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Abstract

To the hierarchy of nonlinear evolution equations which associate with Boiti~Tu
eigenvalue problem, an explicit and universal form of Backlund transformations and
auniversal proof are presented. It is called Darboux transformation. By this method, to
ask for a new solution of every system of equations of the hierarchy, it is sufficient to
solve some linear problems. Here the constraints at the boundary for the potentials (for
example, at x= +oc) are removed.

| § 0. Introduction

In [1] Boiti and G. Z, T have mtroduoad the following eigenvalue problem'
=Up, U= —i\os+uoy+A"2(is05—v03), 0.1)
where o; are Pauli matrloes

__01 _0—@) _1 0)
T\ 0 T s o) T \o 1)

We call (0.1) {Boiti~Tu eigenvalue problem. In [2] the auxiliary eigenvalue
problem have been introduced:

p=Ve, V= gi "l gWﬁ»"”‘{ (0.2)

From the integrability condition of (0.1) and (0;2), a hierarchy of nonlinear
evolution equations can be obtained. We call these equations evolution eQuations
associated with Boiti-Tu éigenvalue problem.

In this paper, o every system of evolution equations of the hierarchy, we give
a uniform method to ask for new solutions from a givén ‘system of solutions of the
same system of equations. We call it Darboux Transformation (D.T.). D.T. has
two outstanding merits: (1) It does not need any confined conditions at o= oo, (2)
The process does not need to solve any nonlinear problem. It needs to solve some
linear ordinary differential equations and linear algebric equations onliy.
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In part one, we quote some results of [8], introduce the concept of D.T. and
its merits, and point out that D.T. consists of two parts: one is gauge transforma-
tion and the other is the relations between the old solutions and the new solutions.
In part two, by jshe integrability condition of (0.1) and (0.2):

L O=VATV-VU =0, - (0.3)
we .solve ¥ from (0.8). for given U. And we. give the general solution ¥ by

réoursion fomulas, in which the integral operation does not appear. So we do not

need 10 assume any confined conditions at || =oco for potentials. In part three, ‘the
methods of getting gauge transformation and the D.T. formulas are given, and the
propertles of gauge transformatmn are dlscussed In addmon, the decomposable and
permutable properties of N-degree D.T. are proved. In part four, we prove that
the new potentials which is defined by D.T. satisfy the same system of equations as
the old solutions. We give a new method of the proof.' In part five, we discuss the
relation between D.T. and Bicklund transformation (B.T.). We indicate that the
new potentials defined by' D.T. satisfy the B.T. not only in the # part but also in
the ¢ part. The new potentials are just the solutions of B.T.

§ 1. Darboux Tr_an_sformation and its Merits

In [3] the followmg problem was discussed
=Up, U=— @2\.0'3+u01+?»"1 (iso3—vog),
=V, V=—ikos+ucs+A~ 1( ’1/30'3+’UO'2) }
The integrability condltlon of (1 1) is
—V o+ UV —VU =0. O .2)
Rewrite (1. 2) in its components as follows |
Si+8,+ duv =0, »
vt vy +4su=0,p (1.8)
w— Uy —4v=0.

(1.1)

Consider |
a¢=ﬁ§, ﬁ—_: *"I;A«O‘3+Q—ZO'1+7\:—1(Q./-S-O‘3—EO'2)‘, }

= T 7 . S 1.4
¢t=V¢, V=_'2.17\'0‘3"‘?10‘1‘*‘7\:_1(—“’1./80'3‘*"00'2), ( )

‘where U, 7 can be obtained from the expressions of U, ¥ by replacing u, », § with

u, v, 5. The integrability condition of (1.4) is
- U,—V,+UV-VU=0. ‘ (1.5)
From (1.5) weknow that u, v, s satisfy the nonlinear equation (1.3).
In [8] suppose 7 is a l—degree polynomlal of A. By solving the following
differential equations directly
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ot T$_=[7.’T—TU, - '
_ 1.6
the gauge transformation T from ¢ to @ i obtamed :
p=Tp, | } w.n
T =AM +ac3+bos (where I is an idential matrix).

Suppose @ is a fundamental solution matrix of (1.1) whose components aré gg( 4,
1=1, 2). Given a pair -of parameters (7\.1, ki), @ and b can be obtained by the
’followmg formulas: ¢ - ' o

) pu(, 7\41, :701) =‘¢11(w, 7‘:1) "‘701%2(% M),} (1.8)

i ba(z, )‘1} k1) =@a1 (0, A1) + E1pas(e, Ay) N

Ta=M[bi(®, Ay, B1) +i(w, My )1/ [p3(a, Ay b)) — Bi(@, My B)], } (19)

b= [ 2idaps (@, A, 701)952@ A, ki)]/ [432(97 Ay By) — ¢1(~v, M, B1)]. o

And the f0110W1ng formulas are obtamed S
' - u=2b -l-u, »

= ——2— [2fz,sab —b®+va’], | | (1.10)

Il

8 2 —[— 2vab--8b2—sa?].

