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INITIAL BOUNDARY VALUE PROBLEM FOR ONE
CLASS OF SYSTEM OF MULTIDIMENSIONAL
INHOMOGENEOUS GBBM EQUATIONS

Guo BorLiNg (4 R)*

Abstract

This paper studies the following initial—boundary value problem for the system of
multidimensional inhomogeneous GBBM equations

. ‘ n a N :

uy— 4“:+§ B, grad ‘P(u)=f(u)g 1.5
u[,_o=uo(w), reQ, (1.2)
us0=0, ¢>0, 1.3)

where u(z, £)= (“1(”: 8y voe, tn (Ty 8)), F () = (F1(un,y oo, W), ooy Fu(tis, ==, un)), p(u)
=@ (uy, +, ty). The existence and uniqueness of the global solution for the problem(1.1)
(1.2) (1.3) are proved. The asymptotic behavior and “blow up” phenomenon of the
solution for the problem (1.1)(1.2)(1.3) are investigated under certain conditions

§ 1. Introduction

BBM equation has been proposed and studied by Benjamin, Bona and Mahony
in specific physiéal situations under longwave limit in nonlinear dispersive media.
In [1, 2] J. A. Goldstein et al. have proposed and studied Generalized BBM equation
in higher dimensions (GBBM). In this paper, by using the Galerkin approximation
method, we prove the existence and uniqueness of the initial boundary value
problem for the system of GBBM equations, and study the regularity and “blow
up” of the solution for GBBM equations. |

Here, wo adopt the usual notation and convention. Let H™(2) denote the
1
Sobolev space with the norm [u|gmey = ( D) [D*u|3,)Z? or simply |u].; HE(Q)
. lal<m
denote the closure in H™(Q) of 05 (Q); [u|z =ess suglu (#)|, and so on (see [8]).
: €

We first consider the following initial-boundary value problem of
multidimensional inhomogeneous GBBM equation '
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w— L+ Vo () =f (u), . (1.1).

ule=o=%(®), - 1.2)
'Mlgg-."—‘o, (1.3)

where

el 9o (2 L)
A=t V——(%;, o)

P = (g (), - pa(10), V-0(w) 2% o,

QC R is a bounded domain, 82 is its boundary.

‘We construct an approximate sdlution of the problem (1. 1) (1.8) by the
Galerkin method, and choose a basis {fw,}CH 5N .H?2, where w; are the eigen-functions
of the problem: : ‘ |
— dwy=hw;, wi|0=0, j=1, 2, . (1.4)
Obviously, if the domain'Q is suitably smooth, then there will exist such a special
basis. In fact, if Q€ 0? then the basis {w;} € H? (Q) ﬂH (Q)cH 1({2), and it is
dense in H(Q). :

- Now suppose that the approximate solution can be written ag -

U (@, £) = g oty (£)205(2). - (1.5)

According to Galerkin’s method, these coefficients ay, (¢) need to satisfy the following

inifial value problem of the system of the ordinary differential equations

(umt"Aumt"l‘V'q’(um) —f(um): 'wS) =0, =1, 2, -, m: | (1'6)
Up | $=0= Uom (©) 1.7
where ’
, o
som (8) ———> o ().

Under the conditions of Lemma and the a priori estimates in § 2, we know that
there exists a global solution in the interval [0, T] for the initial value problem
(1.6)(1.7) of the system of nonlinear ordinary differential equations and it can
approximate the solution of the problem (1.1)—(1.3). Furtermore, we obtain
the global smooth solution of the problem (1.1)—(1.8) in§2.

By a method similar to that we used in § 2, we consider in § 8 the following
initial-boundary value pi'oblem for one oclass of system of multidimensional
inhomogeneous GBBM equations:

ty— At + 3] 2 guad p(u) =F (u), )
|i0=o(2), (1.9)
'u|9,=0, (1.10)

where u(my t) = (u:l(w) t), % uN(w; t)): f(u)=(fi(u1’ °% uN): °°% fN(u2; ;": u}N)»)‘:

o) =@, -, uy). We also obtain the existence and uniqueness of the global
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golution for the problem (1.8)—(1.10).

