([О, Т]; W*’*(M ))} we write T]; Wk’9(M )). IfM £O°([0, Т ];Ж Й*Ч ^ ))
for any T > 0 , we write м £0 °([0 , + 00) ; Wk,9(M )), etc.

Using Lemma 3.1 . we have
Theorem  3.1. Suppose (H i) , (112) ЛоМ. v£0°° (M x  [0, + 00))  is a function 

given arbitrarily. f ( t ) £ 0 ° ( [ 0, + 00); Wk~a,9(M )) such that f ( t )  _LN  for any t>0 . 
Mo€Wfc,p (Ж), &>4, n < p <  H-oo„ Then, there exists a wmque solution и of the 
following Oauohy problem for the linearized equation

[^•J^+-^(m«),b)^-4w+L(Roid)W==/, in M X (0, + ° ° ) .  (3.6)

1 Ли | = Awo, (3.7)
meh that «£О °([0 , + 00), Г - » (Ж ) )П 0 1( [0, +  oo); Т Г ^ ’ЧЖ )) and « ( * ) ! # ,
Vt>0.

Proof At first, we assign a constant T > 0  arbitrarily and assume щ{~Ом(М), 
/ £ 0 “ (Ж х [0, l 7])  such that f ( t ) J_ N  for any £ £ [0, Т ]. For any given. 17 £ 0 “ 
(Ж x [0, 21] ) ,  solving the hyperbolic Oauohy problem

in Ж X (О, Г ) , (3.8)

. ^ | Js=0==A^, (3.9)
we obtain f  £ (Г (Ж х  [0, 37] ) .  Let us prove that ^(i)J_2V  for any t £  [0, T\ . By 
(3 .8), (3.9) and (H2)

- ~ j MW (t)edM =0, V#£ [0, T ], Ve£N  (3.10)

holds. Since A is a self-adjoint opertor,

W (0)edM = ( . Auo)edM =  j^MoAe йЖ =  0.

Thus

(t)edM  ==0

for any #£ [0, Т ]. By Lemma 2.1, there exists a W£ 0 “  (Ж X [0, T ]) such that
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{AW =  W, in И х  [О, Г ]; V«€ [О, T ], TPXO JJV }.
Itu o ^ W ^ iM ), f£ O °( l0 ,  ТУ, WU~*'*(M )) a n d / ( i ) J JV  for any t > 0, there 

exists a sequence { f n(t)}d O m(M X [0, T ]) such that
/»->/, in O°([0, T]; Ж*"2-W ) ;  V», Vt£ [О, T], f n(t )± N .

Then, using the methods of [6], we complete the proof of the theorem.

4. Nonlinear Problem

In this section, using the method1-63 of integrating and estimating along the 
characteristic curve lying on manifold, we will prove further estimates by the 
results given above. Then, the existence and “uniqueness” of global classical 
solution of Equations (1.3), (1.4) will be proved by the methods of [5]. Lastly, 
we will prove the existence and “uniqueness” of global classical solution of 
Equations (1.1), (1.2).

Since Ж is a smooth compact manifold without boundary, for any v £  0°°(M  X 

[0, -f oo)), Vs£ [О, P ], Р *£ Ж , the characteristic ourve lit; s, P*) of operator

~ - + L avm  (i.e. the curve satisfying {V (t) =  W(v); l(t) | {=S =  P *} exists on [0, 2'] 
ot

globally according to the theory of ordinary differential equation1-73.
For the sake of technical need, we construct two equivalent atlases {D; 

and {(»{, such that (OiCZClQi and $5i(a>i) = P 1, <р4(£24) = P 2. Here B$ is an open ball 
of radius j,  with center at the origin of IR", j  — 1, 2.

Suppose vector fields i? (P , t) depend on t smoothly. We define
n I

ll-̂ ,(H)lllc411fXC0,Z,3)== SUP 2  0llo»(3i).-«Si 1
Lem m a 4.1. Suppose P * ^ ^ ,  \1Р(В)\1с°шхю,tv (a, positive constant). Then, 

curve l(t; s, P*) lies in chart when | ̂ —s|

Proof Let a$(t) s, P*) be the &-th component of s, P *)). Then

j  &»?№ «, P) ,, f ), t), .
< cut ® =  1, 2,e'«, n,
• Яч |f=s==93i(P*)>

hold in Д,. Hence

< (f; », P * ) - f> !(-P *)+ J/iV (*; 8, P*), r)<Ji.