In [8] (1. 7) a,nd (1 10) is called Darboux transformahon |
From above process we can see that when we do D.T., the only confined

~ conditions are A;% 0 and ¢3(@, Ay, 701) $i(®, Ay, k1) #0, and there is no need of any
‘confined conditions to %, v, 8 ab o=oo, In addition, to.ask for new solutions of

(1.8), it is sufficient to solve some linear problems and to do some algebralo
operations, there i no mneed for solving any nonlinear problems. These are the
outstanding merits of D.T.

§ 2. The Nonlinear Evolution Equations (N.E.E.)
Associated with Boiti-Tu Eigenvalne Problem

Suppose that in the auxilary eigenvalue problem (0.2) ¥V has the fo]lowmg
expansion

k k 2p .
V= E) Vg,-?\,%"'“g’ + %Vﬁu?\'%_w + E)sz—sp-i, ]

Va=dgos— —1—f 203, Vapa= L esp0101  (O<j<h),
g Ja% 2 * .1

Wa=au0s— -% ouos (OIS ),

as p=>1, W2i+1=—;—bzz+101 (0<I<p—1).
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It is easy to- verify that as ¥ has above expaﬁsion, (0.1) and (0.2) can be
compatible. Comparing the coefficients of different powers of A in. (O 3), we get the
following recursive differential equations L

*1=f_2—-d_2_——0;

fﬂi—sfﬁi—2+2’?/@dﬁi—2+"]2;321—1w (0<y<k+1) o -
dg,w——wfm—i—mwg,_l - (0<3<]o),. t o (22)
6a521=20udg; + Seas_1 "“"f?ja; - (O<G<<k), -

' bly=@_g=e¢_a=0,"

sbavia=bars —2iuant 3 oae (0<I<p), | o
obga=wog—tay, - (0<I<p), 1 | _(2'3)_,.

$09;-+ 2609~ Car_s ~—%— Bot-to (0<i<p).

The evolution equations are
U= f a2 — Cay, ’ :
¥y = — 8€app1-+SDaps1, - , (2.4)
8= — Vaps1+ VDaps1, ' |
where we introduce b_j=a_g=c_g=e¢_i=d_a=f_g=0 for keepmg the recursion
formulag in uniformity, and we iniroduce fgk.l..g, bapir DY (2. 2) and (2. 3) for

convenience, When ay, 0a, bw,1(0<I<p) are all equal to zero, (2.4) is reduced to -

Uy =f 425 _
Vy= — Sapy1, \ A (2 .5)
8= — Veaps1. ‘

When dy, 6a5,1, fo; are all equal to zero, (2.4) is reduced to
Uy = — Cayp, .
V3 =8Dgp 11, ' (2.6)
8 == 0Dgg 1. :
We call (2.5), (2.6) and (2.4) the evolution equations corresponding fo positive
expansion, negative expansion and mixed expansion of A respectively. Equation
(1.8) is just an equalion corresponding to a mixed expansion of A (where £=0,
1=0). '
By (2.4), or (2 5), or (2 6), we get
(v? —s%);=0. ‘ ' _ 2.7
"That is »®—s® must be independent of ¢. | -
Formula (2.8) here is just the formulas (2.2)—(2.6) under: condition (2.17)
in [2], Formula (2.2) is just (2.7)— (2 10) in [2] Formulas (2 5) (2 T) are
(2.11a)—(2.11d) in [2].
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We regard (2.2) and (2.8) as a system of recursion differential equations,
From (2.2) we can solve fo, do, é1, fa, da, €s, ***, fan, dan, €ows1, foxsa St6p by step.
We notice that to solve dgy;, by the second formula of (2.2)

o= — U f o+ 1065y,
it is needed to do integral operation. But we know that —dudy+-ivesy_y is just a
 derivative of a funotion of #, So we can directly write dg by explicit formulas. In
the following Lemma .1 general expressions of dy; are given. Similarly in the
following Lemma 2, from (2.8), general expressions of @y, ba,, and ¢y are given,
which are some recursion formulas and in which the integral operation does not
appear, ' .

Lemma 1. Suppose ‘do is not equal to zero. Then the general integral of the
recursion differential equations (2.2) are given by the following recursion formulas:

e.1=0_g=f_a=0, : , ]

Ja=8fss-a+20vdg;_o + —é— bsj-1e  (0<j<h+1),
do= Go, ) . $

m+1 m
as k=1, Z;) (dsﬂzzmw—si + '1" Sfaf 2m+2—2i) % g Oois100m-2i41=Oamsa (O<m<h—1) ’

Gajp1 = 20Uda;+ S695_1 — %" Saie (O<j <k), )