At lagt, in § 4 we give the sufficient conditions of “blow up” of the solution
for the problem of one oclass of system of generalized inhomogeneous BBM
equ‘a{ions, ' '

§2. The In1t1a1 Boundary Value Problem 1d.D)—70.3)

Now we make the a pnon estlma,tes for the solution of the problem (1 6)—
@€.0. . :
-Lemma 1, I _f the followrmg cond@mons are satisfied

(i) ep(u) €O, (f(w), u)<b(w, u), b=const.,

(i) wo(ew) €H3(Q), .
then for the solution un(w, t) of tke problem (1 6) @.'7) there is the esfx&mata

: ”“mul‘nxll +| v’“m”me < H,, : 2.1)
where the constamt B, is independent of m

Proof Multiplying (1.6) by () and summing them up for s from 1 to

m, we have ‘ |
| (it (8) — Lt (£) + V@ () ~f<um>,' tn (£)) =0. (2.2)

Since S SRR o '

(umt; %rb) 2 dt “um U Iy ™ (Aumt@): Un (%)) “"§ i [{Vum(t) 1%

(-9, 1) =(3 20n). () =(3] 2 0, 1)=0,

$=1

where

DuCut) = [\ g1 @i, (f (), Un(5)) <BLum(®) |2,

from (2.2) it follows that

A RO ;’t T <Ol 2.3)

Integrating (2.3) with respect to £, yields
[vm @) |2+ | Vetm (8) |2, <26I2 Un () | 207 + [4n (0) |2, + | Vi (0) | 3,

<2 fum@Ipde+0. @e

By using Gronwall’g inequality, we obtain (2.1).
Lemma 2 (Sobolev’s estimates). (i) If u€ HY(Q), we have

"u"Lq(Q)<O<‘Q: 7, 9> "u”H‘(D): (2-5)

, @8 n>2; 1<<g<<oo, as n=2,

where 1<¢<< nzf'

(i) of K is a nonnegative integer, we have
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| Du| 2. <01 (k, 2)|v|m @y, for u€ H(Q), and n<<8. - (2.6),

(iii) Let D™u € Ly(Q), u€ L(Q), QCRY, 1<q, r<oo, 0<j\7a j/m\w<1 1<p
<°° Then there is @ constant O such that I o

| D]z, <O| D™t [u] 7 SR - (2 7)

where

1 i,i.-m 1

i +a <p )+ 1- a) :

' Lemma 8 Suppose that the condgtions of Lemma 1 are sotisfied, and dssume that

Jmax. |} (w) |<A|u|2/‘”"”+B |f" (W) [<A|u|8/"”’ n<8, 4, B=const., (2.8)

and yo(a;) €H 2nH%, Then for the solumon of the problem a 6)(17) there is ihq

estéma?e o A .
. " Au’m“LaXL <E1n ' S (29)

where the constant By is independent of m.
Proof By — dw;=2Amw; and (1.6), it follows that =
(thmt — LtV » tp(u,,,) — F (tm), Au,,,) ~0;- (2.10)
Since ; . C
(Unt — Aumt) t . ” Vum " %;’_

("‘ Aumt, - Aum) = "‘2“ ‘Et—'" Aum “ %.)