If follows that

fa?fc(i; s, P*) I < 2 , when |t—s| < —-Д  .
\ /  n D

This completes the proof.
In the following, Oj(Pj, F js) denote the constants which only depend on
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F lf •••, Fy. The different subscripts “i”  mean different dependent relations.
The following lemmas are extensions of the corresponding lemmas in section 6 

of [5].
Lem m a 4.2. . Suppose u, v, x [О, T f) , щ £О м(М) such that

 ̂ + -̂ (Ro.d)M~ / } $п № X [О, T~\ о (4.1)

l Au\t=o =  Auo. (4.2)
Then

ll|w(s)||)o4K)î C,i(37, [мо1|с3аг)> |/1|с»(мхсо,вд)5 0 < s < T  (4.3)
holds for all и satisfying u(t)J_N  for any t£  [0, T ] .

It should be pointed out that, the right side of (4.3) does not depend on v. We 
define constant 5  by

T1) flwo||.cs(#)> ||/(0  Ic°(ifxcOi2’]))• (4.4)
If sup 1«>(0 ft is easy to verify that !|L(vy(„))|o«(MX[0,2-]) <  0 2(E f) . We

0<t<T

define the constant Dt by
D ^C SsiP ). .. . . (4.6)

Lem m a 4.3. Suppose ( S I ) ,  ( S 2) and all assumptions in Lemma 4 .2 hold. Zfi 
is given by (4 .5). We assume ll-h(w(u))I!очмхсо,rn< Di- «  and /3 are iwo constants such 
that 0 < a < /3 < l ,  a=/3e~2Tn'J<l, where J 0 — 1 +  [237 V  «Л !] ([ж] denotes the largest 
integer such that [ж] < ж ). Then

IKOII ca>»ao < 0 3(T, Di, |W| 1 /(0  ||ач[о>];о».*(Ж))), 0<^t<^T. (4.6)
Here we only give the outline for the proof of Lemma 4.2 and Lemma 4.3.
At first, via “localization”, the proof is reduce to a problem in chart Qy x [0,T]. 

By the method of [5], we get corresponding estimates. In the intersection of two 
different charts, we can link the estimates by] the method of [6, 8]. From Lemma 
4.1, the times of this link we need to do is finite (at most J 0 times). Noting 
|\u(t) ||счя)<<3||-4-и||с°(ло holds for all u(t) satisfying u(t)J_N, we obtain (4.3), (4.6) 
by Lemma 2.2 and Gronwall’s inequality.

Using Lemma 4.2, Lemma 4.3, Lemma 3.1, Theorem 3.1 and Schauder fixed 
point theorem, we can prove the following theorem (The technical details can be 
found in [5] ) .

Theorem 4.1. (i) Suppose f  £  0 ° ([0, +  oo); Wk~s'p(M )) and f( t) J_ N  for
any t£  [0, +  oo), Uo€.Wu,p(M ), integer 5, ri<^><+oo. Then, there exists a unique 
solution и o f Equations (1 .3), (1.4) such that

w£O0([Q, + oo) ; Wk>p(M)) Л О т  + ° ° ) ;  W ^ iM ) )  
and u(t) _]_N for any 0. (ii) I f  f  £ 0 “ (Ж X [0, +'oo)) and u(t)J_N  for any 0, 
Мо£0“ (Ж), there exists a unique solution и of Equations (1.3), (1.4) such that 
u<E.C°°(M x [Q, +oo)) and u(t) J_1V for any f> 0 .
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In section 1 we have pointed out that Equations (1.1), (1.2) satisfy (H I), 
(H2). From Theorem 4.1, we obtain the following theorem.

Theorem 4.2. (i) Suppose ipoGW!c,p(S2), integer &>= 5, 2 < p < + o o . Then, there
exists a unique solution ф of Equations (1.1), (1.2) suoh that

for any t> 0 . (ii) Suppose фо (~0°°(S2) . Then, there exists a unique solution ф of 
Equations (1 .1), (1.2) such that ф £ 0 0°(8а 'Х [0, +  oo)) and

By Theorem 4.1, there exists a global classical solution of Equations (1 .1), 
(1.2). Zeng Qingcun proved in [1] that any two classical solutions of Equations 
(1.1), (1.2) differ merely by a function which depends on time t only, so they 
correspond to the same field of velocity. Thus, Problem (1.1), (1.2) is “well-posed” 
in view of physics.

The author is much indebted to his advisors Professor Gu Ohaohao andProfessor 
Li Taqian for their guidance.
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