(2.8)
where oy, Gama (0<m<k——1) are integral constants (which are independent of ).
(Proof is omitted.)
"Lemma 3. Suppose s*— %0 for every =, and suppose |ay| + |co] #0. Then the
general integral of the recursion differential equations (2.8) are given by the following
recursion formulas

b__1="a._2=0._2=0, A
Le-g
ao +ZGO

SCa1+ Q@W:u = Cgyg— —:2[— ba-1o.  (O<I<p),

as p=1  (0<I<p—1), [ (2~9)

+1 1 1 "1
20<w2m“21+2—2m + xT CamCaiia-am ) +7.f Z}bzmubztu—zm: 32(1{-1);
m=

m=

. 1 .
: S(bzz—i — 20uas; + 3 Gsm) —0 (Wﬂz - Wazm)

§?—9?

b2l+1 =

(0<i<p),

where Ba(0<I<p) are integral constants (which are independent of ).
Proof Tt is sufficiexat to verify the second and the third formulas of (2.8).
By $*— %0 and the second and the third equalities of (2.9) we get
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Sinoce |ao|+ || %0 and s2— 2?0, we have Bo#0. The ﬂlll‘d formulaof (2.9) at 1=V
and the fourth formula of (2.9) at I1+1=V({<lI<p) form a system of linear
algebric equations of agy and cey. Because the determinant of coefficients is
2008 — H0Cy == 2/80\/ s*—o? %0,
Qar, Car(L<U<p) can be solved.
By (2.10) the second and the th1rd formulas of (2 3) are equavalent to the
following

barpr =| 8| bar—y— 2iuay +—1~Ozza{ ) — v (ueq— taa) |/ (¥—v?),
2 .

1 . . (2.11)
200091, +~2- CoCatz = — Cobar— 1+ 20UCe@ar — 28uUamoCay.

The first equality of (2.11) is just the last equality of (2.9). Differentiating the

second and the fourth equalities of (2.9) to #, by induction we can get the second
equality of (2.11) from (2.9). That is, evéry @a, Cg1, bgys from (2.9) satisfies
(2.11). Because B3 (0<<I<\p) are arbitrary constants (which are independent of @),
the fourth formula of (2.9) is just the general integral of the second equation of
(2.11). Thus, Lemma 2 is proved.
It is easy to get the following corollary from Lemma 1 and Lemma 2.
Corollary. 7Thre nonlinear equations (2.4), (2.8) and (2.6) are all purely

differential equations.

By (2.1), (2.8) and (2.9) the following two lemmas can be proved.

Lemma 3. Suppose that U is given by (0.1), V is given by (2.1) and dy+0.
Then—detV is an even polynomial of A and AL, and the sum of all the terms whose
rower s not less than A2**2 gs

) k-1
AR ”g) g 4 a2, (2.12)

Lemma 4. Suppose that U 4s given by (0.1), V s given by (2.1), s?—v?%0
and |eo| + |@o] #0. Then —detV s an even polynomial of A and A2, and the sum of
all the terms whose power s not greater than A~**~2 is

-1
BN j}_,‘o Barp a2, (2.13)

By Lemma 8 and Lemma 4, we get the following corollary.

Corollary. Suppose (0.8) is valid and V has the expansion of (2.1). Then the
matrizes Vay, Vapss (0<j<k) are determined by of, ag; (1 <j<k) and ap, i.e., by o
and the k coefficients of & highereven—degree torms in the ewpansion of —detV . If V does
not contain any terms of negutive power, the evolution equation (2.5) is just determined
by these integral constants o (0<j<k) (which are independent of »). Similarly, all the
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matrizes W,(0<I<<2p) in empanswn 2.1) of V are determined by B, Bu(1<I<p)
and Bo, i. ., by ,80 and P coeﬁwwnts of p lower even—degree terms in the ewpansion of
—~detV. I f there are rnegatwe power terms only in’ the’ ewpwnsfwn of V, then the evolu—~
tion equation (2. 6) is just détermined by these integral constants Ba (0<SI<p), which
are no dependent on ®. In geneml the evolution equation 48 detefrmmed by ag; (0 <3<Io)
and Bx(0<I<p).

In th1s part we have used the idea of [4].

§8 N-degree Gauge Transformatlons and
- N—degree Darboux Transformatlons

Compariﬁ_g with part one, we see that to get-an N-degree gauge transformation

is equavalent to to get a matrix T such that 7™ is an IV -degree polynomial of: A

and T gatisfies the following equations - |
T =T g,

. _ T(N)__VTW) T(N)V } (3 1)
Where U is deﬁned by (0. 1) V is defined by (2.1), Uand V are eompatlble i. e.,
U and V satisfy the equation Do
| U=V +UV-VU=0 69
and the dependent relatlon from @, v, sto U,V is the same as the dependent
relation from u, v, sto U, V. In [8], T has been directly solved. But the more
large k, p and N, the more difficult to solve T¥. by (8.1) directly, The central
problem of this Daper is to solve gauge transformation 7, We explicit that an