) él(é%(u&)%’f—; "Au,,,) o

| @), ~ )| =| (3] 3"”‘“@ —

¢—-1
<-2-nAumu%,+ L3 ) 2= .
oup? (1.1_\..
3142, +0 3ol () 13,] e (p+p~1)
6u

<31 4ualt, +0 3 gl ) 12, (Takop=2, p=-25)

L:mm—s)
<§n Lo | 2,401 (| i 2H,+Bi) | (B_y Soboley inequalities)

<O, | dutm|2,+ 0, e |

| (= f-Cttm) — ) | <|f’ (um)(lL.UVumlln.<04ﬂ“mﬂm+Os<06u4uml|n.+0b

(By usmg inequality |4du|%,>0 |u|b ey, w€ H3N H? so6 [5])
by (2.10) it follows that

18 |Vl + ||Au,,.ﬂL,<osuAu,,.uL,+og @
By using Gronwall’s mequahty, the eshmate (2 9) is obtained. |
Gorollary ‘ SR
sup ”u,,,ll;, <E2,, I (2.12)

where the constant Hy is independent of m.
Proof. ; By-Soboley’s inéquality (2.6)
lem | 2. <Oy [[tom]
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énd »-using the inequality
oL e 19| 3 <O | Bt 1,
and (2 9), the estimate (2.12) is derived immediately.
‘. “Lemma &. If the conditions of Lemma 8 are satisfied, then we have the estimate
Nt | Zaxre + | Vit | Zaxcz. S Hs, (2.18)
'whefre the constant Hg is independent o f m. :
" Proof - Mulhplymg (1 6) by ot (%), a.nd summing them up for s from 1 to m,
we have .
o)~ B (V) = (), w@)=0. @
From @. 14) it follows that ) N
.‘ [t (8 |3+ | Vs () |2,< | (V- @ () vt (D)) | 4| (f @tm), Ume) |- *(2.15)
By the conditions of this.Lemma and Lemma 3, it follows that
L C(f () vome) | <<|f () 2 (01 [tome | F,) <Oa (L4 futme [ 2.)
l (V'??(um): umt(t)l

s 2] + 2 lum@Ik

<P Max |gi (o) [2AVitml, - T D)

2 =1
<0s(1 +4 "umt 12
Hence (2.15) implies

% lems (&) | Zaxcz. +5- "Vum,(t) [3.02.<O.

Here constants O ig independent of m. The Lemma has been proved.
Lemma 5. If the conditions of Lemma 8 are satisfied, then we have
(e Bz < By (2.16)
where the oonstamt H, s independent of m. ‘ '
Proof From (1.6) it follows that
| (u,,.;—Aum, +V. tp(u,,,) —F (Um), — Ltts) =O0. 2.17)
Thus from (2. 16) we have
| At | 3, < Lttt | 3+ [V @ (o) [ 2 [ ot [ 2] 1 Attt ] 22 <O | Bt
Hence(2.18) implies (2.16).
Theorem 1. Suppose the following conditions are satisfied:
(i) p(w) €0 and

(ii) f(uw) €ECY, and
(u, f (@))<b(u, w), |f' (w)|<A[u]|*"+B,
(i) ue(@) € H2A(Q) N Hi(Q), o= (21, *, &), n<3,
where A, B and b are constants, which are independent of u. Then there ewisis a global
generalized solution u(w, t) € L™(0, T; H2N Hs), w(s, ) €L~(0, T; H?N\H}) for the
problem (1.1)—(1.8). |

.. (2.18)

|9’ (w) | <4lu|***+B,
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Proof By Lemma 1, Lemma 3, Lemma 4, Lemma 5 and compact argument,
we can choose a subsequenece {w.(2, )} from the sequence {un (s, t)} , such tha’b
u, (@, )= u(w, t) in L=(0, T; H?) weakly star, y—>co,
u, (@, t)—> u(w, £) in strong topology of H*(Qx% [0, T]), v—><>6,
Uy (2, §)—> w; (2, t) in 'L°°(O, T; H?) weakly star, y—>c0,
F(u, (@, £))-> f(ue, £)) in strong topology of Ly(2x [0, T]), »—>00, |

end , .
V¢ (u,)—> Vo(u) in strong topology of L*(0, T; Lg), y—>o0,
In fact | )
. Vealuls. D), = 3904(%:) a‘Pe(u) "
199, )~ V-9 (u(e, ) |, =322 20|
= | 204 @) =) + 310 () =g (o |, T
<O |toe,~ ooy za+ |0 —® ] 2] t50, | 2] <Ot v5s = 0| >0,
where

luo— ] 5. <O luy — w| e — | i <Os ot —ul E'—0 - (n=8), - . -

oty =2 <Oty —ul[ 2o~ ul 3 <Ol — w20 (n=2.. .o,
Henoe taking m=y->00; from(l 6) we bave .. ;-