N-degree gauge transformatlon depends on 2N parameters. We give the solvable

condition of 7" (fundamental hypothesis). And finally the probléem to solve 7™ js
turned to some linear problems. For convenience, at first we give the procedure of
solving 7™ ag definition, then we go to prove by definition that 7@ is really a gauge
transformation, i.e., we go to prove that the dependent relation from u, , s to U, ¥
is the same ag the dependent relation from u, v, s to U, V, and T satisfies (3.1).
1. Definition of N-degree gauge transformation
Suppose ¢ is a fundamental matrix solution of equations:
po=Ugp, U= —iAo3+ucs+A1(isos—vay),
@:=V @, V hasg the expansion (2.1). }
And suppose i) p(, ¢, A) has some analytic property to A as we need afferward; ii)

3.3)

@ satisfies
o (@, t, —X) =o1p(z, t, A). : 8.4)
Hypothesis (8.4) is admisgible because ;
[o1p(, ¢, —M)]1e=UQ) [o19(s, 8, —1)],
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- [0'1<P(97 b =M=V (A) [o1p(a, ¢, —=MTe
Suppose MO y< N) are N constants which satisfy .
N0 (A<i<N),
MEN (T 1<<j, ISN),
wi, vi(1<j<N) are constants which satisfy
[es] + [24] 0.

Lot
i (57 D) =pte, 1 29[ |
L 951( £) : Vi
(@ s ®-5
e, 9= (%( >) Pl b “’)<v,>’
and S
T - ﬁmmw-z 1
| 1 0 Lo R
- M TP .,
= (Tﬁf?i ' TE) A<§<i). |
Make equations o o
T (A;) =0, S
T (1) hy=0 (1<9<N) } 3.7

ThlS is a system of linear algebraio equatlons WhlGh contains 4N equations and 4N
. unknown functions TG, T, T{%1, Ti%(A<j<N ). Rewrite it as follows
SE g Mgl dagl o M M¢2 T

$Logt —dad =AM N (SM)TE TN b

000000000 r004e0r00000000000000000000 00008

v I Mdh Madh e ML AR ™
Uy % —Awby — AR (—An) YNy (AR TR /N TER
(=AM : : ' . . v
= — : R e (8.8)
Al '
(—Ax) "y
‘where I=1, 2.

To solve T™ from (8.7) or (8.8), we suppose the following fundamental

hypothesis is valid. v
Fundamental hypothesis: Tne coeficient determinant of (3.8) is:not equal to

zera.
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Under the fundamental hypothesis T’ can be obtained uniquely from (3.8).
Because A;#0, ;%A (j#1, 1<<j, ISN), by linear algebra it is easy o prove
that under the fundamental hypothesis, for any integer ¥(1<A<XN) and for any

permutation : D
1, 2, o, k
(%wm~u%>
"~ we have
GL oMbk MR N
g Y - s (- 7»51)"‘1% (—A)" P,
dotl 00 i ceeaseesones +0, (3.9)
A W R W B L N

ll,}k l,,?k ,— 7\"5/:4'}7: - Nklp‘k (—_ ?\“k) k—.i"{!}k ( Aik) - 2

‘When we replace ¢; by p;;(p;%0) (by (8.4) and (3.5) , Y5 is replaced by pl;), the
equation (8.8) is invariant. So, under the fundamental hypothesis, the solution
T, of (8.8) depends on 2N parameters (As, ki Ag, Koy =-; Ay, by) Where

k=L (j=1, 2, -, N).
Vi '
We define N-degree gauge transformatitn .7~ as a transformation which acts on
@ as follows
T (M, bsi Doy bs; o5 Aoy By @)p=T"Dp, (3.10)

where (Ay, F1; Aa, Bs; --*; Ay, bx) expresses systems of paramé’oers, 1-degree gauge
transformation depends on one system of parameter, (Ay, ki), and N-degree gauge
transformémtion depends on N systems of parameters. 7% is called the matrix of
N-degree gauge transformation. By definition it is easy to know by (3. 8) that for

(1, 2, .o, N )

q‘li, @2’ ...’ (I.IN

the matrix of .7 (A1, b1} Ae, ka) +*+; Ay, bx; @) is equal to the matrix of T (A, ki M,
By ++*; Miyy Biyy @). So the N-degree gauge transformation is invariant under any

any permutation

change of the order of N sysiem of parameters.
2. Properties and theorem
By the definition of D.T. and the fundamental hypothesis we get the following
properiies, : : :
Property 1. The matrix of 1—degree gauge transformation 7 (A, &ky; @) is
T (M, ks @)
TP, ks @) =Al+aos+boy,
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,
-y | 81D
@ = D7

and we have
@ +b2=2l,
detT® = (A—Ag) (A +Ay), }
Property 2. Suppose T® ig the matrix of 7 (As, ks, @) (i.e., (8.11)). Let

(3.12)

p=TDp,
Then we have
~ =ﬁ~ .
A _ } (3.13)
U= —iros+toy+ A" (1503 — Vo), _ .
and
u=u-2b,
5 _—20abs— (a®—b?)w
' A ’ (3.14)
~_ (@®—bM)s+24abv
§= v .
vy