(e e V() — £ (4, 07) =0,
By using the density of {w;(2)} in Ly(Q), it follows that PR
(e — otz + V- p () — £ (1), ») =0, WELQ T (2.19)

. Taking m=p—>oc0 in (1.7), it is ‘known that u (»,.t) satisfies the initial condition
(1.2). We complete this proof of this theorem, -

Now we are going to consader the reqularltles of the global generalized solution
for the problem (1.1)—(1.8). '

Lemma 6. ;S'uppose that the condq}tq}ons of Lemma 3 are satisdied, and assume
that ' ’ ’

(i) plw) €0¥1(Q), f(w) 602"(!2), ‘where p>1 48 inderger,

(i) wo(w) € H**(@)NHI(Q). i
Then for the solution u,(w, t) of the problem (1.6) (1. 7) we have _

”A um"LaxL +’lv2p+1um"1mxb <E5: o (220)
fwhea'e the constcmt Es is mdependent of m. ' ' |
" Proof From (1.6) it follows that o )
L (Ut — LtV - @ () = f (), £Pu) =0, (2.21)
Simce- R g . o
(A Uty Apum) '—"‘— rra “A um"m,
(Ve@(m), LP%un) = (42+V @, Au,),
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( Aumt; 4 um) = (Ap+1umt) Apum) n Vit m”2 ' .

By the Oorollary to Lemma 3, Humﬂ L. <E3, and the hypo’ﬁhesm qn(u) EG“”’“(Q)
fw)yeo> (Q), it follows that . .
@V, ) | <Ol | Punls),
(= f(um>> B%ug) | = | (= 2F (tm), L) | <O L+ | 4%%n|2,) <

| Thus from (2.21) it follows that

2L a8+ 1L g 3, <OV 3, | L, +1)

By using Gronwall’s mequallty, we obtain (2 20).

Lemma 7. Suppose that the conditions of Lomma 8‘are satisfied, and assume
that @(u) €O**(Q), f(u) EC*(Q), k>1. Then for the soluiion un(w, t) of the problem
(1.6) (1.7) we have S | -

U Dy %,x,;—!— (VD Y| ke <HBs, (2.22)
where the constant He zs independent of m.
DProof As’ F=1, dlﬁ'erenma.tmg (1 6) with respect to £, multlplymg the
resulting relation: by ol (£) and $umming up for s from 1 to m, we obtain
(umn“Aumn+ (V“P(um))t f (um}umh Umt) =0, (223)
Hence
lotmte [ 2o+ [ Vot | 2 z< I (v ¢(um)>t, thmte) | | (f° COL ot |

<2 q’% ('um) umt'umi; umtt) [

(z: gk (m) s t) |+ ), )|

'/\;

<]-VI&X“(P (u,,,) "L HuthL Ellum«nz. "%nttﬂzz.

Ty Masx|g/ (i s zuumw P

+llf‘(um)Hn.liumﬂn.l!umﬂm S
<O|Umst |z, (by using (2.18) (2 16))

\—2-"%#"1:, =+ ; C*.

(2 22) is true as 5=1. Now suppose (2. 22) holds as k. Dxﬁ‘erentlatmg (1.6) E times
with respect to ¢, multiplying the resulting relation by D"“as,,,(t) , and summing
up for 8 from 1 to m, we obtain -
‘ (Dt — D"Aumt—l-D’“(V qz(u,,,)) — D¥f (), D¥*tu,,) =0, (2.24)
Since
(Dit, D) = | DE 3,

& (D bty DY) = | VDT ) [ 7,
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|DE-), D) [ < uDk“umuL,+ouvaumnb. 1n D unlit Os

|<D f(um), Dkﬂum) I <——||D g, o L,+ou Dtum H \-4- u Diual +0s,

(2 22) is ‘irue.

Theorem 2. Suppose that the cond@twons of Theoa'e/m 1 are sat@sﬁed and assume
- (1) p(w) €0"H(Q), f(w) EC*(Q),
() w(@ €EFHQ)NEN), . o
then there ewists the global smooth solution u(e, t) for: the pfroblem (1 1) (1 3),
u (e, t)EL‘”(O_T, H*%0 Hp), BuEL‘”(O, T, H¥*-10 HY), j=1, -, k41,
.- -Theorem 3 (Uniqueness Theorem). -Supposs that @(u) €O?, f,(u) €0, and
vo(%) € H§(Q). Then the smooth solution-of the problem (1.1)—(1.2) és unigue.
. Proof Suppose that there are two solutions’ u(a; t)and fv(m t) Settmg {=u—wv,
we can derive the equation S
R L A§t+\7 @) =Vop() — (f('w) f(’v)) 0. (2.25)
Since o o
V@) = Ve (0) = (P ) ~ un(9) )1, + 2 p1a(0) (e~ 02
=3 un(8) (w0t + 2] pu(0) (e~ 96,
mini (u, v) <E<Max (u, ),
Cf@=f @) =f' () (u—v),
where L I
' min (u, v) <n<Max(y, v),

multiplying (225) by { and téking the inner produet, we obtai#
(€ O~ (4L, D +(Vepw) —Ve(v), {) - (f(u) —f(®), ) =0.

Since
@ 0=-1 s, —, -1 L,
I(V'tp(u)—V'qD(v), O1<OULIL+IVEI3),

| l(f(u),—f(fv_), 0 1<0ulCl

it yields

14 s, + 5L vLL<O(ICIE+IVLIL).

By using Gronwall’s inequality and {|;.o= O V¢ |i=0=0, the proof of the theoram is
compieted.
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8§ 3, The System of Mult1d1mens1onal GBBM Equatlons

Now we consnder the followmg system of multldlmensmnal GBBM equa;tuons

w-turBLogmdo@-f@. @D

with initial-boundary conditions v
“lt=9=u0(w), #]0=0, S ‘ (_3'2)
where #= (uy, +--, uy) is a vector valued function, (&) = @ (u;, -, uy) i8 a sealar

function’of variable vector w, f () = (f1 (@), -, fx(&)) is a vector valued funotion’

of variable vector #. “grad” denotes the.gradient operator for vector's.
* - For the problem (3.1) (8.2), we also. apply the Galerkin method to establish

the existence and’unigueness of the global smooth solution. Let basis {w,} be. the’
eigen—functions of the problem (1 4) and suppose that the approxlmate solutmn for

the problem (8.1) (8.2) as follows:

7

functional vectors. According to Galerkin’s method, these coeﬂiments neéd to satisfy
the following 1n1t1a1 velue problem of system of the ordinary differential equations

(Uit ws) (Aumlt’ ’w8> +2 e grad ‘P (um>: ws) — (fi(tn), ws) =0, (34)

Zml., 2, oty N, 8§=1, 2, «r-, m,
umzlt:=_0=u0mz(w), ‘Z 1 2 N, (35)

H?
where ug, (&) —> ug(#), m—>o0, =1, 2, -+, N, and

Ui (w, t) = ; Ojmi (t)w? (w)

In a way similar to what we have done in §2, we may esiaabllsh the a priori

estimates for the problem (8.4) (3.5).
Lemma 7. ;S’uppose that the following conditions are satisfied:

(i) p(u) €0? j u- f(u)dw<bJ‘ u-ude, -
where : ' |
u-F (u) = Sjuufi(us, -+, ux), b=const,