Proof Tt is sufficient to prove the first equality of (3.18) in the case that g=

TWp, (3.14) and the second equality of (3.18) hold. Consider
D=T®+TOT -TT®,
Using the expressions of U and U, (3.11), (8.14) and T®(A)$;=0, we get that D
is independent of A and D¢; =0. Similarly, Dyr; =0. By hypothesis, det (¢1, 1) #0,
so D=0, i.e., v _
~ P 4 TG — G0 0, (3.15)

Because of det 7™ = (A — Ay) (A+ Ay), T is invertible as A +A;. If @ has some
proper analytic property, then letting A—>A;(or A—>—2;) in @,=Up(A%# +A;) we geb
that @,=0U¢ is also valid at A=A, that is, for all A, ,=U@. The property is
proved. "

Definition. (8.11) together with (8.14) is colled & 1-degree Darbous
Transformation. '

Comparing with part 1, we see that the 1-degree D.T. here is the same as (1.9)
and (1.10) in part 1.

Property 8. If

5(“7) t) 7") =j—(7‘*1: ]‘71: ¢)¢<w; t} A)» : (3-16)

then ,
5(‘”) A —'7")’_'—— —015(-‘1’, (2 7“)9 (317}
2 —§2=e? 5%, (3.18)

- Proof Tt can be directly verified.
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Property 4. Suppose the matrix of F (A, by Aa, sy =23 Mg, Bs; @) I8
T(’)—NI+E T(j);&j-z (j=1),
the matrix of 9’(7% k13 As, Fos; ...; Ajat, 7%+1, @) 8
T"*”-—MHI_{_ ET(HD;\;H—z (j+1<N)

and the fundamental hypothesns i Valld Then there is a matrlx R W]nch does not
depend on' A such that’ ' L e ’
TG+ = (AT +RB)T®

and AL-+R is just the matrix of T (A, kv T%).

- Proo f By the deﬁmiuon of gauge transformatlon and the fundamental
hypothesis, T¥? and 7'¢t1) exist and have the expansions of this property. Let

| R=T¢+o_ TP,

D=T¢D— (\I+R)T?.

It is obvlous that D is a polynom1a1 of A Whose degree is not greater 'Eshan j—1. We
suppose

D= 2 DAt

Using the symbols of (3 5) by the definition of gauge transformahon we have
TGy =0, T =0
. _¢ e | .(1_<m<j})..
T+, =0, T, =0
So o T -
Dn=0, Dfpn=0 (1<m<).
That is : | “

g M1 =0 (1<m<j), | “

gbz(—xm)ﬂ"’s&ﬁo (1<m<y).

This is a system of 4N homogeneous linear 'algebraic equations in which there are
4N unknown variables. By the fundamental hypothesis and (3.9) we get D;=0(0<
I<j—1), i.e., D=0. 8o _
TWV= QI+ R)T,
By the definition of 7'U+® 'U+D gatigfies
T Mia) Prar=0, T (= Agy1) Pipy2=0,
So
(7\'14-11 +R) e ()'J+1) ¢i+1 =
(= I+ RYTY (~Migr) 551 =0
Thus AI + R is the matrix of J (Aju4, kiya; T%p). In other hand, if AT 4R’ is also the
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matrix of 7 (Mya, bisa; TPp), then (AI+R)T? must be the matrix of I (Ay, Ky +e22
Ass1, Bip1; @). By the uniqueness of the matrix of gauge transformation we gét /SRS
- /(?\,I +R")T?P, Comparing the coefficients of Af we get B’ =T{+2—=T{". Remembering
that we have let R=T¢*P—T{ we get R'=R. That is, Al -I-R is the unique. matrix
of T (a1, biry TP9). ' ' : : s
Theorem 1 (decomposﬂ'.lon theorem) Suppose MA<J<N) are complem

constants which satisfy A0 (1<3<N),' 7\,;9&7»; (1, 1<j, IKN), b =L are
v;

compless constants (| w;|-+ |v;] #0). Suppose ¢(w t, A) is the fundwmental solution
mairic of (8.8), @ satisfies (3.4) and the fundamental hypothesis is valid. Géven any

| (1, 2, N')
G1, Gay **+y G ! |
='7-(?"517 k‘h; ?\‘ia: ]gis; et 7\'4’,4; kij; ¢)¢ (3 19)
Then N—degree gauge transformation can be decomposed as the product of N i-degfree