(if) uo(2) € H§(Q). . v
Then for the solution of problem (3. 4) (8. 5), we hwve

" Un (w: t) "LaXL.,+ “ Vum ”Ln<Ebf o ' (3.6)

where the constani Hg i8 independent of m, and

(e, ) =Slan@u@, k)

where %, (2, t) = (um (=, t), oy Unn(@, 8)), @) =(sm (), "ty Cmay @) 941‘9‘
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N
1Vt o, = 3 Vet i

Proof Mu1t1p1ymg (8.4) by aym(t), and summing them for s from 1 to m and
for 1 from 1 to N, we have . =

S s ) — (i o) + (B2 o) =it )| <0.  (8.7)

Since . e :
N 1 -
2y ) = Sl

g<-—4umu, R

;N;<a¢smz s [( ) ol — 3] [ i
§=1 ow /. ;=.1 ;; Pumtimt) & g ‘Pum;umw,

n N

a‘l’(“mir ) umN)
gg[ (?um;uml)a j‘D T da= 0,

» ;;(f z(um, ) %nz), umz)<b§(“mh Unmt) = b““ﬂ»"lm
from (3 T it follows that e
7l +; g’, ACHERSITNER

By usmg Gronwall’s inequality, there is
Netn (2 |2+ | Van () | m<6’-‘?’?’ (4 (0) | 2.+ VUn (0) [2,) =C.
Hence the estlmate (8.8) holds. - : - .
Lemma 8. Suppose that the condrz,twns of Lemma T are sat@sﬁed and assume that
(1) o(w) €0 f(w) €0,

(ii) Ia ‘p<u)l<A|u] = +B

) /() |[<Alu|*"+B,
@here A and B are positive constands,
(i) wo(e) € H*N Hf, o= (a3, -+, @n).
Then Jor the solumon of the problem (8.1) (8. 2), there are the estwmates
|8t 2z + | VOt | Zuscr. + | 408 | Fxz - | Aumt”L,xL <E1y
where the constant H, is independent of m.

70, 1=1, <, N, 0<8,

P'roof Tt i§ similar to the proofs of Lemma 3 Lemma 4, and Lemma 5 Hence
~ we have the following theorem. ‘
Theorem 4, Suppose that the followmg conditions are satrz,sﬁed

(i) o () €C°, and '

o (u)
Ou Oy,

where A and B are positive constanis.
(i) f(u) €0, and

2 .
<A'|:u|>T-?V+B_, k,1=1, 2, "'P,N, n<3,.
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(uz; S1Qua,, ooy uxy)) <b|w|%,, b=oconst,

[f(w) | <A|u|*"+B,
where A and B are positive constanis. :
Then there emsts the global genemlq,md solution u(w t) for the problem (8. 1)—-—

@.9)

M

N9,

u(w, £) €L™(0, T; H*(Q) N Hi(Q)),
(v, 1) €L(0, T; H*(Q) N H}(Q)).
Theorem 5. If the conditions of Theorem 4 are satisfied, and
(i) p(uw) €0™3(Q), F(W) €0*(Q),
(if) to(e) € H*(2) NHF(Q), - .
then there emsts the global smooth solution u(w t) for the problem (3.1) (8.2),
-~ ule; 1) €L7(0, T; HW*VHY
Diu(a, t) €L(0, T; H¥**~INHY), j=1,2, -, b+
Theorem 6 (Unigueness Theorem) Suppose that <p(u) €0t f(u)eo* and
oo (@) € H {(Q). Then the smooth solution of the problem (8. 1) (8.2) is undque.