permutation
let

gauge transformations
T (M, ks;hay Fos; ++5 My, kv @)@
=T (Mgsbisg; Pr-1)T Migoyy Bigeyy @r-a)>T (s, biy @)@ (3.20)
If we represent the matrix of J (A, k; s, ko, «++; An, by @) by T, represent the
matrlx of 7 (M, ki; @i-1) by M;, then (8.20) can be rewritten as follaws
TN =MyMy_y---Ms. (8.21)
n addition, the hlghest power term in the expansion of 7™ ig A¥I, and the' highest
power term in the expansion of M; is equal to Al (I<j<<N). (3.21) says that
matrix T® can be rewritten as the prbduét of N 1-degree polynomial maftrixes of A.
| Summarily. N—degfree gauge transformation can be decomposed as the product
of N 1-degree gauge tmnsfm‘mwtwows and the decomposition is @ndependent of the ordefr
of systems of parameters.
Proof By definition
T (g, b1y Aay Fap *ov; %N, v, @) =T (?w,, bis; M,, Fiy ==+ My, 70,”, ®).
Using Property 4 once and again we get (3.20). (3.21) is the matrix’ representation
of (8.20). Theorem 1 is proved.
Corollary. The determinent of matmm T of N —dego*ee g(mge tmnsformat@on
68
det T —[[(x A (VHA).
Note. Suppose that in the theorem T ig

T 33T + 2 T~
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and .
T =MyMy_ye--My.
By Property 1 we know that all the matrixes M; — AI(1<j<<N) are independent
of A, and in the decomposition on basis (I, o4, oa, 0'3) there are only the terms of o,
and o5. It can be verified by induction that when j is even,
TP =T8I +T Moy,
and when j is odd,
‘ T® =TMio3+iT M0,
Property 5. Suppose
e =Up, U= —itAog+uci+A (4805 v05)
and suppose the ma.trlx of N-degree gauge transformation 7 (hy, ki; -2} Aw, &} @)

ig
N
TOO=ANT + 3 TR
and '
p=Top.
Then we have _
#e=00, U= —ihos+uoy+A"1(4503— Do) (3.22)
and _ :
=+ 26772,
- [(Tz‘v%)"—i— Sg)’ ALY, QJS—?T ST v ,
1) — (T'2) (3.23)

_ 2Ty z(ngzs‘" [(T§)2+ (T§e) *w (—1)¥-1
= T — (TT2)® ¢ .
Proof By use of Theorem 1, N-degree gauge transformation can be rewritten

<

as the product of N 1-degree gauge transformations. To every one of 1-degree gauge
transformations using Property 2 once and again, we finally get that @,=U@ and T
has an expansion of (3.22). In the expansion of 7,+7TU -UT =0, comparing the
coefficients of A~ and A¥ and using the note of Theorem 1, we can obtain (8.28).

Definition. (38.28) fogether with N~degree gauge transfomation is called N—degree
Darbous Transformation.

Corollary to Theorem 1 and Property 5. N-degree D.T. depends on N éystems
of parameters (Ay, %1; Aa, Fs; =++; Aw, kx). And it can be decomposed as N 1-degree D.
T. every one of which corresponds one system of parameters (A;, &;) respectively. If
the systems of 2N parameters are invariant, then the N 1-degree D.T. in the
decomposition are commutative.

By calculating we get the following property.

Property 6 (superposition theorem). Suppose the matrix of T (A, #1; @)
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o o A +aoy+boy,

the matrix of 7 (Ay, ka; @) is
. MHd'os+bog.

Then the matrix of J (Ay, ks; Ae, ka; @) has the decompositions

T®= (A +R) (M +acs+bos) = AI+RB) A +dos+boa),  (3.24)

where ’ ’ o

(b'; 5)2—}— CEDE {[d(d—a)*+ (b'— bj (a’b'+a’b'52“b')]>“8

+ (0'('—b0)2+ (' —a) (Va+b'a —2ba’)]) o3},
B= (b— b’)ﬂ_;l. (a— a,)2 {le(a— a’)2+(b b') (ab’+ab 2a'b)] o3
+ [b(b— b’)2+ (a a’) (ba' +ba 2b'a)]0'2}

'7-(}"1) kl; q))

_R=

> (g, V1 81)
yd("fl) kiv Agy ooy @)~ ~ ~.

(9, v, 8) >(u, v, 8),
' T (Ao o3 9) > (e 03, 52)
then o

Q‘Z=u1+2frg,> | ' o " . S &
-~ ~ 2 2 ' |
883+ wv1= (89—4)9)(1——%%3>,.
- ~ » 2 12
88a-+ vV = (s? — %) (1 - ;‘E | );

1 . :
e = (0'~b)2+ (o —a)® [/ (' -0)°+ (a'—a) (ta+b'd'— 2ba)], + (3.26)
,'—= ' 1 N AN ] 14 ’ _' /
T (b—b")2+(a—a")? [b(b -b')2+ (a—d) (ba' -+ ba 2b'a)],
7\;1(8’1)1"*‘ @31) N 7\12 (S'UQ +'sz>

" o(u— u) (’02-—82> » &= 5 (ug—u) (v?—s%)’
L Rk r_ Ug—U
b 2 b b 2 H . . P
, , s can be: got from (3 26) dlreotly ’

§ 4. The Nonlinear Evolution Equations Satlsfled
by the Potentlals after D.T.