§4. Asymptotic Behaviburj and ’_“Blow up” Problem

Now we are going to study the asymptotic behakur a8 #—>00 and “blow up”
problem of the solution for generalized GBBM equations. ' a
- 'We consider the following olass of system of GBBM equa’tions

u,— du, +2 — grad o (%) ,f(a: t, u) o (4 1)

with the initial-boundary condrtlons ‘ o
:c0=10(2), | | ‘ (42
U),0=0. (4.9

Theorem 7, ;S’uppose that the geneo*’almed solutfwn u(m, t) of the prroblem 4. 1)
4.2) 4.8) emsts for a'n,y 0<T <0 and assume that the following conditions are
satisfied: -

(1) NN Jacobi derivative mairiz I u(cv, t, u) s nonposq,twe—sem@bounded
§. e., there is a constant b<0, such that o

&S, 8, wE<BE|® EC
Jor any £ €R", where “=” denotes the sealar product operator of two N—d@menswnal
vectors and |§|2=¢¢.

(i) f(a, t, 0) € Ly(Q..), where Q.= X (0 00) _

Then the generalized solution ©(x, t) of the @mtwl-—boundafry ‘value problem (4. 1)-=~
(4.8) has the asymptotic behaviour

‘‘‘‘‘‘
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:Ei?‘}["u("; £) |lLs+l'vu('z £) |z =0. (4.5)
Proof _Taking the inner produoct (4.1) with #(«, t), we have

2L juC, D+ S vac, 1,

=ID u'fu(w, t,. Tu)udm-{—J‘Q f(w’ t’ 0) 'llda)‘.,

<vlu, D5, +8lut:, DIt + s [, 1£ (o 1, 0)|2ds, (4.6)

‘where we take 0>0 such that b+8<0. By using Gronwall’s inequality, it follows
that

leeCe, D3+ V(e 8) |1, {lluo(w)%._+ llvu§“%s+“2%-||f (w, 3, 0) “L.(e..)}'

The theorem is valid.
'We consider the following quite wide class of gystem of GBBM equations

w,— du,—f (u, Vir) 4.7)

with the initial-boumdary conditions '
| ;0=0o(2), (4.8)
u|99=0. (4-9)

Theorem 8. Suppose that the following conditions are satisfied:
(i) N-dimensional vector valued funciion f (&, Vae) admits the property

[ wef @, vy doz0ub (-, 0 13,4170, DI, (4.10)
where Cy>0 and the integral
= _dz
IOR (4.11)

(ii) the norm || Ly + | Vo] 1ygy G not zero.
Then for the generalized solution w(w, t) of the initial-boundary value problem (4.7)
(4.8) (4.9), the norm [u(., ¢) I L,—{-I{Vu(- t) |1, tends to infinity for a certain finite
value of 1.

Proof Taking the scalar product of the gystem (4.7) and the N-dimensional
vector # and integrating the resulting relation over @2, we get

29t D5+ 5 L vac, DIt @, vw)-uds
>0 (lu(-, D 3. +1Va(, DIL). | (4.12)
Hence (4.12) becomes
2w (t)>200 (w (),

where w(t) = |u(s, )|+ Ve (-, t)|3,. This shows that when the initial value
w(0) = | Uo| %, + | Ve |2, %0, w(t) tends to infinity for a certain finite value of £,



238 OHIN. ANN. OF MATH. Vol. 8 Ser. B
References
{1] Goldstein, J. A, and W1chnosh1, B.J.,on the Benga,mm—Bona.—Mahong equatxon in hlgher d1mensmns,

f2]
[3]
[4]
[5]
[6]

Preprint, 1981.

Bamr, . and Morro, A., J. Math. Phys 23:12 (1982),2312--2321.

Guo Boling (8343 R ), Scientia Sinica (Ser A), 2539 (1982), 897—910.

Ebihara, Y., Nakao, M. and Oanku, T., Pacific Jourral Math., 60:2 (1975), 63.
JIaz;mq:encxaa, 0. A., MaremaTeurckme Boupocsz Iraamurn Bagoi Hecmnuaeuoz JHegroeTa, 1961,
Friedman, A., Part1al differential equa.tlons, 1969,