In this part we g0 to prove that through D.T,
=T
é)'Satisﬁes
: ) gvt—ng,
where ¥ can be obtained from the expression (2.1) of ¥ by replacmg V; with
V., W, with W, u, v, s with @, 3, 8. And we go o prove that the dependent relations
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from @, v, § to ¥ is the same as the relation from u, v, s to V. On the other hand we
go 1o prove that T’ satisfies '
TM = VT(N),_ Ty

which is the second kequality of (3.1). Thus D.T. gives a method to ask for a new
system of solutions #, 2, § from a given sysiem of solutions u, v, s of the yame system
of evolution equa,tioxis Since N-degree D.T. can be decomposed as the product of N
1~degree D.T., to complete above proof it is sufﬁment to prove above conclusiong
under l—degree D.T..

Lemma 5. Suppose that T® s the mairiz of 1-degree gauge transformation, V
has the ewpansion (2.1). Let L

' 7 (T‘” FTOP) (T‘”) - ’ (4.1)

Then V is a,lso a polynomial of A and A~ in whioh the highest powefr of A ds AT gnd
the lowest power of A is A™2P72,

Proof By the definition of T‘” T<1' (A1) g61—0 Differentiating it with respect to
{0
£ we get [T () +TP M)V (M) ] =0. Since ¢y # ( 0 ), by virtue of linear algebra,

the equality (T® (M) + TP M)V (M) (TP (A))*=0 can be proved where (T (M) )*
ig the companion matrix of 7@ (A;)). So at A=Ay,

(TP +TOF) (TDY*], 0, =0,
It is similar to prove that at A= —A;,
(T + TP (TDY* lz——m”‘ 0.
So every componant. of (TP-+T®V).(T™)* has the factor v(i\.——-?u) (A+A1). Noticing
(8.12) we know that ‘ |
(TO+TOY Y (TW)~1 = (PO TDOVY (TD)*/det T®
is also a polynomial of A and A%, Comparing the highest and lowest power of A, we

know that in the expansion of ¥, A®*1 ig the highest power and A~ is the lowest
power.

Lemma 6. Suppose T® is the matriw of 1-degree gauge transformation, V has
the expansion (2.1), and V= (TP +TOV) (TD)2, Then V has an andlogic expansion as
V. More precisely, we have

k 3 2p .
V= gﬁﬂﬁ\'akﬂ-a; + g} 72”17\‘214—25 R ?::) Wﬁ\‘i—@p—:l’ y

|14 =a’2i0‘3“ '%‘fﬂiaﬂy T72:’+1 = "21— 5zzi+10’_1 . (0<j<h),

W:zz =5210‘3 -—;— 5210'2 (o<i< Z’):

L (4.9)

as p>1 Wzm =5 Zzz+101 O<i<p-1).
P'roof By 4, 1) |
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. VTO=TO - TOy,
By Lemma 1, we can suppose that the first equality of (4.2) is valid and we go to
prove the other equality of (4.2). By (8.11) |
: TO=Al+acy+bog.
Substituting the first equality of (4.2) to the equality
7ro—~ 7O L Oy
and comparing coefficients of different power, we get
8 7(»=Vo, v
Vi1tV i(a0s+b02) =V 0+ (aoa+bon) V;  (0<j<2K),
Vars1(aos+b03) +Wap= (a03+b03): + (003 + boa) Vet + W, (4.38)
W11+ Wi(aos+b0s) =Wis+ (aos+bo) Wy (1<I<2p), |
Wo(aos+bos) = (acs+ bos)Wo. ‘
By (4.2) and (2.1), (4.8) can be proved by induection. Lemma 6 is proved.
By the way, from the lagt equahty of (4.8) and the followmg equallty

(aaa—{—bag) (aos+bos) =(a® +b2)I £.12) 7\,21
we geb ) »
Go= [(a®—~b)ao—abool /3,
co= [ —4abay— (a®—b2) 0ol /M. }
Lemma ¥. If (8.1) isvalid, then
(O, -V, +07V -V O) T =17, - Vot+UV - VU) (4.5)

Proof Dlrect calculus.

(4.4)

Lemma. 8. Under l—degree ga/wge tmnsformatwn, do and dy is wndependent of
potentwls and do=do, & Go, €o depend on U, v, 3 and the dependent relation from u, v, § to
do, Co 8 the same as the dependent relation from u, v, s to ay, Co.

Proof By the first equality of (4.3) do——do which is independent of potentlals
By (4.1) and (8.15) we know that as N=1, (8.1) is valid. By (8.2), (4.5) and the
fact that 7% is inversible when A # s, we see that U, ¥ satisfy the following
equation :

0,-V,+0V-VT=o0. (4.6)
By (4.2) ¥ has an analogic expansion as ¥ does. By (4.6) and by (2.10) of Lemma
1 and Lemma 2, we have

~ SBO ~ - 2WDBO
Qo = —-—-—52—65-, c0'—\/"—‘—“‘82_,,5 ° | (4’7)
By (3.18) |
P2 —52=0f—g?
By (8. 14)

—2jabs— (a®— b v

o=
M
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(a® bg)s+2rmbv
M

©®1
!I

By (38.12)
a +b”
Using these equalltles and comparlng the rlght hands of (4.7) and (4.4), by v®—s*%0
and (2.10) we get
180 ,80 , o o
By (4.7) and (2.10), we know that the dependent relatlon from &, D, § 10 o, Co i8
the same as the dependent relation from u, v, s-10 ao, Co. The lemma is proved.
Lemma 9. S'uppose that TV is the matmw of 1~deg¢ee gauge tmnsformat@on and,
V has the emrpanswon (2,1). Let ,
’ '7 (T‘D-}-T(”V) (T(i)) 1
Then in the eTPANSHON of det'[7 the, sum of the terms whose powefr is mot higher than
A2 o whose power 48 not lo'we/r tham ?f"” is.equal to the corresponding sum n the
expansion of det V. That s '
&=, B3,
as k=1, @y =on; (1<j<h), (4.8)
as =1, fém———ﬁsi (1<i<p).
Proof By hypothesis - o
'[7T(1>—T“’+T<1>V T (4.9)

Because V' has the expanswn (2.1) and T is a linear polynomial of A, the highest

power of the expansion of T™V is A™*® and the lowest power is A~*"%, Because

Ly is mdependent of A, in the expansion of det (T(l)—l—T(“V) ‘the sum of all terms
‘whose power is not less than A%*8 or whose power is not Ligher than A-o9- is equal

to the sum of the eorrespondmg torms of det 7™V, that is, the sum is equal to
27\4“4 + E (@os0— aigihg) AF*2- 2’—327\»27*74’ '2+2(Bsz- ,8217»1>7\'2?7-4” 2. (4.10)

On the other hand, by Lemma 6, ¥ has the same form of expansion as ¥ does. Using
equation (4.6) and Lemma 1 to Lemma 4 and notioing det ™ =A2—2%, we see that,
in the expansion of —det(/T'™®), the sum of all terms whose power is not lower than
A%*3 or whose power it not higher than A~2#-2 ig

2}\‘4k+4 + 2 <42:+2 am?\’ )7\‘4k+2 2§ __ ,82?\.17\.-47‘ 2+2(,82;_2—182;7\, )7\'2[*41)—2'

- _ (4.11)
Caloulating determinants of both sides of (4.9), by above discusgion, (4.10) is equal
to (4.11). Comparing the coefficients of different powers, we get (4.8).

Theorem 2. Under N ~degfreé Darbous transformation, the new potentials u, ,
satisfy the same evolution equations as u, v, s satisfy.

Proof Because N-degree D.T. can be decomposed as the product of N 1~degree
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D.T., to prove the theorem, it is sufficient to prove it under 1-degree D.T.,

By (4.2) we know that the expansion of ¥ can be obtained from the expansion
of V by replacing @m, bas, Ca, Bas, €asss, fas With G, Oass, Omp Gaj Gaiss, Fai BY
(8.18) we know that the expression of I can be obtained from the expénéidn of U
by replacing u, v, s with u, », 5. Using equation (4.6), Lemma 1 and Lemma 2, we

see that the recursion formulas from %, ¥, § 10 @w, Dass, Ca, Osaj, Gajea, So; aTe the

same as the recursion formulas from u, v, s t0 @g, bay1, 6a, Gasy €sj41, fas. Because in
the recursion formulas (2.8) and (2.9) there is not any integral operation. To prove
the dependent relation from @, o, § o &g, Darst, Cay Qs Gs541, Fo i the same as the
dependent relation from w, v, s 10 @y, a1, Ca, oj, ajy1, faj, it is sufficient o prove
that the corresponding integral constants by which the dependent relation can be
uniquely determined are equal to each other resreéﬁveiy. Thesve:"li;_avei b_eeh proved

in Lemma 8 and Lemma 9. Thus we assert tnat the dependent relation from #, , §
to ¥, U is just the same as the dependent relation from u, v, s to ¥, U. So #, o, §

~ satisfy the same evolution equations as u, v, s does. Theorem 2 is proved.

~ §5. The Relation of D.T. and BT.

In [2], the Biicklund gauge is obtained from (8.1). We have proved adove

that the matrix of D.T. satisfies (8.1). So the old and new potentials also satisfy
the B.T. formulas, That is, giving a system of solutions v, v, s, the new potentials
4, v and § are just a system of solutions of B.T. equations (in general, they are
some nonlinear equations). Analysing above solving proceeding we notice that in
our case only it i necessary 1o solve some linear equations, that is, o solve
equation. ‘ | .
‘ dbp=Udda+Vdt

and o solve the linear algebraic equations (3.8). And by (8.28) we can get the
new potentials directly. Summarily, when using D.T. to ask for new solutions, it
is sufficient $o solve some linear problems. This is our motive to discuss the D.T,.
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